Indefinite orthogonal groups

by Xiangjia Kong

April 27, 2022

Theorem 1. We have an isomorphism

$$
\pi_{1}\left(S O^{+}(p, q)\right) \cong \pi_{1}(S O(p)) \times \pi_{1}(S O(q))
$$

induced by the map

$$
S O(p) \times S O(q) \rightarrow S O^{+}(p, q)
$$

Proof. Let $n=p+q$ and

$$
X_{p, q}^{ \pm}:=\left\{x \in \mathbb{R}^{n} \mid x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q}^{2}= \pm 1\right\}
$$

then via the Serre fibration we get the following short exact sequence

$$
0 \rightarrow S^{p-1} \hookrightarrow X_{p, q}^{+} \xrightarrow{\pi} \mathbb{R}^{q} \rightarrow 0
$$

where π^{-1} is given by

$$
\pi^{-1}(x)=\left(\sqrt{1+x_{p+1}^{2}+\cdots+x_{p+q}^{2}}, 0, \ldots, 0, x_{p+1}, \ldots, x_{n}\right)
$$

From the above we get the long exact sequence on homotopy groups

$$
0 \rightarrow \pi_{2}\left(S^{p-1}\right) \rightarrow \pi_{2}\left(X_{p, q}^{+}\right) \rightarrow \pi_{2}\left(\mathbb{R}^{q}\right)=0 \rightarrow \pi_{1}\left(S^{p-1}\right) \rightarrow \pi_{1}\left(X_{p, q}^{+}\right) \rightarrow 0
$$

and

$$
\pi_{0}\left(X_{p, q}^{+}\right)=\pi_{0}\left(S^{p-1}\right)= \begin{cases}2 \text { points, } & p=1 \\ 1 \text { point, } & p \neq 1\end{cases}
$$

Now using the fact that

$$
\begin{aligned}
& \pi_{1}\left(S^{1+m}\right)=0, \quad m \geq 0 \\
& \pi_{2}\left(S^{n}\right)=0, \text { unless } \pi_{2}\left(S^{2}\right)=\mathbb{Z}
\end{aligned}
$$

the long exact sequence becomes, for $p \neq 2,3$,

$$
0 \rightarrow 0 \rightarrow \pi_{2}\left(X_{p, q}^{+}\right) \rightarrow 0 \rightarrow 0 \rightarrow \pi_{1}\left(X_{p, q}^{+}\right) \rightarrow 0
$$

from the exactness of the sequence we get

$$
\pi_{2}\left(X_{p, q}^{+}\right)=\pi_{1}\left(X_{p, q}^{+}\right)=0, \quad p \neq 2,3
$$

In the case of $p=2$ the long exact sequence becomes

$$
0 \rightarrow 0 \rightarrow \pi_{2}\left(X_{2, q}^{+}\right) \rightarrow 0 \xrightarrow{f} \mathbb{Z} \xrightarrow{g} \pi_{1}\left(X_{2, q}^{+}\right) \xrightarrow{h} 0 .
$$

Since $\operatorname{ker}(g)=\operatorname{im}(f)=0$ we have that g is an injection, so

$$
\pi_{1}\left(X_{2, q}^{+}\right)=\operatorname{ker}(h)=\operatorname{im}(g)=\mathbb{Z}
$$

and

$$
\pi_{2}\left(X_{2, q}^{+}\right)=0
$$

In the case of $p=3$ the long exact sequence becomes

$$
0 \rightarrow \mathbb{Z} \rightarrow \pi_{2}\left(X_{p, q}^{+}\right) \rightarrow 0 \rightarrow 0 \rightarrow \pi_{1}\left(X_{p, q}^{+}\right) \rightarrow 0
$$

by the same logic as above we get

$$
\pi_{2}\left(X_{3, q}^{+}\right)=\mathbb{Z}, \quad \pi_{1}\left(X_{3, q}^{+}\right)=0
$$

Putting everything together we have

$$
\pi_{1}\left(X_{p, q}^{+}\right)=\left\{\begin{array}{ll}
0 & \text { if } p \neq 2 \\
\mathbb{Z} & \text { if } p=2
\end{array}, \quad \pi_{2}\left(X_{p, q}^{+}\right)= \begin{cases}0 & \text { if } p \neq 3 \\
\mathbb{Z} & \text { if } p=3\end{cases}\right.
$$

