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Abstract

The aim of this project is to investigate the geometric interpretation of
the Kähler condition of a Kähler manifold. The Kähler condition in pre-
cise terms says that the fundamental form associated with a Riemannian
structure of a complex manifold is closed. It turns out this is equivalent
to saying the complex structure commutes with parallel transport. Most
terms and theorems used will be defined explicitly, and for some theorems
a proof will be provided.

1 Kähler manifolds

We will first define what a Kähler manifold is, referencing [2, Section 3.1].

Definition (Kähler manifold). A Kähler manifold X is a complex manifold
endowed with a Kähler structure.

I will use X to denote a Kähler manifold from now on. It is possible for a
complex manifold to have a Kähler structure without fixing it. Which means
it is more accurate to speak of a complex manifold of Kähler type in this case.
A Kähler manifold also has several compatible structures that can be described
from different points of view. We will focus on a particular interplay between
the complex viewpoint and the Riemannian viewpoint, which is known as the
Kähler metric (or Kähler structure). We will use the terms Kähler metric and
Kähler structure interchangeably in this writeup. Some of the terms in italic
will be defined later, and almost all of the contents in this writeup come from [2].

The three main viewpoints of a Kähler manifold X are

• Symplectic viewpoint: This is not the focus of this project, but I will
give a brief explanation. There is a symplectic structure (X,ω) on X
which is equipped with an integrable almost complex-structure J which is
compatible with the symplectic form ω, i.e. for all u, v

ω(u, v) = ω(Ju, Jv), ω(u, Jv) = ω(v, Ju), ω(u, Ju) > 0.

This gives us a bilinear form

g(u, v) = ω(u, Jv)
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which on the tangent space of X at each point is symmetric and positive
definite, and hence g is a Riemannian metric on X.

• Complex viewpoint: X is a complex manifold (X,ω) with a hermi-
tian metric h whose associated 2-form ω, called the fundamental form, is
closed. This is the Kähler metric. This is explained in more details in the
next section.

• Riemannian viewpoint: X is a Riemannian manifold (X, g) of even
dimension 2n, and there is a complex structure J on the tangent space of
X at each point p, such that J preserves the metric g and J is preserved
by parallel transport. This is also explained in more details in the next
section. Another more concise way of saying this is the holonomy group
of X is contained in the unitary group U(n).

I will now define some of terms used in the symplectic viewpoint. For the
main point of this writeup please skip to the next section.

Definition (Almost symplectic structure). An almost symplectic structure on
a differentiable manifold X is a 2-form ω that is everywhere non-singular. i.e.
ω does not vanish at any point.

Now we define a symplectic form.

Definition (Closed form). A differential form ω is closed if dω = 0.

Definition (Exact form). A differential ω is exact if there exists η such that
ω = dη.

In other words, a closed form is in the kernel of d, and an exact form is in
the image of d.

Definition (Nondegenerate form). A differential form ω on a manifold N is
nondegenerate if for every p ∈ N , ωp(x, y) = 0 for all y ∈ TpN\{0} implies
x = 0 ∈ TpN .

Definition (Symplectic form). A symplectic form is a closed nondegenerate
differential 2-form.

I will also give a brief explanation for the Holonomy group here, since it is
not relevant to the later sections.

Definition (Holonomy group of X). Given a piecewise smooth closed loop
γ : [0, 1] → X based at a fixed point x ∈ X, the parallel transport along this
curve give rise to an automorphism of TxX. Note that this automorphism is
just a linear map. We can compose and invert closed loops in the obvious way,
which means that the set of automorphism of TxX is a group, which we call the
holonomy group.
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2 The fundamental form is closed

In this section we will go into more details about the complex viewpoint. We
will first define what a hermitian structure is on X, then deduce the Kähler
form from it, which gives us the Kähler metric. We define complex manifolds
again for convenience.

