
EQUIVARIANT BIRATIONAL TYPES
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1. Introduction

This thesis concern the study of new invariants of complex algebraic
varieties equipped with actions of abelian groups. These invariants,
called birational types, were introduced in [2]. Our focus here is on
arithmetic and algebraic properties of birational types; their �rst geo-
metric applications can be found in [1]. Informally, consider an n-
dimensional variety X with an action of a �nite abelian group G. The
locus of points in X �xed by G is a �nite union of disjoint subvarieties
Yα ⊂ X, possibly of di�erent dimensions. For each such subvariety Yα
one records the weights of the G-action in the tangent space at some
point yα ∈ Yα, i.e., an unordered n-tupel

[a1,α, . . . , an,α]

of characters of G:

ai,α ∈ A = G∨ = Hom(G,C×).

Then one forms the sum

β(X) :=
∑
α

[a1,α, . . . , an,α].

One would like these classes to be invariant under a basic operation,
called an equivariant blowup. This operation replaces X by another
variety X̃, which coincides with X on the complement to a G-stable
subvariety on X. In short, one introduces relations of the type

β(X̃)− β(X) = 0,

for all such blowups.
It turns out that this geometric picture admits a nice algebraic de-

scription. Let

Sn(G)

Date: January, 2021.
1



2 XIANGJIA KONG

be the Z-module generated by n-tupels

[a1, . . . , an], ai ∈ A,
subjection to the following

(G) Generation: a1, . . . , an generate A, i.e.,∑
i

Zai = A,

(S) Symmetry: for all permutations σ ∈ Gn and all a1, . . . , an ∈ A
we have

[aσ(1), . . . , aσ(n)] = [a1, . . . , an].

Consider the quotient
Sn(G)→ Bn(G)

by the additional relation

(B) Blowup: for all [a1, a2, b1, . . . , bn−2] ∈ Sn(G), the symbol

[a1, a2, b1, . . . , bn−2]

equals

=

{
[a1 − a2, a2, b1, . . . , bn−2] + [a1, a2 − a1, b1, . . . , bn−2] if a1 6= a2

[a1, 0, b1, . . . , bn−2] if a1 = a2

The �rst main result states that the class β(X) ∈ Bn(G) does not
change under equivariant blowups [2]. Here we will not discuss the
applications of Bn(G) to algebraic geometry, as in [1]. Instead, we
explore arithmetic and algebraic properties of these groups, focusing
on examples.
It is helpful to de�ne the quotient

Bn(G)→ B−n (G)

by the relation

(1.1) [−a1, . . . , an] = −[a1, . . . , an]

which will play an important role in this thesis. Note that

[a1, . . . , an]− ∈ B−n (G)

denotes the image of [a1, . . . , an] under this quotient.

We also have another quotient

Sn(G)→Mn(G)

by the relation
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(M) Modular Blowup: for all [a1, a2, b1, . . . , bn−2] ∈ Sn(G),

〈a1, a2, b1, . . . , bn−2〉 =

〈a1 − a2, a2, b1, . . . , bn−2〉+ 〈a1, a2 − a1, b1, . . . , bn−2〉
where 〈a1, . . . , an〉 is the image of [a1, . . . , an] under this quo-
tient.

Note that we can also de�ne, similar to above

Mn(G)→M−
n (G)

which is a quotient by the relation

(1.2) 〈−a1, . . . , an〉 = −〈a1, . . . , an〉.
The introduction ofMn(G),M−

n (G) were motivated by experimenta-
tions with relations in Bn(G), and various constructions connected to
Mn(G) were shown in [2, Sections 4,5].
There is also a map

µ : Bn(G)→Mn(G),

�rst introduced in [2], de�ned on symbols as follows:

[a1, . . . , an] 7→ 〈a1, . . . , an〉, if all a1, . . . , an 6= 0,

[0, a2, . . . , an] 7→ 2〈0, a2, . . . , an〉, if all a2, . . . , an 6= 0,

[0, 0, a3, . . . , an] 7→ 0, for all a3, . . . , an,

and extend by Z-linearity. This is a well-de�ned homomorphism from
[2, Section 3]. It is also an isomorphism modulo torsion from [1, Prop.
7.1], which settles Conjecture 8 and 9 in [2].

The main result of section 2 is

Proposition 7. For p prime, Bn((Z/pZ)n) 6= 0 for all n ∈ N.

which is shown by induction on n. The idea is to use a surjective map

η−p,n : B−n ((Z/pZ)n)→ B−n−1((Z/pZ)n−1)

to show that B−n ((Z/pZ)n) is non-trivial given the induction hypothe-
sis. The base case of n = 1 can be found explicitly, and some further
calculations were also carried out in MAGMA.

