Indefinite orthogonal groups

by Xiangjia Kong

April 27, 2022

Theorem 1. We have an isomorphism

$$\pi_1(SO^+(p,q)) \cong \pi_1(SO(p)) \times \pi_1(SO(q))$$

induced by the map

$$SO(p) \times SO(q) \to SO^+(p,q).$$

Proof. Let n = p + q and

$$X_{p,q}^{\pm} := \{ x \in \mathbb{R}^n \mid x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_{p+q}^2 = \pm 1 \}$$

then via the Serre fibration we get the following short exact sequence

$$0 \to S^{p-1} \hookrightarrow X^+_{p,q} \xrightarrow{\pi} \mathbb{R}^q \to 0$$

where π^{-1} is given by

$$\pi^{-1}(x) = (\sqrt{1 + x_{p+1}^2 + \dots + x_{p+q}^2}, 0, \dots, 0, x_{p+1}, \dots, x_n).$$

From the above we get the long exact sequence on homotopy groups

$$0 \to \pi_2(S^{p-1}) \to \pi_2(X_{p,q}^+) \to \pi_2(\mathbb{R}^q) = 0 \to \pi_1(S^{p-1}) \to \pi_1(X_{p,q}^+) \to 0$$

and

$$\pi_0(X_{p,q}^+) = \pi_0(S^{p-1}) = \begin{cases} 2 \text{ points}, & p = 1\\ 1 \text{ point}, & p \neq 1. \end{cases}$$

Now using the fact that

$$\pi_1(S^{1+m}) = 0, \quad m \ge 0$$

 $\pi_2(S^n) = 0, \text{ unless } \pi_2(S^2) = \mathbb{Z}$

the long exact sequence becomes, for $p \neq 2, 3$,

$$0 \to 0 \to \pi_2(X_{p,q}^+) \to 0 \to 0 \to \pi_1(X_{p,q}^+) \to 0$$

from the exactness of the sequence we get

$$\pi_2(X_{p,q}^+) = \pi_1(X_{p,q}^+) = 0, \quad p \neq 2, 3.$$

In the case of p = 2 the long exact sequence becomes

$$0 \to 0 \to \pi_2(X_{2,q}^+) \to 0 \xrightarrow{f} \mathbb{Z} \xrightarrow{g} \pi_1(X_{2,q}^+) \xrightarrow{h} 0.$$

Since $\ker(g) = \operatorname{im}(f) = 0$ we have that g is an injection, so

$$\pi_1(X_{2,q}^+) = \ker(h) = \operatorname{im}(g) = \mathbb{Z}$$

and

$$\pi_2(X_{2,q}^+) = 0.$$

In the case of p = 3 the long exact sequence becomes

$$0 \to \mathbb{Z} \to \pi_2(X_{p,q}^+) \to 0 \to 0 \to \pi_1(X_{p,q}^+) \to 0,$$

by the same logic as above we get

$$\pi_2(X_{3,q}^+) = \mathbb{Z}, \qquad \pi_1(X_{3,q}^+) = 0.$$

Putting everything together we have

$$\pi_1(X_{p,q}^+) = \begin{cases} 0 & \text{if } p \neq 2 \\ \mathbb{Z} & \text{if } p = 2 \end{cases}, \qquad \pi_2(X_{p,q}^+) = \begin{cases} 0 & \text{if } p \neq 3 \\ \mathbb{Z} & \text{if } p = 3. \end{cases}$$

Lemma 2. The following are fibrations

$$0 \to SO(p-1,q) \hookrightarrow SO(p,q) \to X_{p,q}^+ \to 0$$
$$0 \to SO(p,q-1) \hookrightarrow SO(p,q) \to X_{p,q}^- = X_{q,p}^+ \to 0.$$

Proof. Elements of SO(p,q) are of the form

$$A = \begin{pmatrix} B & C \\ D & E \end{pmatrix}$$

where B, C, D, E are $p \times p, q \times p, p \times q, q \times q$ matrices respectively. So we have, from the definition of SO(p,q),

$$A^{-1} = I_{p,q} A^{\top} I_{p,q} = \begin{pmatrix} B^{\top} & -D^{\top} \\ -C^{\top} & E^{\top} \end{pmatrix}.$$

