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Theorem 1. We have an isomorphism

π1(SO+(p, q)) ∼= π1(SO(p))× π1(SO(q))

induced by the map
SO(p)× SO(q)→ SO+(p, q).

Proof. Let n = p+ q and

X±p,q := {x ∈ Rn | x21 + · · ·+ x2p − x2p+1 − · · · − x2p+q = ±1}

then via the Serre fibration we get the following short exact sequence

0→ Sp−1 ↪→ X+
p,q

π−→ Rq → 0

where π−1 is given by

π−1(x) = (
√

1 + x2p+1 + · · ·+ x2p+q, 0, . . . , 0, xp+1, . . . , xn).

From the above we get the long exact sequence on homotopy groups

0→ π2(Sp−1)→ π2(X+
p,q)→ π2(Rq) = 0→ π1(Sp−1)→ π1(X+

p,q)→ 0

and

π0(X+
p,q) = π0(Sp−1) =

{
2 points, p = 1

1 point, p 6= 1.

Now using the fact that

π1(S1+m) = 0, m ≥ 0

π2(Sn) = 0, unless π2(S2) = Z

the long exact sequence becomes, for p 6= 2, 3,

0→ 0→ π2(X+
p,q)→ 0→ 0→ π1(X+

p,q)→ 0

from the exactness of the sequence we get

π2(X+
p,q) = π1(X+

p,q) = 0, p 6= 2, 3.
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In the case of p = 2 the long exact sequence becomes

0→ 0→ π2(X+
2,q)→ 0

f−→ Z g−→ π1(X+
2,q)

h−→ 0.

Since ker(g) = im(f) = 0 we have that g is an injection, so

π1(X+
2,q) = ker(h) = im(g) = Z

and
π2(X+

2,q) = 0.

In the case of p = 3 the long exact sequence becomes

0→ Z→ π2(X+
p,q)→ 0→ 0→ π1(X+

p,q)→ 0,

by the same logic as above we get

π2(X+
3,q) = Z, π1(X+

3,q) = 0.

Putting everything together we have

π1(X+
p,q) =

{
0 if p 6= 2

Z if p = 2
, π2(X+

p,q) =

{
0 if p 6= 3

Z if p = 3.

Lemma 2. The following are fibrations

0→ SO(p− 1, q) ↪→ SO(p, q)→ X+
p,q → 0

0→ SO(p, q − 1) ↪→ SO(p, q)→ X−p,q = X+
q,p → 0.

Proof. Elements of SO(p, q) are of the form

A =

(
B C
D E

)
where B,C,D,E are p× p, q× p, p× q, q× q matrices respectively. So we have,
from the definition of SO(p, q),

A−1 = Ip,qA
>Ip,q =

(
B> −D>
−C> E>

)
.

Write the first column of A as

A1 =



b1
...
bp
d1
...
dq


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and the first row of A−1 as

(A−1)1 =
(
b1 . . . bp −d1 . . . −dq

)
then the entry in the first row and first column of A−1A = I is

1 = (I)11 = (A−1A)11 = (A−1)1A1 = b21 + · · ·+ b2p − d21 − · · · − d2q

which implies that A1 ∈ X+
p,q as a vector in Rn.

Now the inclusion map i := SO(p− 1, q) ↪→ SO(p, q) can be given explicitly
via considering any element M ∈ SO(p− 1, q) as an element

i(M) =

(
1 0
0 M

)
∈ SO(p, q).

So given any A ∈ SO(p, q), M ∈ SO(p− 1, q), we can see that A · i(M) has the
same first column as A, which means the coset

A · SO(p− 1, q) ∈ SO(p, q)/SO(p− 1, q)

can be represented by [A1], i.e. the first column of A. Indeed any two element
in the same coset will have the same first column. So we have

SO(p, q)/SO(p− 1, q) ∼= X+
p,q

from by the map
f : SO(p, q)→ X+

p,q

given by mapping each A ∈ SO(p, q) to the corresponding first column A1 ∈
X+
p,q. The kernel of f is exactly SO(p− 1, q) ↪→ SO(p, q), and given an element

x ∈ X+
p,q we can find a matrix A ∈ SO(p, q) with x as the first column by using

the Gram-Schmidt process. So f is surjective and the above follows from the
isomorphism theorem. This gives exactly the first short exact sequence

0→ SO(p− 1, q) ↪→ SO(p, q)→ X+
p,q → 0.