In [2, Section 4] we have a lattices and cones construction forMn(G)⊗
Q, each element is identi�ed with an equivalence class of triples

(L, χ,Λ)



4 XIANGJIA KONG

where L = Zn is a lattice, χ is an element in L ⊗ A and Λ ∈ LR is a
strictly convex cone spanned by a basis of L. Explicitly we can choose
a basis e1, . . . , en of L that spans Λ, and write

χ =
n∑
i=1

ei ⊗ ai

and identify

ψ(L, χ,Λ) = 〈a1, . . . , an〉 ∈ Mn(G)⊗Q.
The relation (M) is then equivalent to decomposing the cone Λ into
smaller subcones. Section 3 of this thesis uses the map µ to generalise
the above construction to Bn(G) ⊗ Q and show explicitly that these
structures are compatible with the de�ning relations in Bn(G).

Section 4 again uses µ to generalises [2, Section 5] to Bn(G) ⊗ Q,
which de�ned the following multiplication and co-multiplication maps:
given a short exact sequence of �nite abelian groups

0→ G′ → G→ G′′ → 0

we get a short exact sequence of their character groups

0→ A′′ → A→ A′ → 0.

This gives a Z-bilinear multiplication map

∇ :Mn′(G
′)⊗Mn′′(G

′′)→Mn′+n′′(G)

where n′, n′′ ≥ 1, de�ned by

〈a′1, . . . , a′n′〉 ⊗ 〈a′′1, . . . , a′′n′′〉 7→
∑
〈a1, . . . , an′ , a

′′
1, . . . , a

′′
n′′〉

where the sum is over all lifts from ai ∈ A to a′i ∈ A′. There is also a
Z-bilinear co-multiplication map, noting that there is a minus on the
second factor of the image,

∆ :Mn′+n′′(G)→Mn′(G
′)⊗M−

n′′(G
′′),

de�ned by

〈a1, ..., an〉 7→
∑
〈aI′ mod A′′〉 ⊗ 〈aI′′〉−

where the sum is over all ways to split

{1, . . . , n} = I ′ t I ′′, with #I ′ = n′,#I ′′ = n′′,

such that for all j ∈ I ′′ we have aj ∈ A′′ ⊂ A and the elements aj span
A′′.
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Section 5 explains the chain complexes induced from the maps ∇
and ∆ via simplicial complexes and the proofs of [2, Theorems 12, 14]
in more detail, both of which are found in [2, Section 5]. In particular
[2, Theorems 12, 14] state that the cohomology of the chain complexes
de�ned is concentrated in degree 0. The chain complex is constructed
more explicitly and the non-trivial steps of the proofs are written out
in more detail.

Each section will also have a few speci�c examples at the end, show-
casing the details of each section.

2. Examples
sect:exam

We know that
B1(Z/NZ) = Zφ(N),

where φ = |(Z/NZ)×| is the Euler function; in particular,

B1(Z/2Z) = Zφ(2) = Z.
We also have [1, Section 3.2]:

B2((Z/2Z)2) = (Z/2Z)2

We now calculate B3((Z/2Z)3). Write(
(Z/2Z)3

)∨
= {0, χ1, χ2, χ3, χ1 + χ2, χ2 + χ3, χ3 + χ1, χ1 + χ2 + χ3}

using numbers to simplify notation, the possible symbols are

[1, 2, 3]

[1, 2, 2 + 3], [1, 2, 1 + 3], [1, 2, 1 + 2 + 3]

[2, 3, 3 + 1], [2, 3, 2 + 1], [2, 3, 1 + 2 + 3]

[3, 1, 1 + 2], [3, 1, 3 + 2], [3, 1, 1 + 2 + 3]

[1, 1 + 2, 2 + 3], [1, 2 + 3, 3 + 1], [1, 3 + 1, 1 + 2]

[2, 1 + 2, 2 + 3], [2, 2 + 3, 3 + 1], [2, 3 + 1, 1 + 2]

[3, 1 + 2, 2 + 3], [3, 2 + 3, 3 + 1], [3, 3 + 1, 1 + 2]

[1, 1 + 2, 1 + 2 + 3], [1, 3 + 1, 1 + 2 + 3]

[2, 1 + 2, 1 + 2 + 3], [2, 2 + 3, 1 + 2 + 3]

[3, 2 + 3, 1 + 2 + 3], [3, 3 + 1, 1 + 2 + 3]

[1 + 2, 3 + 1, 1 + 2 + 3], [2 + 3, 3 + 1, 1 + 2 + 3]

[1 + 2, 2 + 3, 1 + 2 + 3].
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Using MAGMA to calculate this Z-module, we get

B3((Z/2Z)3) = (Z/2Z)8 6= 0.

Now consider the surjective map, for n ≥ 3,

(Z/2Z)n → (Z/2Z)n−1,

where the n-th generator is mapped to zero, which induces an inclusion
map between character groups

An−1 :=
(
(Z/2Z)n−1

)∨
↪→ An :=

(
(Z/2Z)n

)∨
.