Definition (Complex manifold). An n-dimensional complex manifold is a man-
ifold with an atlas of charts to the open unit disc in Cn, such that the transition
maps are holomorphic in the complex sense.

Definition (Almost complex structure). Let V be a finite-dimensional real
vector space, then an endomorphism I : V → V with I2 = −Id is called an
almost complex structure on V .

Note that if V has an almost complex structure on V , then its real dimension
is even, due to the following lemma.

Lemma 1. If I is an almost complex structure on a real vector space V , then
V admits in a natural way the structure of a complex vector space.

Proof. The C-module structure on V is given by (a + ib) · v = a · v + b · I(v),
where a, b ∈ R. Since I is linear in R, we have

((a+ ib)(c+ id)) · v = (a+ ib)((c+ id) · v)

and
i(i · v) = −v.

We are now ready to define the hermitian structure.

Definition (Hermitian structure). A Riemannian metric g on X is an hermitian
structure on X if for any point x ∈ X the scalar product gx on TxX is compatible
with the almost complex structure Ix, which is defined on TxX by treating it
as a real vector space. Here compatible means gx(u, v) = gx(Ixu, Ixv).

We should consider the hermitian structure as an inner product defined on
the holomorphic(complexified) tangent bundle.

Definition (Fundamental form). The fundamental form of a hermitian struc-
ture is a real (1, 1)-form ω defined by

ω(u, v) := g(Iu, v).

A (1, 1)-form is an element of Λ(1,1)X ⊂ Λ2X, via the decomposition

Λ2X ∼= Λ(2,0)X ⊕ Λ(1,1)X ⊕ Λ(0,2)X.

For more information please refer to section 1.3 of [2].
We also have the following lemma
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Lemma 2. For g, ω, I defined as above, we have

g(u, v) = ω(u, Iv).

Proof. Let u′ = Iu, then we have Iu′ = I2u = −u, which gives

g(Iu, v) = ω(u, v)

g(u′, v) = ω(−Iu′, v)

g(u′, v) = ω(v, Iu′)

as required.

Note that this implies the hermitian structure g is uniquely determined by
the almost complex structure I and the fundamental form ω.

In local coordinates the fundamental form ω is

ω =
i

2

n∑
i,j=1

hijdzi ∧ dz̄j

where the matrix hij(x) is a positive definite hermitian matrix for any x ∈ X.

Definition (Hermitian manifold). A hermitian manifold is a complex manifold
endowed with an hermitian structure g.

We are now ready to talk about the Kähler structure.

Definition (Kähler metric and Kähler form). A Kähler metric (or Kähler struc-
ture) is an hermitian structure g for which the fundamental form ω is closed,
i.e. dω = 0. In this case the fundamental form ω is called the Kähler form.

The above condition that the fundamental form is closed is the Kähler con-
dition formulated by Kähler in [3], which was published in 1933. We can define
a variety of linear and differential operators on X, and it turns out with the
Kähler condition they all behave especially well. In other words, the Kähler
condition makes everything ”nice”, and we shall focus on a particular aspect of
this in the next section.

3 The complex structure commutes with paral-
lel transport

We will now take a look at the Riemannian viewpoint.

Definition (Complex structure of the Riemannian viewpoint). Let (X, g) be a
Riemannian manifold, then for a point x ∈ X we can have a complex structure
Jx : TxX → TxX, which is an almost complex structure on the tangent space
TxX. i.e. it satisfies J2

x = −1.
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Note that an almost complex structure is a linear map between vector spaces,
but a complex structure is something defined on the tangent space of a Rieman-
nian manifold.

Definition (Preserves the metric). We say J preserves the metric g if for all
u, v we have

g(u, v) = g(Ju, Jv).

Definition (Preserved by parallel transport). We say J is preserved by a par-
allel transport Y : Tγ(t)X → Tγ(t+s)X along a smooth curve γ if we have
Jγ(t) ◦ Y = Y ◦ Jγ(t+s).