Write the first column of ${\cal A}$ as

$$A_1 = \begin{pmatrix} b_1 \\ \vdots \\ b_p \\ d_1 \\ \vdots \\ d_q \end{pmatrix}$$

and the first row of A^{-1} as

$$(A^{-1})_1 = \begin{pmatrix} b_1 & \dots & b_p & -d_1 & \dots & -d_q \end{pmatrix}$$

then the entry in the first row and first column of $A^{-1}A = I$ is

$$1 = (I)_{11} = (A^{-1}A)_{11} = (A^{-1})_1A_1 = b_1^2 + \dots + b_p^2 - d_1^2 - \dots - d_q^2$$

which implies that $A_1 \in X_{p,q}^+$ as a vector in \mathbb{R}^n . Now the inclusion map $i := SO(p-1,q) \hookrightarrow SO(p,q)$ can be given explicitly via considering any element $M \in SO(p-1,q)$ as an element

$$i(M) = \begin{pmatrix} 1 & 0\\ 0 & M \end{pmatrix} \in SO(p,q).$$

So given any $A \in SO(p,q)$, $M \in SO(p-1,q)$, we can see that $A \cdot i(M)$ has the same first column as A, which means the coset

$$A \cdot SO(p-1,q) \in SO(p,q)/SO(p-1,q)$$

can be represented by $[A_1]$, i.e. the first column of A. Indeed any two element in the same coset will have the same first column. So we have

$$SO(p,q)/SO(p-1,q) \cong X_{p,q}^+$$

from by the map

$$f: SO(p,q) \to X_{p,q}^+$$

given by mapping each $A \in SO(p,q)$ to the corresponding first column $A_1 \in$ $X_{p,q}^+$. The kernel of f is exactly $SO(p-1,q) \hookrightarrow SO(p,q)$, and given an element $x \in X_{p,q}^+$ we can find a matrix $A \in SO(p,q)$ with x as the first column by using the Gram-Schmidt process. So f is surjective and the above follows from the isomorphism theorem. This gives exactly the first short exact sequence

$$0 \to SO(p-1,q) \hookrightarrow SO(p,q) \to X_{p,q}^+ \to 0.$$

The second short exact sequence can be shown by the same argument but embedding $M \in SO(p, q-1)$ via

$$\begin{pmatrix} M & 0 \\ 0 & -1 \end{pmatrix} \in SO(p,q)$$

and looking at the last column. We just need to show $X_{p,q}^- = X_{q,p}^+$, which is given by the fact that

$$x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_{p+q}^2 = -1$$

$$\Leftrightarrow x_{p+1}^2 + \dots + x_{p+q}^2 - x_1^2 - \dots - x_p^2 = 1.$$

Lemma 3. $\pi_1(SO(n)) = \pi_1(SO(n+1))$ for $n \ge 3$.

Proof. For $n \geq 3$, $\pi_2(S^n) = \pi_1(S^n) = 0$, so the fibration

$$0 \to SO(n) \to SO(n+1) \to S^n \to 0$$

gives the long exact sequence

$$0 \to \pi_2(S^n) = 0 \to \pi_1(SO(n)) \to \pi_1(SO(n+1)) \to \pi_1(S^n) = 0 \to 0$$

which gives the desired result.

We now assume $p \ge q$, since we have $SO^+(p,q) \cong SO^+(q,p)$. The first short exact sequence in lemma 0.2 reduces to

$$0 \to SO^+(p-1,q) \hookrightarrow SO^+(p,q) \to X^+_{p,q} \to 0, \quad p \ge 2.$$

This gives a long exact sequence on homotopy groups

$$0 \to \pi_2(X_{p,q}^+) \to \pi_1(SO^+(p-1,q)) \to \pi_1(SO^+(p,q)) \to \pi_1(X_{p,q}^+) \to 0.$$

We will first use this to deal with the cases of $p \leq 3$:

<u>If p = 1</u>: Since $\pi_1(X_{1,q}^+) = \pi_2(X_{1,q}^+) = 0$, we get the exact sequence

$$0 \to \pi_1(SO^+(0,q)) = \pi_1(SO(q)) \to \pi_1(SO^+(1,q)) \to 0.$$

From the exactness of the sequence above we get

$$\pi_1(SO^+(1,q)) = \pi_1(SO^+(0,q)) = \pi_1(SO(q))$$

= 0 × \pi_1(SO(q)) = \pi_1(SO(1)) × \pi_1(SO(q))

as required. Note that since SO(1) consist of only one element we must have $\pi_1(SO(1)) = 0.$

