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Abstract

The aim of this project is to provide an in depth look into the state-
ment and proof of [1, Prop A.1], which uses ideas from the paper [5] by
Weinstein. We will also look at a proof of a generalisation of the well-
known Darboux-Weinstein lemma, in particular we are interested in the
Moser trick involved, which is used in many proofs. Most terms and theo-
rems used will be defined explicitly, both for the convenience of the reader
and to solidify my own understanding.

1 The Weinstein argument

Proposition 1 ( [1, Prop A.1]). Let X be a smooth manifold. Let ∆ be a
pseudo-differential operator defined in some cone C ⊂ T ∗X. We denote by p
the principal symbol of ∆, and we assume that the sub-principal symbol of ∆
vanishes. Let χ : C → C ′ ⊂ T ∗Y be a canonical transformation, where Y
is another smooth manifold. Then, there exists a microlocally unitary Fourier
Integral Operator Uχ, associated with χ, such that Uχ∆U∗χ = B, where B is
a pseudo-differential operator in C ′ whose principal symbol is p ◦ χ−1 (general
Egorov theorem) and whose sub-principal symbol vanishes.

First let us define some of the terms used above. Many of the definitions,
but not all, comes from [4].

Definition (Differential operator). Let A : F1 → F2 be a map between function
spaces, and f = A(u) ∈ F2 is the image of u ∈ F1. A differential operator is
represented as a linear combination, finitely generated by u and its derivatives
containing higher degrees such as

P (x,D) =
∑
|α|≤m

aα(x)Dα

where α is a multi-index, aα(x) are functions on some open domain in n-
dimensional space.
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Definition (Pseudo-differential operator). A pseudo-differential operator P (x,D)
on Rn is an operator that satisfies

P (x,D)u(x) =
1

(aπ)n

ˆ
Rn

eix·ξP (x, ξ)û(ξ)dξ

where û(ξ) is the Fourier transform of u.

LetM be a smooth compact manifold of dimension d equipped with a smooth
non-vanishing density µ.

Definition (The spaces Sm(Ω,Rn) and Ψm(M)). The space Sm(Ω,Rn) of sym-
bols of order m, where Ω ⊂ Rp and Ω ⊂ cl(int(Ω)), consists of the functions
a ∈ C∞(int(Ω)× Rn) satisfying all the estimates∣∣∣Dα

zD
β
ξ a(z, ξ)

∣∣∣ ≤ Cα,β(1 + |ξ|)m−|β| on int(Ω)× Rn ∀α ∈ Np0, β ∈ Nn0 .

The space Sm(M) are smooth homogeneous functions in Sm(Ω,Rn) defined
on the cone Ω := T ∗M\{0}

The space Ψm(M) of pseudo-differential operators of order m is the space of
all pseudo-differential operator where the total symbol is in Sm(Ω,Rn). We set

Ψ−∞(M) :=
⋃
m∈R

Ψm(M).

There is a graded algebra Ψ(M) of classical pseudo-differential operators on
M via Ψ−∞(M) · · · ⊂ Ψm(M) ⊂ Ψm+1(M) ⊂ · · · , where m is called the order.
There is also the notion of principal symbol σp and of sub-principal symbol σsub

where there is a bijective map

(σp, σsub) : Ψm(M)/Ψm−2(M)→ Sm(M)⊕ Sm−1(M).

Definition (Total symbol, principal symbol and sub-principal symbol). The
total symbol of a differential operator P (x,D) =

∑
|α|≤m aα(x)Dα is the poly-

nomial
P (x, ξ) =

∑
|α|≤m

aα(x)ξα.

The principal symbol is the highest degree component of the total symbol

σp(ξ) =
∑
|α|=m

aαξ
α.

The sub-principal symbol is the principal symbol of the degree (m-1) operator

Q :=
1

2
(P − (−1m)P t)

where
P tg =

∑
(−1)|α|Dα(aαg)
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which has the formula

σsub(P )(x, ξ) = σQ(x, ξ) = pm−1(x, ξ) +
i

2

∑
i

δ2

δxiδξi
pm(x, ξ)

where pk is the k-th order terms of the total symbol of P .

Definition (Quantization). A quantization is a continuous linear mapping

Op : S0(M)→ Ψ0(M)

satisfying σp(Op(a)) = a.