The second short exact sequence can be shown by the same argument but
embedding M ∈ SO(p, q − 1) via(

M 0
0 −1

)
∈ SO(p, q)

and looking at the last column. We just need to show X−p,q = X+
q,p, which is

given by the fact that

x21 + · · ·+ x2p − x2p+1 − · · · − x2p+q = −1

⇔ x2p+1 + · · ·+ x2p+q − x21 − · · · − x2p = 1.
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Lemma 3. π1(SO(n)) = π1(SO(n+ 1)) for n ≥ 3.

Proof. For n ≥ 3, π2(Sn) = π1(Sn) = 0, so the fibration

0→ SO(n)→ SO(n+ 1)→ Sn → 0

gives the long exact sequence

0→ π2(Sn) = 0→ π1(SO(n))→ π1(SO(n+ 1))→ π1(Sn) = 0→ 0

which gives the desired result.

We now assume p ≥ q, since we have SO+(p, q) ∼= SO+(q, p). The first short
exact sequence in lemma 0.2 reduces to

0→ SO+(p− 1, q) ↪→ SO+(p, q)→ X+
p,q → 0, p ≥ 2.

This gives a long exact sequence on homotopy groups

0→ π2(X+
p,q)→ π1(SO+(p− 1, q))→ π1(SO+(p, q))→ π1(X+

p,q)→ 0.

We will first use this to deal with the cases of p ≤ 3:

If p = 1: Since π1(X+
1,q) = π2(X+

1,q) = 0, we get the exact sequence

0→ π1(SO+(0, q)) = π1(SO(q))→ π1(SO+(1, q))→ 0.

From the exactness of the sequence above we get

π1(SO+(1, q)) = π1(SO+(0, q)) = π1(SO(q))

= 0× π1(SO(q)) = π1(SO(1))× π1(SO(q))

as required. Note that since SO(1) consist of only one element we must have
π1(SO(1)) = 0.

If p = 2: Since π1(X+
2,q) = Z, π2(X+

2,q) = 0, we get the short exact sequence

0→ π1(SO+(1, q)) = π1(SO(q))︸ ︷︷ ︸
from p = 1 case above

↪→ π1(SO+(2, q))→ Z→ 0

which gives

π1(SO+(2, q)) = Z× π1(SO+(1, q)) = π1(SO(2))× π1(SO(q))

since SO(2) ∼= S1 implies π1(SO(2)) = Z.

If p = 3: We know

π1(SO+(3, 0)) = π1(SO(3)) = Z/2Z
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so in the case of q = 1 we get the following from the second short exact sequence
in lemma 0.2,

0→ π2(X+
1,3) = 0→ π1(SO+(3, 0))→ π1(SO+(3, 1))→ π1(X+

1,3) = 0→ 0

0→ π1(SO+(3, 0))→ π1(SO+(3, 1))→ 0

which gives us

π1(SO+(3, 1)) = π1(SO+(3, 0)) = π1(SO(3)) = π1(SO(3))× π1(SO(1))

as required. We do the same for q = 2

0→ π2(X+
2,3) = 0→ π1(SO+(3, 1))→ π1(SO+(3, 2))→ π1(X+

2,3) = Z→ 0

0→ π1(SO+(3, 1))→ π1(SO+(3, 2))→ Z→ 0

to get

π1(SO+(3, 2)) = π1(SO+(3, 1))× Z = π1(SO(3))× π1(SO(2))

as required. Now if q > 3 then we have

0→ π2(X+
q,3) = 0→ π1(SO+(3, q − 1))→ π1(SO+(3, q))→ π1(X+

q,3) = 0→ 0

0→ π1(SO+(3, q − 1))→ π1(SO+(3, q))→ 0

to get π1(SO+(3, q)) = π1(SO+(3, q − 1)) = π1(SO+(3, 3)) for q > 3, and since
lemma 0.3 gives us π1(SO(q − 1)) = π1(SO(q)) for q > 3 we get the desired

π1(SO+(3, q)) = π1(SO+(3, 3))

= π1(SO(3))× π1(SO(3)) = π1(SO(3))× π1(SO(q))

if we can prove the claim for π1(SO+(3, 3)), which is shown below.

