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Theorem 1. We have an isomorphism

m1(SO™(p,q)) = m(SO(p)) x m1(SO(q))

induced by the map
SO(p) x SO(q) — SO* (p, q).

Proof. Let n =p+ q and
+ 2 2 2 2
Xpg={zeR" [zi+- - +a, —wy — - — 3y, = F1}
then via the Serre fibration we get the following short exact sequence
0> XS SHRI—0

where 7! is given by

7 (z) = (\/1 Fal Al 0,0, 0,200, T
From the above we get the long exact sequence on homotopy groups
0 — m(SP71) = ma(X,5,) = m(RY) =0 — my(SP71) = m(X,[,) =0

and
mo(X,5,) = mo(SP7) = {i po?nzs, p: 1
’ pomt, p .
Now using the fact that

1 (S1T™) =0, m>0
72(S™) = 0, unless m(S?) = Z

the long exact sequence becomes, for p # 2, 3,

0—0—m(X,,)—>0—0—m(X,,)—0

from the exactness of the sequence we get

mo( X ) =m (XS, )=0, p#23.

b,q p,q



In the case of p = 2 the long exact sequence becomes

00— m(XS) 0525 (x ) o
Since ker(g) = im(f) = 0 we have that g is an injection, so
m(X5,) = ker(h) = im(g) = Z

and
'/TQ(X;:q) =0.

In the case of p = 3 the long exact sequence becomes
0=2Z—=m(X ,)—=0—=0-m(X),)—0,
by the same logic as above we get

WQ(X;q):Z7 7T1(X3+’q)20.

Putting everything together we have

0 ifp#2 0 ifp#£3
7T1(X+):{Z ﬁifz’ ”ﬂXﬁD:{Z ﬁif3

Lemma 2. The following are fibrations

0— SO(p—1,9) = SO(p,q) = X,[, = 0
0= SO(p,q—1) < SO(p,q) — X,y = X., — 0.

Proof. Elements of SO(p, q) are of the form
B C
(5 %)

where B,C, D, E are p X p,q X p,p X q,q X ¢ matrices respectively. So we have,
from the definition of SO(p, q),

T _NnT
AlgwAqu(B D )

-cT ET
Write the first column of A as
by



and the first row of A~! as
(A1), = (by ... by —di ... —dg)
then the entry in the first row and first column of A='A =TI is
l=Dn=A"An=A"NA =]+ +b—di — - —d

which implies that A; € X;{ ¢ @s a vector in R™.
Now the inclusion map i := SO(p — 1, ¢q) — SO(p, q) can be given explicitly

via considering any element M € SO(p — 1,q) as an element

i(M) = (é AO4> € SO(p,q)-

So given any A € SO(p,q), M € SO(p—1,q), we can see that A-i(M) has the
same first column as A, which means the coset

A-SO(p—1,q9) € SO(p,q)/SO(p — 1,q)

can be represented by [A;], i.e. the first column of A. Indeed any two element
in the same coset will have the same first column. So we have

O(p,q)/SO(p—1,q) = X}

p,q

from by the map
f:80(p,q) > X,

given by mapping each A € SO(p,q) to the corresponding first column A4; €
X!, The kernel of f is exactly SO(p —1,q) < SO(p,q), and given an element
x G X+ we can find a matrix A € SO(p, ¢) with z as the first column by using
the Gram Schmidt process. So f is surjective and the above follows from the
isomorphism theorem. This gives exactly the first short exact sequence

0— SO(p—1,q) = SO(p,q) = X,-, — 0.

The second short exact sequence can be shown by the same argument but
embedding M € SO(p,q — 1) via

(b %) esowa

and looking at the last column. We just need to show X = = Xr ¢.p» Which is
given by the fact that
2 2 2 2
x1+'”+xp7xp+l7'”71’174—(1:71
2 2 2
S T+ +xp+q xi—-—x, =1
U



Lemma 3. 71(SO(n)) =7 (SO(n+ 1)) for n > 3.
Proof. For n > 3, m(S™) = m1(S™) = 0, so the fibration
0—SO(n)—SO(n+1)—S"—=0
gives the long exact sequence
0— m(S™)=0— m(S0(n)) = m(SO(n+1)) - m(S")=0—0
which gives the desired result. O

We now assume p > ¢, since we have SO (p, q) = SO™(q, p). The first short
exact sequence in lemma 0.2 reduces to

0— SOT(p—1,q) — SO (p,q) %X;fq -0, p>2.
This gives a long exact sequence on homotopy groups

0 = m2(X,,) = (SOt (p—1,9)) = m (SO (p,q) = m(X;,) = 0.

p.q

We will first use this to deal with the cases of p < 3:
If p = 1: Since m; (qu) = Ty (Xftq) = 0, we get the exact sequence
0 — 71 (SO™(0,q)) = 7 (SO(q)) = ™ (SO™(1,q)) — 0.
From the exactness of the sequence above we get

m1(SO™(L,q)) = m(SO™(0,q)) = m1(SO(q))
=0xm(SO(q)) =7 (SO(1)) x 1 (SO(q))

as required. Note that since SO(1) consist of only one element we must have

If p = 2: Since m; (X;q) = 7Z,m2(XS,) = 0, we get the short exact sequence

2,4

0 — m(SOT(1,q)) = 11(SO(q)) = 7 (SO (2,q9)) = Z — 0

from p = 1 case above

which gives
m1(SO7(2,9)) = Z x m(SO*(1,q)) = m1(SO(2)) x m(SO(q))
since SO(2) = S! implies 71 (SO(2)) = Z.
If p = 3: We know