Lemma 2. The following are fibrations

$$
\begin{gathered}
0 \rightarrow S O(p-1, q) \hookrightarrow S O(p, q) \rightarrow X_{p, q}^{+} \rightarrow 0 \\
0 \rightarrow S O(p, q-1) \hookrightarrow S O(p, q) \rightarrow X_{p, q}^{-}=X_{q, p}^{+} \rightarrow 0
\end{gathered}
$$

Proof. Elements of $S O(p, q)$ are of the form

$$
A=\left(\begin{array}{ll}
B & C \\
D & E
\end{array}\right)
$$

where B, C, D, E are $p \times p, q \times p, p \times q, q \times q$ matrices respectively. So we have, from the definition of $S O(p, q)$,

$$
A^{-1}=I_{p, q} A^{\top} I_{p, q}=\left(\begin{array}{cc}
B^{\top} & -D^{\top} \\
-C^{\top} & E^{\top}
\end{array}\right)
$$

Write the first column of A as

$$
A_{1}=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{p} \\
d_{1} \\
\vdots \\
d_{q}
\end{array}\right)
$$

and the first row of A^{-1} as

$$
\left(A^{-1}\right)_{1}=\left(\begin{array}{llllll}
b_{1} & \ldots & b_{p} & -d_{1} & \ldots & -d_{q}
\end{array}\right)
$$

then the entry in the first row and first column of $A^{-1} A=I$ is

$$
1=(I)_{11}=\left(A^{-1} A\right)_{11}=\left(A^{-1}\right)_{1} A_{1}=b_{1}^{2}+\cdots+b_{p}^{2}-d_{1}^{2}-\cdots-d_{q}^{2}
$$

which implies that $A_{1} \in X_{p, q}^{+}$as a vector in \mathbb{R}^{n}.
Now the inclusion map $i:=S O(p-1, q) \hookrightarrow S O(p, q)$ can be given explicitly via considering any element $M \in S O(p-1, q)$ as an element

$$
i(M)=\left(\begin{array}{cc}
1 & 0 \\
0 & M
\end{array}\right) \in S O(p, q)
$$

So given any $A \in S O(p, q), M \in S O(p-1, q)$, we can see that $A \cdot i(M)$ has the same first column as A, which means the coset

$$
A \cdot S O(p-1, q) \in S O(p, q) / S O(p-1, q)
$$

can be represented by $\left[A_{1}\right]$, i.e. the first column of A. Indeed any two element in the same coset will have the same first column. So we have

$$
S O(p, q) / S O(p-1, q) \cong X_{p, q}^{+}
$$

from by the map

$$
f: S O(p, q) \rightarrow X_{p, q}^{+}
$$

given by mapping each $A \in S O(p, q)$ to the corresponding first column $A_{1} \in$ $X_{p, q}^{+}$. The kernel of f is exactly $S O(p-1, q) \hookrightarrow S O(p, q)$, and given an element $x \in X_{p, q}^{+}$we can find a matrix $A \in S O(p, q)$ with x as the first column by using the Gram-Schmidt process. So f is surjective and the above follows from the isomorphism theorem. This gives exactly the first short exact sequence

$$
0 \rightarrow S O(p-1, q) \hookrightarrow S O(p, q) \rightarrow X_{p, q}^{+} \rightarrow 0
$$

The second short exact sequence can be shown by the same argument but embedding $M \in S O(p, q-1)$ via

$$
\left(\begin{array}{cc}
M & 0 \\
0 & -1
\end{array}\right) \in S O(p, q)
$$

and looking at the last column. We just need to show $X_{p, q}^{-}=X_{q, p}^{+}$, which is given by the fact that

$$
\begin{aligned}
x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q}^{2} & =-1 \\
& \Leftrightarrow x_{p+1}^{2}+\cdots+x_{p+q}^{2}-x_{1}^{2}-\cdots-x_{p}^{2}=1
\end{aligned}
$$

Lemma 3. $\pi_{1}(S O(n))=\pi_{1}(S O(n+1))$ for $n \geq 3$.
Proof. For $n \geq 3, \pi_{2}\left(S^{n}\right)=\pi_{1}\left(S^{n}\right)=0$, so the fibration

$$
0 \rightarrow S O(n) \rightarrow S O(n+1) \rightarrow S^{n} \rightarrow 0
$$

gives the long exact sequence

$$
0 \rightarrow \pi_{2}\left(S^{n}\right)=0 \rightarrow \pi_{1}(S O(n)) \rightarrow \pi_{1}(S O(n+1)) \rightarrow \pi_{1}\left(S^{n}\right)=0 \rightarrow 0
$$

which gives the desired result.
We now assume $p \geq q$, since we have $S O^{+}(p, q) \cong S O^{+}(q, p)$. The first short exact sequence in lemma 0.2 reduces to

$$
0 \rightarrow S O^{+}(p-1, q) \hookrightarrow S O^{+}(p, q) \rightarrow X_{p, q}^{+} \rightarrow 0, \quad p \geq 2
$$