Definition (Wave-front set). To each distribution T on M is associated its
wave-front set WF (T ), which is a closed subcone of T ∗M\{0}, whose projection
onto M is the singular support of T . More precisely, in local coordinates, we
have (q, p) 6∈ WF (T ) iff there exists χ ∈ C∞0 (M) with χ(q) 6= 0 such that the
Fourier transform of χT is rapidly decaying in some conical neighbourhood of p.
For every operator A : C∞(M)→ D′(N), of Schwartz kernel kA ∈ D′(M ×N),
we define

WF ′(A) = {(q, p; q′ − p′) ∈ T ∗M × T ∗N |(q, q′, p, p′) ∈WF (kA)}.

Let χ : V →W be a symplectic diffeomorphism from an open cone V ⊂ T ∗M
to an open cone W ⊂ T ∗N , where M and N are manifolds with the same
dimension, respectively endowed with smooth non-vanishing measures µ and ν.
We can associate a family of linear operators U : L2(M,µ) → L2(N, ν), called
the quantizations of χ, with the following properties

• Microlocally unitary: {(z, χ(z))|z ∈ V } ∪WF ′(U∗U − id) = ∅.
• Egorov theorem: If A ∈ Ψm(N), then B = U∗AU ∈ Ψm(M) and the

principal symbols satisfy on V the relationship σp(B) ◦ χ = σp(A).
• If σsub(A) = 0 then the same holds for B.

Definition (Fourier integral operator). A Fourier integral operator is a linear
operator U : L2 → L2 which satisfy

(Uf)(x) =

ˆ
Rn

e2πiΦ(x,ξ)a(x, ξ)f̂(ξ) dξ

where a(x, ξ) is a standard symbol which is compactly supported in x and Φ is

real valued and homogenous of degree 1 in ξ. We also need det
(

∂2Φ
∂xi∂ξj

)
6= 0 on

the support of a. Note that this is a quantization.

Now we will proceed with the proof of the main proposition, [1, Prop A.1].
The main step of the proof uses the argument of Weinstein given in [5], which
also uses a theorem from [2]. Other details of the proof are referred from the
book [3].

3



Proof of Proposition 1. We will choose the Fourier Integral Operator Uχ asso-
ciated with the canonical transformation χ such that its principal symbol is
constant of modulus 1 and Uχ is microlocally unitary, i.e. U∗χUχ = id in the
cone C. To do this, first we choose U0 such that its principal symbol is constant
of modulus 1, then we have U∗0U0 = id + A where A is a self-adjoint pseudo-
differential operator in Ψ−1(C). Let D = (id+A)−1/2 in C, which is self-adjoint
since A is self-adjoint. We can now set Uχ = U0D, so that

U∗χUχ = (U0D)∗U0D

= D∗U∗0U0D

= DU∗0U0D

= (id +A)−1/2(id +A)(id +A)−1/2

= id

in C as promised.
Denote the Schwartz kernel of Uχ by K(x, y), i.e. the unique distribution K

satisfying
〈K,u⊗ v〉 = 〈Uχv, u〉

which is a Lagrangian distribution associated with a submanifold of C×C ′ which
is the graph of χ. Define B := Uχ∆U∗χ, noting that we have σp(B) = σp(∆)◦χ−1

by Egorov theorem, since U∗∗χ = Uχ. Then the relation

BUχ − Uχ∆ = Uχ∆U∗χUχ − Uχ∆ = Uχ∆− Uχ∆ ∼ 0

is written as
(idX ⊗By −∆x ⊗ idY )K ∼ 0.

Now the following steps are due to Weinstein in the proof of [5, Theorem
4.1]. We assume that the principal symbol of Uχ is a constant of modulus 1, i.e.

σp(Uχ) = a, |a| = 1.

