Weyl Formula via Orthogonality

Xiangjia Kong

April 23, 2022

Let V_{λ} be an irreducible representation of \mathfrak{g} with the highest weight $\lambda=$ $\sum_{i=1}^{k} a_{i} \omega_{i}$, where ω_{i} are the fundamental weights and $a_{i} \in \mathbb{Z}_{+}$. Then the character of V_{λ} is

$$
\chi_{\lambda}(H)=\operatorname{Trace}\left(e^{H}\right)=\sum_{\mu} n_{\mu} e^{\mu(H)}
$$

where the sum is over all weights μ of V_{λ} and n_{μ} is the dimension of the "eigenspace" $V_{\mu}=\left\{v \in V_{\lambda} \mid H(v)=\mu v\right\}$, known as the multiplicity of the weight μ. Now restrict $\chi_{\lambda}(H)$ to $H_{c} \in \oplus_{i=1}^{n} \iota \mathbb{R} \omega_{i}$, then $e^{H_{c}}$ will be from $G_{c}=\exp \left(\mathfrak{g}_{c}\right)$ for the compact form \mathfrak{g}_{c} of \mathfrak{g}. Here $\exp : \mathfrak{g} \rightarrow G$ is the map defined by $\exp (H)=\gamma_{H}(1)$ where γ_{H} is the unique one parameter subgroup on G with $\gamma_{H}(0)=\operatorname{id}_{G}$ and $\gamma_{H}^{\prime}(0)=H$. Note that G_{c} is a compact group.

We will now show

$$
\int_{G_{c}} \overline{\chi_{V}(g)} \chi_{W}(g) d g=0 \quad \text { if } V \neq W
$$

where $d g$ is the Haar measure on $G_{c} \ni g$, and χ_{V}, χ_{W} are irreducible characters of G_{c} with underlying spaces V, W respectively. We have

$$
\int_{G_{c}} \overline{\chi_{V}(g)} \chi_{W}(g) d g=\int_{G_{c}} \chi_{V^{*} \otimes W}(g) d g
$$

since $\overline{\chi_{V}(g)}=\chi_{V^{*}}(g)$ and $\chi_{V} \chi_{W}=\chi_{V \otimes W}$. There is a natural isomorphism $V^{*} \otimes W \cong \operatorname{Hom}(V, W)$ via the functions

$$
V^{*} \otimes W \underset{g}{\stackrel{f}{\rightleftarrows}} \operatorname{Hom}(V, W)
$$

defined by

$$
\begin{aligned}
& f(\phi \otimes w)(v)=\phi(v) w \\
& g(u)=\sum_{i} e_{i}^{*} \otimes u\left(e_{i}\right)
\end{aligned}
$$

where $\left\{e_{i}\right\}$ is a basis of V. One can easily check f and g are inverse to each other. The action of g on this space is by conjugation, which means a G-invariant
element is just a G-homomorphism $V \rightarrow W$. We can see this by looking at the diagram below for $f \in \operatorname{Hom}(V, W)$,

where if $g \circ f \circ g^{-1}=f$ for all $g \in G$ then the above diagram commutes. Therefore we can decompose $\operatorname{Hom}(V, W)=\operatorname{Hom}_{G}(V, W) \oplus U$ for some G-space U, where U has no G-invariant element. So in the decomposition of $\operatorname{Hom}(V, W)$ into irreducibles, we know there are exactly $\operatorname{dim} \operatorname{Hom}_{G}(V, W)$ copies of the trivial representation. But

$$
\operatorname{dim} \operatorname{Hom}_{G}(V, W)=0
$$

by Schur's lemma since $V \not \approx W$, so we can conclude $\operatorname{Hom}(V, W)$ is an irreducible representation. So it suffices to show that for a non-trivial irreducible character χ, we have

$$
\int_{G_{c}} \chi(g) d g=0
$$

Now if ρ affords χ, then any element in the image of $\int_{G_{c}} \rho(g) d g$ is fixed by G, i.e. the image is a G-subspace. Irreducibility then implies it is trivial. So $\int_{G_{c}} \rho(g) d g=0$ and we are done.