This gives a long exact sequence on homotopy groups

$$
0 \rightarrow \pi_{2}\left(X_{p, q}^{+}\right) \rightarrow \pi_{1}\left(S O^{+}(p-1, q)\right) \rightarrow \pi_{1}\left(S O^{+}(p, q)\right) \rightarrow \pi_{1}\left(X_{p, q}^{+}\right) \rightarrow 0
$$

We will first use this to deal with the cases of $p \leq 3$:
If $p=1$: Since $\pi_{1}\left(X_{1, q}^{+}\right)=\pi_{2}\left(X_{1, q}^{+}\right)=0$, we get the exact sequence

$$
0 \rightarrow \pi_{1}\left(S O^{+}(0, q)\right)=\pi_{1}(S O(q)) \rightarrow \pi_{1}\left(S O^{+}(1, q)\right) \rightarrow 0
$$

From the exactness of the sequence above we get

$$
\begin{aligned}
& \pi_{1}\left(S O^{+}(1, q)\right)=\pi_{1}\left(S O^{+}(0, q)\right)=\pi_{1}(S O(q)) \\
& \quad=0 \times \pi_{1}(S O(q))=\pi_{1}(S O(1)) \times \pi_{1}(S O(q))
\end{aligned}
$$

as required. Note that since $S O(1)$ consist of only one element we must have $\pi_{1}(S O(1))=0$.

If $p=2$: Since $\pi_{1}\left(X_{2, q}^{+}\right)=\mathbb{Z}, \pi_{2}\left(X_{2, q}^{+}\right)=0$, we get the short exact sequence

$$
0 \rightarrow \underbrace{\pi_{1}\left(S O^{+}(1, q)\right)=\pi_{1}(S O(q))}_{\text {from } p=1 \text { case above }} \hookrightarrow \pi_{1}\left(S O^{+}(2, q)\right) \rightarrow \mathbb{Z} \rightarrow 0
$$

which gives

$$
\pi_{1}\left(S O^{+}(2, q)\right)=\mathbb{Z} \times \pi_{1}\left(S O^{+}(1, q)\right)=\pi_{1}(S O(2)) \times \pi_{1}(S O(q))
$$

since $S O(2) \cong S^{1}$ implies $\pi_{1}(S O(2))=\mathbb{Z}$.
If $p=3$: We know

$$
\pi_{1}\left(S O^{+}(3,0)\right)=\pi_{1}(S O(3))=\mathbb{Z} / 2 \mathbb{Z}
$$

so in the case of $q=1$ we get the following from the second short exact sequence in lemma 0.2 ,

$$
\begin{aligned}
0 \rightarrow \pi_{2}\left(X_{1,3}^{+}\right)=0 & \rightarrow \pi_{1}\left(S O^{+}(3,0)\right) \rightarrow \pi_{1}\left(S O^{+}(3,1)\right) \rightarrow \pi_{1}\left(X_{1,3}^{+}\right)=0 \rightarrow 0 \\
& 0 \rightarrow \pi_{1}\left(S O^{+}(3,0)\right) \rightarrow \pi_{1}\left(S O^{+}(3,1)\right) \rightarrow 0
\end{aligned}
$$

which gives us

$$
\pi_{1}\left(S O^{+}(3,1)\right)=\pi_{1}\left(S O^{+}(3,0)\right)=\pi_{1}(S O(3))=\pi_{1}(S O(3)) \times \pi_{1}(S O(1))
$$

as required. We do the same for $q=2$

$$
\begin{gathered}
0 \rightarrow \pi_{2}\left(X_{2,3}^{+}\right)=0 \rightarrow \pi_{1}\left(S O^{+}(3,1)\right) \rightarrow \pi_{1}\left(S O^{+}(3,2)\right) \rightarrow \pi_{1}\left(X_{2,3}^{+}\right)=\mathbb{Z} \rightarrow 0 \\
0 \rightarrow \pi_{1}\left(S O^{+}(3,1)\right) \rightarrow \pi_{1}\left(S O^{+}(3,2)\right) \rightarrow \mathbb{Z} \rightarrow 0
\end{gathered}
$$