This allows us to de�ne a map

η : Bn((Z/2Z)n)→ Bn−1((Z/2Z)n−1)

given by the formula

[a1, . . . , an] 7→
∑

[ai1 , . . . , ain−1 ]

where i1, . . . , in−1 ∈ I ⊂ {1, . . . , n} with #I = n− 1. The sum is over
all I such that aj ∈ An−1 ↪→ An for all j ∈ I and {ai1 , . . . , ain−1} span
An−1.

Lemma 1. The map η is well-de�ned.

Proof. We have the following two facts about Bn((Z/2Z)n):

• Since the rank of the group An is n, we need n distinct, non-zero
entries in each symbol to satisfy the generating condition (G).
This means the relation (B) reduces to

[a1, a2, . . . , an] = [a1 − a2, a2, . . . , an] + [a1, a2 − a1, . . . , an]

which is essentially the relation (M).
• Since every element of (Z/2Z)n has order 2, so does An. So for
every

[a1, a2, . . . , an] ∈ Bn((Z/2Z)n)

we have

[a1 + a2, a2, . . . ] = [a1, a2, . . . ] + [a1 + a2, a1, . . . ]

[a1, a1 + a2, . . . ] = [a1, a2, . . . ] + [a2, a1 + a2, . . . ]

which when added together gives

2[a1, a2, . . . , an] = 0.

So we have

[−a1, . . . , an] = [a1, . . . , an] = −[a1, . . . , an].
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These two facts combined gives

Bn((Z/2Z)n) = B−n ((Z/2Z)n) =M−
n ((Z/2Z)n) =Mn((Z/2Z)n).

Now we can just reuse the argument of [2, Prop. 11], the details of
which is shown explicitly in the proof of Lemma 4 below. �

Lemma 2. The map η is surjective.

Proof. Each

[b1, b2, . . . , bn−1] ∈ Bn−1((Z/2Z)n−1)

is the image of

[b1, b2, . . . , bn−1, bn] ∈ Bn((Z/2Z)n)

under η, where bn satis�es bn 6∈ An−1 and
∑n

j=1 Zbj = An. �

Proposition 3. Bn((Z/2Z)n) 6= 0 for all n ∈ N.

Proof. We want to show this via induction, i.e. Bn−1((Z/2Z)n−1) 6= 0
implies Bn((Z/2Z)n) 6= 0. The base case n = 1, 2, 3 is shown above.
So suppose Bn−1((Z/2Z)n−1) 6= 0. The lemmas above tell us that

η : Bn((Z/2Z)n)→ Bn−1((Z/2Z)n−1)

is a well-de�ned surjective map, from which we can conclude that
Bn((Z/2Z)n) is also nontrivial. �

As an aside every element of Bn((Z/2Z)n) has order 2, so by the
fundamental theorem of �nite abelian groups we must have

Bn((Z/2Z)n) = (Z/2Z)kn

for some integer kn.

Now we extend this result to Bn((Z/pZ)n) where p is a prime. We
have, for p prime,

B1(Z/pZ) = Zφ(p) = Zp−1 6= 0

as above.
We now calculate B2((Z/3Z)2), write(

(Z/3Z)2
)∨

= {0, χ1, χ2, 2χ1, 2χ2, χ1+χ2, 2χ1+χ2, χ1+2χ2, 2χ1+2χ2},
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the possible symbols and relations are

[χ1, χ2] = [χ1, 2χ1 + χ2] + [χ1 + 2χ2, χ2]

[χ1, 2χ2] = [χ1, 2χ1 + 2χ2] + [χ1 + χ2, 2χ2]

[χ1, χ1 + χ2] = [χ1, χ2] + [2χ2, χ1 + χ2]

[χ1, 2χ1 + χ2] = [χ1, χ1 + χ2] + [2χ1 + 2χ2, 2χ1 + χ2]

[χ1, χ1 + 2χ2] = [χ1, 2χ2] + [χ2, χ1 + 2χ2]

[χ1, 2χ1 + 2χ2] = [χ1, χ1 + 2χ2] + [2χ1 + χ2, 2χ1 + 2χ2]

[χ2, 2χ1] = [χ2, 2χ1 + 2χ2] + [χ1 + χ2, 2χ1]

[χ2, χ1 + χ2] = [χ2, χ1] + [2χ1, χ1 + χ2]

[χ2, 2χ1 + χ2] = [χ2, 2χ1] + [χ1, 2χ1 + χ2]

[χ2, χ1 + 2χ2] = [χ2, χ1 + χ2] + [2χ1 + 2χ2, χ1 + 2χ2]

[χ2, 2χ1 + 2χ2] = [χ2, 2χ1 + χ2] + [χ1 + 2χ2, 2χ1 + 2χ2]

[2χ1, 2χ2] = [2χ1, χ1 + 2χ2] + [2χ1 + χ2, 2χ2]

[2χ1, χ1 + χ2] = [2χ1, 2χ1 + χ2] + [χ1 + 2χ2, χ1 + χ2]

[2χ1, 2χ1 + χ2] = [2χ1, χ2] + [2χ2, 2χ1 + χ2]