This preservation of parallel transport is equivalent to the Kähler condition
shown above. I do not understand this connection fully, but a reference can
be found at [4, Part 2 Section 5 Theorem 5.5]. Intuitively we want to say that
parallel transport is a first order operation, since the covariant derivative is first
order, and the Kähler metric g can be written as

g =
∑

dxk ⊗ dxk + dyk ⊗ dyk +O(|z|2)

which is also first order.

4 Why we should care about Kähler manifolds

Something I am very interested in is mirror symmetry. This is a relation between
Calabi-Yau manifolds which originated from string theory. In essence, it refers to
a situation where two Calabi-Yau manifolds looks very different geometrically,
but when employed as extra dimensions of string theory they are equivalent
physically. This implies there is a mathematical relationship between them,
and mathematicians have been trying to prove this relation rigorously.

There are currently two main ways of attack, homological mirror symmetry
proposed by Maxim Kontsevich and the SYZ conjecture proposed in a paper
by Strominger, Yau and Zaslow titled ”Mirror symmetry is T-duality”. Homo-
logical mirror symmetry tries to use homological algebra to attempt to resolve
mirror symmetry, however due to the difficulty only a in a few examples have
mathematicians been able to verify this conjecture. This is an ongoing area of
research.

The SYZ conjecture is not something I understand fully, and my under-
standing is that one of the difficulties is correctly formulating the conjecture in
precise mathematical terms, since there is no agreed upon precise statement of
the conjecture. However there is a general statement expected to be the correct
formulation of the conjecture, found in [1], and I will present it here.

Conjecture 3 (SYZ Conjecture). Every 6-dimensional Calabi-Yau manifold X
has a mirror 6-dimensional Calabi-Yau manifold X̂ such that there are contin-
uous surjections f : X → B, f̂ : X̂ → B to a compact topological manifold B of
dimension 3, such that
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1. There exists a dense open subset Breg ⊂ B on which the maps f, f̂ are
fibrations by nonsingular special Lagrangian 3-tori. Furthermore for every
point b ∈ Breg, the torus fibres f−1(b) and f̂−1(b) should be dual to each
other in some sense, analogous to duality of Abelian varieties.

2. For each b ∈ B\Breg, the fibres f−1(b) and f̂−1(b) should be singular

3-dimensional special Lagrangian submanifolds of X and X̂ respectively.

For convenience I will give a quick definition of Calabi-Yau manifolds from [1,
Part I Def 4.3].

Definition (Calabi-Yau manifolds). Let m ≥ 2. A Calabi-Yau m-fold is a
quadruple (M,J, g,Ω) such that (M,J) is a compact m-dimensional complex
manifold, g a Kähler metric on (M,J) with holonomy group Hol(g) = SU(m),
and Ω a nonzero constant (m, 0)-form on M called the holomorphic volume
form, which satisfies

ωm/m! = (−1)m(m−1)/2(i/2)mΩ ∧ Ω,

where ω is the Kähler form of g. The constant factor in above is chosen to make
Re(Ω) a calibration.

However there are several different definitions of Calabi-Yau manifolds in
use in the literature. The important thing here is that Calabi-Yau manifolds
are Kähler manifolds, and we should think of it as a Kähler manifold with extra
structure. Indeed, we just need the condition on the holonomy group to get
a Calabi-Yau manifold from a Kähler manifold, which is the very next lemma
in [1], which states

Lemma 4. Let (M,J, g) be a compact Kähler manifold with Hol(g) = SU(m).
Then M admits a holomorphic volume form Ω, unique up to change of phase
Ω 7→ eiθΩ, such that (M,J, g,Ω) is a Calabi-Yau manifold.

Which means Kähler manifolds are an fundamental object of study in mirror
symmetry. It is also used extensively in other parts of algebraic geometry and
theoretical physics, but I think this is enough details for this writeup for now.
Thank you for reading!
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