to get

$$
\pi_{1}\left(S O^{+}(3,2)\right)=\pi_{1}\left(S O^{+}(3,1)\right) \times \mathbb{Z}=\pi_{1}(S O(3)) \times \pi_{1}(S O(2))
$$

as required. Now if $q>3$ then we have

$$
\begin{aligned}
0 \rightarrow \pi_{2}\left(X_{q, 3}^{+}\right)=0 & \rightarrow \pi_{1}\left(S O^{+}(3, q-1)\right) \\
0 & \rightarrow \pi_{1}\left(S O^{+}(3, q)\right) \rightarrow \pi_{1}\left(X_{q, 3}^{+}\right)=0 \rightarrow 0 \\
0 & \left.\operatorname{sO}^{+}(3, q-1)\right)
\end{aligned} \rightarrow \pi_{1}\left(S O^{+}(3, q)\right) \rightarrow 0
$$

to get $\pi_{1}\left(S O^{+}(3, q)\right)=\pi_{1}\left(S O^{+}(3, q-1)\right)=\pi_{1}\left(S O^{+}(3,3)\right)$ for $q>3$, and since lemma 0.3 gives us $\pi_{1}(S O(q-1))=\pi_{1}(S O(q))$ for $q>3$ we get the desired

$$
\begin{aligned}
\pi_{1}\left(S O^{+}(3, q)\right)=\pi_{1} & \left(S O^{+}(3,3)\right) \\
& =\pi_{1}(S O(3)) \times \pi_{1}(S O(3))=\pi_{1}(S O(3)) \times \pi_{1}(S O(q))
\end{aligned}
$$

if we can prove the claim for $\pi_{1}\left(S O^{+}(3,3)\right)$, which is shown below.
If $p>3$: We induct on p. Since $\pi_{1}\left(X_{p, q}^{+}\right)=\pi_{2}\left(X_{p, q}^{+}\right)=0$ for $p>3$, we get the exact sequence

$$
0 \rightarrow \pi_{1}\left(S O^{+}(p-1, q)\right) \rightarrow \pi_{1}\left(S O^{+}(p, q)\right) \rightarrow 0
$$

which means

$$
\begin{aligned}
& \pi_{1}\left(S O^{+}(p, q)\right)=\pi_{1}\left(S O^{+}(p-1, q)\right) \\
& \quad=\pi_{1}(S O(p-1)) \times \pi_{1}(S O(q))=\pi_{1}(S O(p)) \times \pi_{1}(S O(q))
\end{aligned}
$$

by the induction hypothesis. The last equality is from lemma 0.3 .
Now we deal with the case of $\pi_{1}\left(S O^{+}(3,3)\right)$. First we show $S O^{+}(3,3)=$ $S L(4, \mathbb{R}) /\{ \pm 1\}$.

Now since $\pi_{1}\left(X_{3, q}^{+}\right)=0, \pi_{2}\left(X_{3, q}^{+}\right)=\mathbb{Z}$, we get the following short exact sequence for $q=0$,

$$
\begin{gather*}
0 \rightarrow \pi_{2}\left(X_{3,0}^{+}\right) \rightarrow \pi_{1}\left(S O^{+}(2,0)\right) \rightarrow \pi_{1}\left(S O^{+}(3,0)\right) \rightarrow \pi_{1}\left(X_{3,0}^{+}\right) \rightarrow 0 \\
0 \rightarrow \pi_{2}\left(S^{2}\right)=\mathbb{Z} \xrightarrow{\times 2} \pi_{1}(S O(2)) \rightarrow \pi_{1}(S O(3)) \rightarrow \pi_{1}\left(S^{2}\right)=0 \rightarrow 0 \\
0 \rightarrow \mathbb{Z} \xrightarrow{\times 2} \pi_{1}(S O(2)) \rightarrow \pi_{1}(S O(3)) \rightarrow 0 \tag{*}
\end{gather*}
$$

and similarly the following for $q=3$

$$
0 \rightarrow \mathbb{Z} \rightarrow \pi_{1}\left(S O^{+}(3,2)\right) \rightarrow \pi_{1}\left(S O^{+}(3,3)\right) \rightarrow 0
$$