[2χ1, χ1 + 2χ2] = [2χ1, 2χ1 + 2χ2] + [χ1 + χ2, χ1 + 2χ2]

[2χ1, 2χ1 + 2χ2] = [2χ1, 2χ2] + [χ2, 2χ1 + 2χ2]

[2χ2, χ1 + χ2] = [2χ2, χ1 + 2χ2] + [2χ1 + χ2, χ1 + χ2]

[2χ2, 2χ1 + χ2] = [2χ2, 2χ1 + 2χ2] + [χ1 + χ2, 2χ1 + χ2]

[2χ2, χ1 + 2χ2] = [2χ2, χ1] + [2χ1, χ1 + 2χ2]

[2χ2, 2χ1 + 2χ2] = [2χ2, 2χ1] + [χ1, 2χ1 + 2χ2]

[χ1 + χ2, 2χ1 + χ2] = [χ1 + χ2, χ1] + [2χ1, 2χ1 + χ2]

[χ1 + χ2, χ1 + 2χ2] = [χ1 + χ2, χ2] + [2χ2, χ1 + 2χ2]

[2χ1 + χ2, 2χ1 + 2χ2] = [2χ1 + χ2, χ2] + [2χ2, 2χ1 + 2χ2]

[χ1 + 2χ2, 2χ1 + 2χ2] = [χ1 + 2χ2, χ1] + [2χ1, 2χ1 + 2χ2].

Using MAGMA to calculate this, we get

B2((Z/3Z)2) = Z7.

This suggests that we can use the same idea as p = 2 but with the base
case of the induction as n = 1. The di�erence is that we will �rst show

B−n ((Z/pZ)n) 6= 0,
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which will then imply

Bn((Z/pZ)n) 6= 0

since the former is a quotient of the latter.
So consider the surjective map similar to above, this time for n ≥ 2,

(Z/pZ)n → (Z/pZ)n−1

where the n-th generator is mapped to zero, which induces an inclusion
map between character groups

Ap,n−1 :=
(
(Z/pZ)n−1

)∨
↪→ Ap,n :=

(
(Z/pZ)n

)∨
.

This allows us to de�ne a map analogous to η above

η−p,n : B−n ((Z/pZ)n)→ B−n−1((Z/pZ)n−1)

given by the formula

[a1, . . . , an]− 7→
∑

[ai1 , . . . , ain−1 ]−

where i1, . . . , in−1 ∈ I ⊂ {1, . . . , n} with #I = n− 1. The sum is over
all I such that aj ∈ Ap,n−1 ↪→ Ap,n for all j ∈ I and {ai1 , . . . , ain−1}
span Ap,n−1. Note that there can only be at most one term in the image
on the right.

Lemma 4. The maps η−p,n are well-de�ned for primes p ≥ 2.

Proof. We modify the proof of p = 2 so that it works for any n ≥ 2
and any prime p. Again, since the rank of the group Ap,n is n, we need
n distinct, non-zero entries in each symbol to satisfy the generating
condition (G). So the relation (B) reduces to

(2.1) [a1, a2, . . . , an]− = [a1 − a2, a2, . . . , an]− + [a1, a2 − a1, . . . , an]−

which is essentially the relation (M). This means

B−n ((Z/pZ)n) =M−
n ((Z/pZ)n).

The rest of the proof is the same idea as in [2, Prop. 11], but written
out explicitly. We just have to show the relation (2.1) holds under η−p,n.
We have the following cases:

(1) a1, a2 ∈ Ap,n−1

(2) WLOG a1 6∈ Ap,n−1, a2 ∈ Ap,n−1

(3) a1, a2 6∈ Ap,n−1

In case (1), we must have

[a1, a2, . . . , an]− 7→ [a1, a2, . . . , ai−1, ai+1, . . . , an]−
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for some i such that ai 6∈ Ap,n−1, or everything is mapped to zero on
both sides of the relation (2.1). Then this works with

[a1 − a2, a2, . . . , an]− + [a1, a2 − a1, . . . , an]−

7→ [a1 − a2, a2, . . . , ai−1, ai+1, . . . , an]−

+ [a1, a2 − a1, . . . , ai−1, ai+1, . . . , an]−

as required.

In case (2), we must have

[a1, a2, . . . , an]− 7→ [a2, . . . , an]−

or again everything is mapped to zero on both sides of the relation
(2.1). Then we have

[a1 − a2, a2, . . . , an]− + [a1, a2 − a1, . . . , an]− 7→ [a2, . . . , an]− + 0

since a2 − a1 6∈ Ap,n−1.

In case (3), we have

[a1, a2, . . . , an]− 7→ 0

and

[a1 − a2, a2, . . . , an]− + [a1, a2 − a1, . . . , an]−

7→ [a1 − a2, a3, . . . , an]− + [a2 − a1, a3, . . . , an]− = 0

so everything maps to zero no matter what. �

Lemma 5. The maps η−p,n are surjective for primes p ≥ 2.