<u>If p = 2</u>: Since $\pi_1(X_{2,q}^+) = \mathbb{Z}, \pi_2(X_{2,q}^+) = 0$, we get the short exact sequence

$$0 \to \underbrace{\pi_1(SO^+(1,q)) = \pi_1(SO(q))}_{\text{from } p = 1 \text{ case above}} \hookrightarrow \pi_1(SO^+(2,q)) \to \mathbb{Z} \to 0$$

which gives

$$\pi_1(SO^+(2,q)) = \mathbb{Z} \times \pi_1(SO^+(1,q)) = \pi_1(SO(2)) \times \pi_1(SO(q))$$

since $SO(2) \cong S^1$ implies $\pi_1(SO(2)) = \mathbb{Z}$.

If p = 3: We know

$$\pi_1(SO^+(3,0)) = \pi_1(SO(3)) = \mathbb{Z}/2\mathbb{Z}$$

so in the case of q = 1 we get the following from the second short exact sequence in lemma 0.2,

$$0 \to \pi_2(X_{1,3}^+) = 0 \to \pi_1(SO^+(3,0)) \to \pi_1(SO^+(3,1)) \to \pi_1(X_{1,3}^+) = 0 \to 0$$
$$0 \to \pi_1(SO^+(3,0)) \to \pi_1(SO^+(3,1)) \to 0$$

which gives us

$$\pi_1(SO^+(3,1)) = \pi_1(SO^+(3,0)) = \pi_1(SO(3)) = \pi_1(SO(3)) \times \pi_1(SO(1))$$

as required. We do the same for q = 2

$$0 \to \pi_2(X_{2,3}^+) = 0 \to \pi_1(SO^+(3,1)) \to \pi_1(SO^+(3,2)) \to \pi_1(X_{2,3}^+) = \mathbb{Z} \to 0$$
$$0 \to \pi_1(SO^+(3,1)) \to \pi_1(SO^+(3,2)) \to \mathbb{Z} \to 0$$

to get

$$\pi_1(SO^+(3,2)) = \pi_1(SO^+(3,1)) \times \mathbb{Z} = \pi_1(SO(3)) \times \pi_1(SO(2))$$

as required. Now if q > 3 then we have

$$0 \to \pi_2(X_{q,3}^+) = 0 \to \pi_1(SO^+(3,q-1)) \to \pi_1(SO^+(3,q)) \to \pi_1(X_{q,3}^+) = 0 \to 0$$
$$0 \to \pi_1(SO^+(3,q-1)) \to \pi_1(SO^+(3,q)) \to 0$$

to get $\pi_1(SO^+(3,q)) = \pi_1(SO^+(3,q-1)) = \pi_1(SO^+(3,3))$ for q > 3, and since lemma 0.3 gives us $\pi_1(SO(q-1)) = \pi_1(SO(q))$ for q > 3 we get the desired

$$\pi_1(SO^+(3,q)) = \pi_1(SO^+(3,3))$$

= $\pi_1(SO(3)) \times \pi_1(SO(3)) = \pi_1(SO(3)) \times \pi_1(SO(q))$

if we can prove the claim for $\pi_1(SO^+(3,3))$, which is shown below.

If p > 3: We induct on p. Since $\pi_1(X_{p,q}^+) = \pi_2(X_{p,q}^+) = 0$ for p > 3, we get the exact sequence

$$0 \to \pi_1(SO^+(p-1,q)) \to \pi_1(SO^+(p,q)) \to 0$$

which means

$$\pi_1(SO^+(p,q)) = \pi_1(SO^+(p-1,q))$$

= $\pi_1(SO(p-1)) \times \pi_1(SO(q)) = \pi_1(SO(p)) \times \pi_1(SO(q))$

by the induction hypothesis. The last equality is from lemma 0.3.

Now we deal with the case of $\pi_1(SO^+(3,3))$. First we show $SO^+(3,3) = SL(4,\mathbb{R})/\{\pm 1\}$.