There is a commutative diagram

since every arrow is an inclusion, which gives us from above

From (\star) we see that g must necessarily be

$$
g:(z, x) \mapsto(z \quad \bmod 2, x)
$$

since the map in the first coordinate comes from (\star). Therefore the image of γ is some image of $\mathbb{Z} / 2 \mathbb{Z}$. From the sequence

$$
0 \rightarrow \mathbb{Z} \xrightarrow{f} \pi_{1}\left(S O^{+}(3,2)\right)=\mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \rightarrow \pi_{1}\left(S O^{+}(3,3)\right)=\operatorname{im}(\gamma) \rightarrow 0
$$

there are 3 scenarios

- $f: 1 \mapsto(2,0) \Rightarrow \operatorname{im}(\gamma)=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
- $f: 1 \mapsto(1,1) \Rightarrow \operatorname{im}(\gamma)=\mathbb{Z} / 2 \mathbb{Z}$
- $f: 1 \mapsto(2,1) \Rightarrow \operatorname{im}(\gamma)=\mathbb{Z} / 4 \mathbb{Z}$.

Lemma 4. $S O^{+}(3,3)=S L(4, \mathbb{R}) /\{ \pm 1\}$.
Proof. We have $S L(4, \mathbb{R})$ acts on $V=\mathbb{R}^{4}$ via rotations, which means it also acts on $U=\Lambda^{2} V$ of dimension $\binom{4}{2}=6$. We can define a symmetric form on U via

$$
\left(v_{1} \wedge v_{2}, v_{3} \wedge v_{4}\right)=\left(v_{1} \wedge v_{2} \wedge v_{3} \wedge v_{4}\right) /\left(e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}\right)
$$

where $\left(v_{1} \wedge v_{2} \wedge v_{3} \wedge v_{4}\right) \in \Lambda^{4} V$ which is a 1 -dim vector space over \mathbb{R}. By definition we have for all $g \in S L(4, \mathbb{R})$,

$$
\begin{aligned}
1= & \operatorname{det} g=g\left(v_{1} \wedge v_{2} \wedge v_{3} \wedge v_{4}\right) /\left(v_{1} \wedge v_{2} \wedge v_{3} \wedge v_{4}\right) \\
& \Longrightarrow g\left(v_{1} \wedge v_{2} \wedge v_{3} \wedge v_{4}\right)=\left(v_{1} \wedge v_{2} \wedge v_{3} \wedge v_{4}\right)
\end{aligned}
$$

and so $\Lambda^{4} V$ is invariant under the action by $S L(4, \mathbb{R})$, i.e. the above symmetric form (\cdot, \cdot) is preserved under $S L(4, \mathbb{R})$. Now we compute the signature of (\cdot, \cdot) by looking at the canonical basis of $\Lambda^{2} V$,

$$
\begin{aligned}
& \left|e_{1} \wedge e_{2} \pm e_{3} \wedge e_{4}\right|^{2}= \pm 2\left(e_{1} \wedge e_{2}, e_{3} \wedge e_{4}\right)= \pm 2 \\
& \left|e_{1} \wedge e_{3} \pm e_{2} \wedge e_{4}\right|^{2}= \pm 2\left(e_{1} \wedge e_{3}, e_{2} \wedge e_{4}\right)=\mp 2 \\
& \left|e_{1} \wedge e_{4} \pm e_{2} \wedge e_{3}\right|^{2}= \pm 2\left(e_{1} \wedge e_{4}, e_{2} \wedge e_{3}\right)= \pm 2
\end{aligned}
$$

and so the signature is $(3,-3)$. This means $S O(3,3)$ is also exactly the linear maps that preserves the symmetric form (\cdot, \cdot) of determinant 1. Since $\operatorname{dim} S O(3,3)=15=\operatorname{dim} S L(4, \mathbb{R})$, the connected component $S O^{+}(3,3)$ must be isomorphic to the connected component $S L(4, \mathbb{R}) /\{ \pm 1\}$, as required.

So from the above lemma we know $\operatorname{im}(\gamma)=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ or $\mathbb{Z} / 4 \mathbb{Z}$, but since it is the image of $\mathbb{Z} / 2 \mathbb{Z}$ under a surjective map we conclude that

$$
\pi_{1}\left(S O^{+}(3,3)\right)=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}=\pi_{1}(S O(3)) \times \pi_{1}(S O(3))
$$

as required.