Proof. Exactly the same as the case p = 2 in Lemma 2 above. �

Proposition 6. For p prime, B−n ((Z/pZ)n) 6= 0 for all n ∈ N.

Proof. Exactly the same induction as p = 2, but with the base case
n = 1:

B−1 (Z/pZ) = Z
p−1

2 6= 0.

�

Proposition 7. For p prime, Bn((Z/pZ)n) 6= 0 for all n ∈ N.

Proof. By de�nition, B−n ((Z/pZ)n) is a quotient of Bn((Z/pZ)n), this
combined with Prop. 6 give the required result. �
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Everything done above can be generalized to prove Bn((Z/NZ)n) 6= 0
for composite N as well, we just need to show

B−1 (Z/NZ) 6= 0,

since we did not use the fact that p is prime apart from proving the
base case n = 1. This can be shown by the fact that

B1(Z/NZ) = Zφ(N) 6= 0

and the quotient (1.1) will not annihilate the whole module.

3. Lattice and cones
sect:lat

This section is heavily linked with [2, Section 4], which gave a geo-
metric interpretation of the elements and de�ning relations ofMn(G).
The initial problem with trying to �nd analogues of this lattice and
cone structure for Bn(G) is that the decomposition Λ = Λ1 ∪ · · · ∪ Λk

always produces k subcones, whereas the relation (B) does not have
a consistent number of terms on the right hand side. This problem
was resolved by changing the way we identify the triples (L, χ,Λ) with
symbols in Bn(G) ⊗ Q, inspired by the map µ as discussed above, so
that the excess cones are identi�ed with either a torsion element or a
zero element in Bn(G).

We have n ≥ 2 is an integer, G is a �nite abelian group and A =
Hom(G,C×) is the character group of G. We can consider equivalence
class of triples

(L, χ,Λ),

up to isomorphism, where

• L ' Zn is a (torsion-free) lattice of rank n,
• χ is an element of L ⊗ A, such that the following induced ho-
momorphism is a surjection:

(3.1) L∨ → A,

• Λ is a strictly convex cone in LR spanned by a basis of L, i.e.
it is isomorphic to the standard octant Rn

≥0 for L = Zn ⊂ Rn.

Now for each symbol

[a1, . . . , an] ∈ Bn(G)⊗Q

we can identify it in terms of

φ(L, χ,Λ)
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by choosing a basis e1, . . . , en of L spanning Λ, and writing

(3.2) χ =
n∑
i=1

ei ⊗ ai

we can identify

φ(L, χ,Λ) =


[a1, ..., an] if a1, ..., an 6= 0
1
2
[a1, ..., an] if exactly one of a1, ..., an is 0

[a1, ..., an] if two or more of a1, ..., an is 0.

Here the condition (G) is satis�ed via the surjectivity of (3.1), and since
the order of the basis does not matter we satisfy (S). We just need to
check the blowup condition (B), i.e. it is obeyed by

(3.3) φ(L, χ,Λ) = φ(L, χ,Λ1) + φ(L, χ,Λ2)

where

Λ1 := R≥0(e1 + e2) + R≥0e2 + ...+ R≥0en

Λ2 := R≥0e1 + R≥0(e1 + e2) + ...+ R≥0en

and so
Λ = Λ1 ∪ Λ2.

Note that (3.3) comes from the fact that we have{
in the basis of Λ1 : χ = (e1 + e2)⊗ a1 + e2 ⊗ (a2 − a1) + . . .

in the basis of Λ2 : χ = e1 ⊗ (a1 − a2) + (e1 + e2)⊗ a2 + . . .

There are the following cases:

(1) a1 6= a2

(a) a1, a2 6= 0
(i) exactly one of a3, ..., an is 0
(ii) else

(b) WLOG a1 = 0
(i) a3, ..., an 6= 0
(ii) exactly one of a3, ..., an is 0
(iii) two or more of a3, ..., an is 0

(2) a1 = a2 = a
(a) a 6= 0

(i) a3, ..., an 6= 0
(ii) exactly one of a3, ..., an is 0
(iii) two or more of a3, ..., an is 0

(b) a = 0
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Each case is checked below:

In Case 1(a)i we have

[a1, a2, ...] = 2φ(L, χ,Λ)

= 2φ(L, χ,Λ1) + 2φ(L, χ,Λ2)

= [a1, a2 − a1, ...] + [a1 − a2, a2, ...]

In Case 1(a)ii this is the same as the case forMn(G).
In Case 1(b)i we have

[0, a2, ...] = 2φ(L, χ,Λ)

= 2φ(L, χ,Λ1) + 2φ(L, χ,Λ2)

= [0, a2, ...] + 2[−a2, a2, ...]

which holds since [−a2, a2, ...] = 0 by the lemma below.

Lemma 8. [−a, a, ...] = 0 for any a ∈ A.