Now since $\pi_1(X_{3,q}^+) = 0, \pi_2(X_{3,q}^+) = \mathbb{Z}$, we get the following short exact sequence for q = 0,

$$0 \to \pi_2(X_{3,0}^+) \to \pi_1(SO^+(2,0)) \to \pi_1(SO^+(3,0)) \to \pi_1(X_{3,0}^+) \to 0$$

$$0 \to \pi_2(S^2) = \mathbb{Z} \xrightarrow{\times 2} \pi_1(SO(2)) \to \pi_1(SO(3)) \to \pi_1(S^2) = 0 \to 0$$

$$0 \to \mathbb{Z} \xrightarrow{\times 2} \pi_1(SO(2)) \to \pi_1(SO(3)) \to 0 \qquad (*)$$

and similarly the following for q = 3

$$0 \to \mathbb{Z} \to \pi_1(SO^+(3,2)) \to \pi_1(SO^+(3,3)) \to 0.$$

There is a commutative diagram

since every arrow is an inclusion, which gives us from above

From (\star) we see that g must necessarily be

$$g: (z, x) \mapsto (z \mod 2, x)$$

since the map in the first coordinate comes from (\star) . Therefore the image of γ is some image of $\mathbb{Z}/2\mathbb{Z}$. From the sequence

$$0 \to \mathbb{Z} \xrightarrow{f} \pi_1(SO^+(3,2)) = \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \to \pi_1(SO^+(3,3)) = \operatorname{im}(\gamma) \to 0$$

there are 3 scenarios

- $f: 1 \mapsto (2,0) \Rightarrow \operatorname{im}(\gamma) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ $f: 1 \mapsto (1,1) \Rightarrow \operatorname{im}(\gamma) = \mathbb{Z}/2\mathbb{Z}$ $f: 1 \mapsto (2,1) \Rightarrow \operatorname{im}(\gamma) = \mathbb{Z}/4\mathbb{Z}.$

Lemma 4. $SO^+(3,3) = SL(4,\mathbb{R})/\{\pm 1\}.$

Proof. We have $SL(4, \mathbb{R})$ acts on $V = \mathbb{R}^4$ via rotations, which means it also acts on $U = \Lambda^2 V$ of dimension $\binom{4}{2} = 6$. We can define a symmetric form on U via

$$(v_1 \wedge v_2, v_3 \wedge v_4) = (v_1 \wedge v_2 \wedge v_3 \wedge v_4)/(e_1 \wedge e_2 \wedge e_3 \wedge e_4)$$

where $(v_1 \wedge v_2 \wedge v_3 \wedge v_4) \in \Lambda^4 V$ which is a 1-dim vector space over \mathbb{R} . By definition we have for all $g \in SL(4, \mathbb{R})$,

$$1 = \det g = g(v_1 \wedge v_2 \wedge v_3 \wedge v_4) / (v_1 \wedge v_2 \wedge v_3 \wedge v_4)$$

$$\implies g(v_1 \wedge v_2 \wedge v_3 \wedge v_4) = (v_1 \wedge v_2 \wedge v_3 \wedge v_4)$$

and so $\Lambda^4 V$ is invariant under the action by $SL(4, \mathbb{R})$, i.e. the above symmetric form (\cdot, \cdot) is preserved under $SL(4, \mathbb{R})$. Now we compute the signature of (\cdot, \cdot) by looking at the canonical basis of $\Lambda^2 V$,

$$|e_1 \wedge e_2 \pm e_3 \wedge e_4|^2 = \pm 2(e_1 \wedge e_2, e_3 \wedge e_4) = \pm 2$$

$$|e_1 \wedge e_3 \pm e_2 \wedge e_4|^2 = \pm 2(e_1 \wedge e_3, e_2 \wedge e_4) = \pm 2$$

$$|e_1 \wedge e_4 \pm e_2 \wedge e_3|^2 = \pm 2(e_1 \wedge e_4, e_2 \wedge e_3) = \pm 2$$

and so the signature is (3, -3). This means SO(3, 3) is also exactly the linear maps that preserves the symmetric form (\cdot, \cdot) of determinant 1. Since $\dim SO(3,3) = 15 = \dim SL(4,\mathbb{R})$, the connected component $SO^+(3,3)$ must be isomorphic to the connected component $SL(4,\mathbb{R})/{\pm 1}$, as required. \Box

So from the above lemma we know $\operatorname{im}(\gamma) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/4\mathbb{Z}$, but since it is the image of $\mathbb{Z}/2\mathbb{Z}$ under a surjective map we conclude that

$$\pi_1(SO^+(3,3)) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \pi_1(SO(3)) \times \pi_1(SO(3))$$

as required.