Weyl Formula via Orthogonality

Xiangjia Kong

April 23, 2022

Let V_{λ} be an irreducible representation of \mathfrak{g} with the highest weight $\lambda = \sum_{i=1}^{k} a_i \omega_i$, where ω_i are the fundamental weights and $a_i \in \mathbb{Z}_+$. Then the character of V_{λ} is

$$\chi_{\lambda}(H) = \operatorname{Trace}(e^{H}) = \sum_{\mu} n_{\mu} e^{\mu(H)}$$

where the sum is over all weights μ of V_{λ} and n_{μ} is the dimension of the "eigenspace" $V_{\mu} = \{v \in V_{\lambda} | H(v) = \mu v\}$, known as the multiplicity of the weight μ . Now restrict $\chi_{\lambda}(H)$ to $H_c \in \bigoplus_{i=1}^n \iota \mathbb{R}\omega_i$, then e^{H_c} will be from $G_c = \exp(\mathfrak{g}_c)$ for the compact form \mathfrak{g}_c of \mathfrak{g} . Here $\exp : \mathfrak{g} \to G$ is the map defined by $\exp(H) = \gamma_H(1)$ where γ_H is the unique one parameter subgroup on G with $\gamma_H(0) = \operatorname{id}_G$ and $\gamma'_H(0) = H$. Note that G_c is a compact group.

We will now show

$$\int_{G_c} \overline{\chi_V(g)} \chi_W(g) dg = 0 \quad \text{if } V \neq W$$

where dg is the Haar measure on $G_c \ni g$, and χ_V, χ_W are irreducible characters of G_c with underlying spaces V, W respectively. We have

$$\int_{G_c} \overline{\chi_V(g)} \chi_W(g) dg = \int_{G_c} \chi_{V^* \otimes W}(g) dg$$

since $\chi_V(\overline{g}) = \chi_{V^*}(g)$ and $\chi_V \chi_W = \chi_{V \otimes W}$. There is a natural isomorphism $V^* \otimes W \cong \operatorname{Hom}(V, W)$ via the functions

$$V^* \otimes W \stackrel{f}{\underset{g}{\leftrightarrow}} \operatorname{Hom}(V, W)$$

defined by

$$f(\phi \otimes w)(v) = \phi(v)w$$
$$g(u) = \sum_{i} e_{i}^{*} \otimes u(e_{i})$$

where $\{e_i\}$ is a basis of V. One can easily check f and g are inverse to each other. The action of g on this space is by conjugation, which means a G-invariant

element is just a G-homomorphism $V \to W$. We can see this by looking at the diagram below for $f \in \text{Hom}(V, W)$,

$$\begin{array}{ccc} V & \stackrel{g}{\longrightarrow} V \\ f \downarrow & & \downarrow g \circ f \circ g^{-1} \\ W & \stackrel{g}{\longrightarrow} W \end{array}$$

where if $g \circ f \circ g^{-1} = f$ for all $g \in G$ then the above diagram commutes. Therefore we can decompose $\operatorname{Hom}(V, W) = \operatorname{Hom}_G(V, W) \oplus U$ for some *G*-space *U*, where *U* has no *G*-invariant element. So in the decomposition of $\operatorname{Hom}(V, W)$ into irreducibles, we know there are exactly dim $\operatorname{Hom}_G(V, W)$ copies of the trivial representation. But

$$\dim \operatorname{Hom}_G(V, W) = 0$$

by Schur's lemma since $V \not\cong W$, so we can conclude Hom(V, W) is an irreducible representation. So it suffices to show that for a non-trivial irreducible character χ , we have

$$\int_{G_c} \chi(g) dg = 0.$$

Now if ρ affords χ , then any element in the image of $\int_{G_c} \rho(g) dg$ is fixed by G, i.e. the image is a G-subspace. Irreducibility then implies it is trivial. So $\int_{G_c} \rho(g) dg = 0$ and we are done.