Proof. We have the relation

[0, a, ...] = [−a, a, ...] + [0, a, ...]

by the blowup condition (B), subtract [0, a, ...] from both sides to get
the required result. �

In Case 1(b)ii we have

[0, a2, ..., 0, ...] = φ(L, χ,Λ)

= φ(L, χ,Λ1) + φ(L, χ,Λ2)

= [0, a2, ..., 0, ...] +
1

2
[−a2, a2, ..., 0, ...]

which holds since [−a2, a2, ...] = 0 by Lemma 8.
In Case 1(b)iii this is the same as the case forMn(G).
In Case 2(a)i we have

[a, a, ...] = φ(L, χ,Λ)

= φ(L, χ,Λ1) + φ(L, χ,Λ2)

=
1

2
[0, a, ...] +

1

2
[a, 0, ...]

= [0, a, ...]

as required.
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In Case 2(a)ii we have

[a, a, ..., 0, ...] = 2φ(L, χ,Λ)

= 2φ(L, χ,Λ1) + 2φ(L, χ,Λ2)

= 2[0, a, ..., 0, ...] + 2[a, 0, ..., 0, ...]

= 4[0, a, ..., 0, ...]

this holds since [a, a, ..., 0, ...] = [0, a, . . . , 0, ...] = [0, 0, a, ...] so both
sides are torsion elements.
In Case 2(a)iii this is the same as the case forMn(G).
In Case 2(b) this is the same as the case forMn(G).

We will now give a few explicit examples of this structure. Consider
the group

G = Z/3Z
which has characters

{0, a, 2a}.
In the case of n = 3, let

L = Z3, e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1


Λ = R≥0e1 + R≥0e2 + R≥0e3.

Now if we let

χ1 = e1 ⊗ a+ e2 ⊗ 2a+ e3 ⊗ a
then we have

φ(L, χ1,Λ) = [a, 2a, a] ∈ B3(Z/3Z)⊗Q.

The relation

[a, 2a, a] = [2a, 2a, a] + [a, a, a]

exactly corresponds to

φ(L, χ1,Λ) = φ(L, χ1,Λ1) + φ(L, χ1,Λ2)

where

Λ1 := R≥0e1 + R≥0(e1 + e2) + R≥0e3

Λ2 := R≥0(e1 + e2) + R≥0e2 + R≥0e3.
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Geometrically this represents the cone Λ splitting into two cones along
the plane spanned by (e1 + e2) and e3. Now in the basis of Λ1 we have

χ1 = e1 ⊗ (a− 2a) + (e1 + e2)⊗ 2a+ e3 ⊗ a
= e1 ⊗ 2a+ (e1 + e2)⊗ 2a+ e3 ⊗ a

which gives

φ(L, χ1,Λ1) = [2a, 2a, a]

and similarly we have in the basis of Λ2

χ1 = (e1 + e2)⊗ a+ e2 ⊗ (2a− a) + e3 ⊗ a
= (e1 + e2)⊗ a+ e2 ⊗ a+ e3 ⊗ a

which gives

φ(L, χ1,Λ2) = [a, a, a]

as required. So far this is exactly the same as the case forM3(Z/3Z),
so we will look at the relation

[a, a, 2a] = [0, a, 2a]

which does not hold inM3(Z/3Z), this should correspond to

φ(L, χ1,Λ) = φ(L, χ1,Λ3) + φ(L, χ1,Λ4)

where

Λ3 := R≥0e1 + R≥0e2 + R≥0(e1 + e3)

Λ4 := R≥0(e1 + e3) + R≥0e2 + R≥0e3.

This time the cone Λ is split along the plane spanned by (e1 + e3) and
e2. In the basis of Λ3, we get

χ1 = e1 ⊗ (a− a) + e2 ⊗ 2a+ (e1 + e3)⊗ a
= e1 ⊗ 0 + e2 ⊗ 2a+ (e1 + e3)⊗ a

since there is a 0 in the above expansion, this gives

φ(L, χ1,Λ3) =
1

2
[0, 2a, a]

and in the basis of Λ4

χ1 = (e1 + e3)⊗ a+ e2 ⊗ 2a+ e3 ⊗ (a− a)

= (e1 + e3)⊗ a+ e2 ⊗ 2a+ e3 ⊗ 0

which gives

φ(L, χ1,Λ4) =
1

2
[a, 2a, 0].
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Using the symmetry condition (S) we have

φ(L, χ1,Λ3) + φ(L, χ1,Λ4) =
1

2
[a, 2a, 0] +

1

2
[0, 2a, a] = [0, a, 2a]

exactly as expected.
Now let's have look at a case where there is a 0 in the symbol

χ2 = e1 ⊗ 0 + e2 ⊗ a+ e3 ⊗ a
which is identi�ed with

φ(L, χ2,Λ) =
1

2
[0, a, a].