11 (SOT(3,0)) = m1(SO(3)) = Z /27



so in the case of ¢ = 1 we get the following from the second short exact sequence
in lemma 0.2,

0 = ma(Xi'5) =0 = m(SO*(3,0)) = m(SOT(3,1)) = m (X 5) =0—0
0 — m1(SO™(3,0)) = m (SO (3,1)) = 0

which gives us
71 (SOT(3,1)) = 1 (SO™(3,0)) = 1 (SO(3)) = 71 (SO(3)) x 71 (SO(1))
as required. We do the same for ¢ = 2

0 —= m(X53) =0 —= m(SO*(3,1)) = m(SO*(3,2)) = m(X53) =Z—0
0 — m (SO (3,1)) = 7 (SO*(3,2)) = Z — 0

to get
71(S0™(3,2)) = 71 (SO™(3,1)) x Z = m,(SO(3)) x m1(SO(2))
as required. Now if ¢ > 3 then we have

0— m (X, 5) =0—m(SO*(3,q—1)) = m(SO*(3,q)) » m(X)5) =00
0 — m1(SOT(3,¢—1)) = 7 (SO"(3,q)) = 0

to get m (SOT(3,q)) = m1(SOT(3,¢ — 1)) = 1 (SO (3,3)) for ¢ > 3, and since
lemma 0.3 gives us m1(SO(q — 1)) = 71 (SO(q)) for ¢ > 3 we get the desired

m1(SO*(3,9)) = 1 (SO*(3,3))
= m(8SO(3)) x 1 (SO(3)) = m1(SO(3)) x 1 (SO(q))

if we can prove the claim for 7 (SO™(3,3)), which is shown below.

If p > 3: We induct on p. Since m1(X,",) = m(X,",) = 0 for p > 3, we get
the exact sequence

0= m(SOT(p—1,q9) = m(SO*(p,q)) =0
which means

T (50" (p,q)) = T (SO*(p—1,q))
=1 (SO(p — 1)) x 11(SO(q)) = m1(SO(p)) x m(SO(q))

by the induction hypothesis. The last equality is from lemma 0.3.

Now we deal with the case of m1(SO™(3,3)). First we show SOT(3,3) =
SL(4,R)/{+1}.



Now since m(X5,) = 0,m(X5,) = Z, we get the following short exact
sequence for ¢ = 0,

0 = m(X5 ) = m(SOT(2,0)) = m(SOT(3,0)) = m(XS,) =0
0 — m(5%) =7 22 11(SO(2)) — m1(S0(3)) = 11 (5?) =0 =0
0—7Z 2% 11(S0(2)) — 11 (SO(3)) — 0 (%)
and similarly the following for ¢ = 3
0— Z — m(SOT(3,2)) — 7 (SOT(3,3)) — 0.

There is a commutative diagram

SO*(3,2) —— SO*(3,3)

] J

SO(2) x SO(3) —— SO(3) x SO(3)
since every arrow is an inclusion, which gives us from above

0 —Z —— m(SOT(3,2)) ——— m(SO0*(3,3)) —— 0

d I

m(SO(2)) x 7 (S0(3)) — 71 (S0(3)) x m(SO(3)) —> 0.
From (%) we see that g must necessarily be
g:(z,z) = (z mod 2,x)

since the map in the first coordinate comes from (x). Therefore the image of ~y
is some image of Z/2Z. From the sequence

02 L 1(S0%(3,2)) = Z x Z)2Z — 71(SO*(3,3)) = im(y) — 0
there are 3 scenarios

o f:1—(2,0)=im(y) =%Z/2Z x 7/2Z
o f:1—(1,1)=im(y) =Z/2Z
o f:1m(2,1)= im(y) = Z/4Z.

Lemma 4. SO*(3,3) = SL(4,R)/{+1}.

Proof. We have SL(4,R) acts on V = R* via rotations, which means it also acts
on U = AV of dimension (;1) = 6. We can define a symmetric form on U via

(1}1 /\1}2,1}3/\114) = (’Ul /\’U2/\U3/\1}4)/(61 /\62 /\83/\64)



where (v1 A vg Avg Avy) € A*V which is a 1-dim vector space over R. By
definition we have for all g € SL(4,R),
1=detg = g(vi Ava Avg Avg)/(v1 Ava Avs Avy)
— g(Ul/\UQ/\Ug/\’U4):(1}1/\1)2/\1)3/\1}4)
and so A*V is invariant under the action by SL(4,R), i.e. the above symmetric
form (-,-) is preserved under SL(4,R). Now we compute the signature of (-,-)
by looking at the canonical basis of A2V,
|€1 Ney ez A 64‘2 = :|:2(61 N eg, ez N\ 64) =412
|€1 NegEtes A 64‘2 = i2(61 N ez, ez N\ 64) = F2
|€1 Negtes A 63‘2 = :|:2(€1 N €eq,€2 N\ 63) = 4+2
and so the signature is (3,—3). This means SO(3,3) is also exactly the lin-
ear maps that preserves the symmetric form (-,-) of determinant 1. Since

dim SO(3,3) = 15 = dim SL(4,R), the connected component SOT(3,3) must
be isomorphic to the connected component SL(4,R)/{£1}, as required. O

So from the above lemma we know im(y) = Z/2Z x Z/2Z or Z/AZ, but since
it is the image of Z/2Z under a surjective map we conclude that

71(SO™(3,3)) = Z/27 x 7.)27 = 7, (SO(3)) x 71 (SO(3))

as required. O