Let H be the Hamilton field of σp(idX ⊗By) lifted to a function on (T ∗X\0)×
(T ∗Y \0), so H is tangential to C, and LH is the corresponding Lie derivative.
Define H ′,LH′ similarly for σp(∆x⊗ idY ). Then we have, by [2, Theorem 5.3.1]
which gives (∗), and the fact that σp(K) = σp(Uχ),

σp(0) = σp

(
(idX ⊗By −∆x ⊗ idY )K

)
= σp

(
(idX ⊗By)K

)
− σp

(
(∆x ⊗ idY )K

)
= LHσp(K) + σsub(idX ⊗By)σp(K) (∗)

− LH′σp(K)− σsub(∆x ⊗ idY )σp(K)
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= LHσp(Uχ)︸ ︷︷ ︸
=0

+σsub(idX ⊗By)σp(Uχ)

− LH′σp(Uχ)︸ ︷︷ ︸
=0

−σsub(∆x ⊗ idY )︸ ︷︷ ︸
=0

σp(Uχ)

= σsub(idX ⊗By)σp(Uχ)︸ ︷︷ ︸
6=0

0 = σsub(B)

where LHσp(Uχ),LH′σp(Uχ) vanishes due to σp(Uχ) being constant and σsub(∆x⊗
idY ) vanishes due to σsub(∆) = 0. This implies that the sub-principal symbol
of B vanishes, as required.

2 The Darboux-Weinstein lemma

We will now present a proof of a generalisation of the Darboux-Weinstein lemma,
found in [6].

Lemma 2. Let N be a manifold endowed with two symplectic forms ω1, ω2, and
let P be a compact submanifold of N along which ω1 = ω2 + OP (k), for some
k ∈ N∗∪{+∞}. Then there exists open neighbourhoods U and V of P in N and
a diffeomorphism f : U → V such that f = idN +OP (k + 1) and f∗ω2 = ω1.

Once again we will define the terms used above.

Definition (Closed form). A differential form ω is closed if dω = 0.

Definition (Exact form). A differential ω is exact if there exists η such that
ω = dη.

In other words, a closed form is in the kernel of d, and an exact form is in
the image of d.

Definition (Nondegenerate form). A differential form ω on a manifold N is
nondegenerate if for every p ∈ N , ωp(x, y) = 0 for all y ∈ TpN\{0} implies
x = 0 ∈ TpN .

Definition (Symplectic form). A symplectic form is a closed nondegenerate
differential 2-form.

Definition. We define g ∈ OP (k) if the function g vanish on P to the order k.

We will now present the proof.

Proof. Define the 2-form ω(t) = ω1 + t(ω2 − ω1) for t ∈ [0, 1], which is closed
since both ω1 and ω2 are closed, so that ω(0) = ω1 and ω(1) = ω2. Let U
be a neighbourhood of P so that ω(t) is nondegenerate for all t, which exists
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since ω1 and ω2 agree along P . By the relative Poincaré lemma, which states
that all closed differential k-forms are locally exact, since P is compact and
ω1 − ω2 is closed, there must exists a 1-form η such that ω1 − ω2 = dη, with
ηx = 0 for every x ∈ P . We can actually choose η = OP (k + 1), since ω1 −
ω2 = OP (k). The construction is given explicitly by η = Q(ω1 − ω2), where

Qω =
´ 1

0
F (t)∗ιY (t)ω dt. Here Y (t), at the point y = F (t, x), is the vector

tangent to the curve F (s, x) at s = t, and (F (t))0≤t≤1 is a smooth homotopy
from the local projection onto P to the identity, fixing P .

Now we can construct the diffeomorphism f using the Moser trick. The
time-dependent vector field X(t) defined for every t by ιX(t)ω(t) = η generates

the time-dependent flow f(t), satisfying ḟ(t) = X(t) ◦ f(t), f(0) = idN . This
gives us, noting that ω is closed, i.e. dω = 0,

∂

∂t
f(t)∗ω(t) = f(t)∗LX(t)ω(t) + f(t)∗ω̇(t)

= f(t)∗LX(t)ω(t) + f(t)∗(ω2 − ω1)

= f(t)∗ιX(t)dω(t) + f(t)∗d(ιX(t)ω(t))− f(t)∗dη

= f(t)∗d(ιX(t)ω(t)− η︸ ︷︷ ︸
=0

) = 0

which means f(t)∗ω(t) is constant with respect to t, so we get

f(0)∗ω(0) = f(1)∗ω(1)

idNω1 = f(1)∗ω2

ω1 = f(1)∗ω2.

We set f = f(1) to give us our diffeomorphism satisfying f = idN +OP (k + 1)
and f∗ω2 = ω1.
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