There is a few relations we can check, �rst consider

[0, a, a] = [2a, a, a] + [0, a, a]

we expect this to correspond to

2φ(L, χ1,Λ) = 2φ(L, χ1,Λ1) + 2φ(L, χ1,Λ2)

where Λ1 and Λ2 is as above. We have in the basis of Λ1

χ2 = e1 ⊗ (0− a) + (e1 + e2)⊗ a+ e3 ⊗ a
= e1 ⊗ 2a+ (e1 + e2)⊗ a+ e3 ⊗ a

which gives
2φ(L, χ2,Λ1) = 2[2a, a, a] = [2a, a, a]

where the second equality is from the fact that [2a, a, a] = [−a, a, a] = 0
by Lemma 8, and in the basis of Λ2

χ2 = (e1 + e2)⊗ 0 + e2 ⊗ (a− 0) + e3 ⊗ a
= (e1 + e2)⊗ 0 + e2 ⊗ a+ e3 ⊗ a

which gives
2φ(L, χ2,Λ2) = [0, a, a]

as required. Now consider the relation

[a, a, 0] = [0, a, 0]

which also tells us that this is a torsion element in B3(Z/3Z) and there-
fore trivial in B3(Z/3Z)⊗Q, this should correspond to

2φ(L, χ1,Λ) = 2φ(L, χ1,Λ5) + 2φ(L, χ1,Λ6)

where

Λ5 := R≥0e1 + R≥0e2 + R≥0(e2 + e3)

Λ6 := R≥0e1 + R≥0(e2 + e3) + R≥0e3.
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In the basis of Λ5 we have

χ2 = e1 ⊗ 0 + e2 ⊗ (a− a) + (e2 + e3)⊗ a
= e1 ⊗ 0 + e2 ⊗ 0 + (e2 + e3)⊗ a

which gives

2φ(L, χ2,Λ5) = 2[0, 0, a]

and by symmetry we have

2φ(L, χ2,Λ6) = 2[0, 0, a].

So we get the relation

[a, a, 0] = 4[0, a, 0] = [0, a, 0]

which holds since all elements are trivial.

4. Multiplication and co-multiplication
sect:multi

In this section is heavily linked with [2, Section 5], which gives mul-
tiplication and co-multiplication maps de�ned onMn(G) andM−

n (G).
Here we �nd analogous maps for Bn(G)⊗Q, and show these new maps
are well de�ned and compatible with de�ning relations. Note that in
this section all Bn(G) are tensored with Q, so that it is a Q-vector
space.
Now given a short exact sequence of �nite abelian groups

0→ G′ → G→ G′′ → 0

this induces short exact sequence of character groups

0→ A′′ → A→ A′ → 0

since the pullback of G2 → C× by G1 → G2 gives A2 → A1, where
Ai = G∨i = Hom(Gi,C×). Letting

n = n′ + n′′, n′, n′′ ≥ 1,

we can de�ne a Z-bilinear `multiplication' map

∇B : Bn′(G′)⊗ Bn′′(G′′)→ Bn′+n′′(G)

which is de�ned by

[a′1, . . . , a
′
n′ ]⊗ [a′′1, . . . , a

′′
n′′ ] 7→

∑
[a1, . . . , an′ , a

′′
1, . . . , a

′′
n′′ ]

where the sum is over all lifts ai ∈ A of a′i ∈ A′ from the short exact
sequence, and the elements a′′i ∈ A via A′′ ↪→ A.
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The compatibility with de�ning relations (S) and (B) are obvious for
exactly the same reasons as [2, Section 5]. This map descends into a
Z-bilinear map via (1.1)

∇−B : B−n′(G
′)⊗ B−n′′(G

′′)→ B−n′+n′′(G)

where both G′ and G′′ are nontrivial.
We can also de�ne the corresponding `co-multiplication' map

∆B : Bn′+n′′(G)→ Bn′(G′)⊗ B−n′′(G
′′)

by

[a1, ..., an] 7→


∑

[aI′ mod A′′]⊗ [aI′′ ]
− a1, ..., an 6= 0

2
∑

[aI′ mod A′′]⊗ [aI′′ ]
− exactly one of a1, ..., an is 0

0 otherwise

where

[aI′ mod A′′] = [ai1 mod A′′, . . . , ain′ mod A′′], I ′ := {i1, . . . , in′}
[aI′′ ]

− = [aj1 , . . . , ajn′′ ]
−, I ′′ := {j1, . . . , jn′′}.

The sum is over all subdivisions

{1, . . . , n} = I ′ t I ′′, such that #I ′ = n′,#I ′′ = n′′,

satisfying aj ∈ A′′, for all j ∈ I ′′ and aj, j ∈ I ′′, generate A′′.

Proposition 9. The map ∆B extends to a well-de�ned Z-linear homo-

morphism.

Proof. The proof is similar to the proof of Proposition 11 in [2], except
this time there is more cases to deal with. We just need to check that
the relation (B) is compatible. We only care about cases where a1, a2

are in di�erent sides of the tensor product, since all other cases are
trivial as it is the consequence of tensor products. These are

(4.1) [a1, a2, . . . ] 7→

λ
(
δgena1∈A′′ · [a2 mod A′′, ...]⊗ [a1, ...]