If p > 3: We induct on p. Since π1(X+
p,q) = π2(X+

p,q) = 0 for p > 3, we get
the exact sequence

0→ π1(SO+(p− 1, q))→ π1(SO+(p, q))→ 0

which means

π1(SO+(p, q)) = π1(SO+(p− 1, q))

= π1(SO(p− 1))× π1(SO(q)) = π1(SO(p))× π1(SO(q))

by the induction hypothesis. The last equality is from lemma 0.3.

Now we deal with the case of π1(SO+(3, 3)). First we show SO+(3, 3) =
SL(4,R)/{±1}.
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Now since π1(X+
3,q) = 0, π2(X+

3,q) = Z, we get the following short exact
sequence for q = 0,

0→ π2(X+
3,0)→ π1(SO+(2, 0))→ π1(SO+(3, 0))→ π1(X+

3,0)→ 0

0→ π2(S2) = Z ×2−−→ π1(SO(2))→ π1(SO(3))→ π1(S2) = 0→ 0

0→ Z ×2−−→ π1(SO(2))→ π1(SO(3))→ 0 (∗)

and similarly the following for q = 3

0→ Z→ π1(SO+(3, 2))→ π1(SO+(3, 3))→ 0.

There is a commutative diagram

SO+(3, 2) SO+(3, 3)

SO(2)× SO(3) SO(3)× SO(3)

'

since every arrow is an inclusion, which gives us from above

0 Z π1(SO
+(3, 2)) π1(SO

+(3, 3)) 0

π1(SO(2))× π1(SO(3)) π1(SO(3))× π1(SO(3)) 0.

γ

g

'

From (?) we see that g must necessarily be

g : (z, x) 7→ (z mod 2, x)

since the map in the first coordinate comes from (?). Therefore the image of γ
is some image of Z/2Z. From the sequence

0→ Z f−→ π1(SO+(3, 2)) = Z× Z/2Z→ π1(SO+(3, 3)) = im(γ)→ 0

there are 3 scenarios

• f : 1 7→ (2, 0)⇒ im(γ) = Z/2Z× Z/2Z
• f : 1 7→ (1, 1)⇒ im(γ) = Z/2Z
• f : 1 7→ (2, 1)⇒ im(γ) = Z/4Z.

Lemma 4. SO+(3, 3) = SL(4,R)/{±1}.

Proof. We have SL(4,R) acts on V = R4 via rotations, which means it also acts
on U = Λ2V of dimension

(
4
2

)
= 6. We can define a symmetric form on U via

(v1 ∧ v2, v3 ∧ v4) = (v1 ∧ v2 ∧ v3 ∧ v4)/(e1 ∧ e2 ∧ e3 ∧ e4)
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where (v1 ∧ v2 ∧ v3 ∧ v4) ∈ Λ4V which is a 1-dim vector space over R. By
definition we have for all g ∈ SL(4,R),

1 = det g = g(v1 ∧ v2 ∧ v3 ∧ v4)/(v1 ∧ v2 ∧ v3 ∧ v4)

=⇒ g(v1 ∧ v2 ∧ v3 ∧ v4) = (v1 ∧ v2 ∧ v3 ∧ v4)

and so Λ4V is invariant under the action by SL(4,R), i.e. the above symmetric
form (·, ·) is preserved under SL(4,R). Now we compute the signature of (·, ·)
by looking at the canonical basis of Λ2V ,

|e1 ∧ e2 ± e3 ∧ e4|2 = ±2(e1 ∧ e2, e3 ∧ e4) = ±2

|e1 ∧ e3 ± e2 ∧ e4|2 = ±2(e1 ∧ e3, e2 ∧ e4) = ∓2

|e1 ∧ e4 ± e2 ∧ e3|2 = ±2(e1 ∧ e4, e2 ∧ e3) = ±2

and so the signature is (3,−3). This means SO(3, 3) is also exactly the lin-
ear maps that preserves the symmetric form (·, ·) of determinant 1. Since
dimSO(3, 3) = 15 = dimSL(4,R), the connected component SO+(3, 3) must
be isomorphic to the connected component SL(4,R)/{±1}, as required.

So from the above lemma we know im(γ) = Z/2Z×Z/2Z or Z/4Z, but since
it is the image of Z/2Z under a surjective map we conclude that

π1(SO+(3, 3)) = Z/2Z× Z/2Z = π1(SO(3))× π1(SO(3))

as required.
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