−

+ δgena2∈A′′ · [a1 mod A′′, ...]⊗ [a2, ...]
−
)

where

λ =


1 a1, ..., an 6= 0

2 exactly one of a1, ..., an is 0

0 otherwise
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and for a ∈ A,

δgena∈A′′ =

{
1 a ∈ A′′ and Za+

∑
j∈J ′′ Zaj = A′′

0 otherwise

where

J ′ := I ′ ∩ {3, . . . , n}, J ′′ := I ′′ ∩ {3, . . . , n}
of cardinality n′ − 1 and n′′ − 1 respectively.

First suppose a1 6= a2, there are three cases:

(1) a3, ..., an 6= 0
(2) exactly one of a3, ..., an is 0
(3) more than two of a3, ..., an is 0

In Case 1, if a1, a2 6= 0, then this is the same asMn(G). So assume
WLOG a1 = 0, a2 6= 0, the relation is then

[0, a2, . . . ] = [0, a2, . . . ] + [−a2, a2, . . . ]

but the last term on the right is mapped to zero since

[−a2, a2, ...] 7→ δgena2∈A′′ · [0, ...]⊗ [a2, ...]
−+δgen−a2∈A′′ · [0, ...]⊗ [−a2, ...]

− = 0.

In Case 2, if a1, a2 6= 0 then we have basically the same case as
Mn(G) since every term involved contains exactly one zero, except the
image of everything is e�ectively doubled due to λ = 2. So we can
assume WLOG that a1 = 0, a2 6= 0, the relation is then

[0, a2, . . . , 0, . . . ] = [0, a2, . . . , 0, . . . ] + [−a2, a2, . . . , 0, . . . ]

again the last term is mapped to zero since

[−a2, a2, ...] 7→ 2
(
δgena2∈A′′ ·[0, ...]⊗[a2, ...]

−+δgen−a2∈A′′·[0, ...]⊗[−a2, ...]
−
)

= 0.

In Case 3, everything maps to zero.

So we can assume a1 = a2 = a. Furthermore if a = 0 then everything
is mapped to zero, so we can assume further a 6= 0. We have the
following cases:

(1) a ∈ A′′
(a) a3, ..., an 6= 0
(b) exactly one of a3, ..., an is 0
(c) two or more of a3, ..., an is 0

(2) a 6∈ A′′



20 XIANGJIA KONG

In Case 1(a), we have

[a, a, ...] 7→ 2δgena∈A′′ · [0, ...]⊗ [a, ...]−

and

[0, a, ...] 7→ 2
(
δgen0∈A′′ · [0, ...]⊗ [0, ...]− + δgena∈A′′ · [0, ...]⊗ [a, ...]−

)
.

Clearly they are equal.
In Case 1(b), WLOG let a3 be the zero element, then we have

[a, a, ...] 7→ 4δgena∈A′′ · [0, ...]⊗ [a, ...]−.

Now if a3 = 0 is in left side of the tensor product, then the term is a
torsion element due to [1, Prop 7.1]. If a3 = 0 is in the right side, then
the whole term disappears since [0, ...]− ∈ B−n′′ is equal to 0. This is
consistent with

[0, a, ...] 7→ 0.

In Case 1(c), everything maps to zero.
In Case 2, we have

[a, a, ...] 7→ 0

and

[0, a, ...] 7→ δgen0∈A′′ · [a mod A′′, ...]⊗ [0, ...]− = 0

again everything maps to 0. �

We will now give a few explicit examples of this map. Consider the
short exact sequence

0→ Z/2Z f→ Z/30Z g→ Z/15Z→ 0

letting gk denote the generator of Z/kZ, the maps f, g are de�ned on
generators by

f :g2 7→ g15
30

g :g30 7→ g15.

This is a short exact sequence since

im(f) = 〈g15
30〉 = ker(g),

with f being an injective map and g being an surjective map. Now let
Ak denote the character group of Z/kZ with generator χk, we get the
short exact sequence

0→ A15
g∗→ A30

f∗→ A2 → 0
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by the pullbacks f ∗, g∗ which are de�ned by

g∗ :χ15 7→ 2χ30

f ∗ :χ30 7→ χ2.

so that

f ∗(χ15)(g) = χ15(f(g))

g∗(χ30)(g) = χ30(f(g))

is satis�ed.
So we can now calculate the `multiplication' and `co-multiplication'

maps induced from the above short exact sequence. Let

n′ = 1, n′′ = 2

we will �rst look at the map

∇B : B1(Z/2Z)⊗ B2(Z/15Z)→ B3(Z/30Z).

The image of the element

[χ2]⊗ [3χ15, 13χ15]

under ∇B is
14∑
i=0

[(2i+ 1)χ30, 6χ30, 26χ30].

Now let's check if ∇B is compatible with the following relation

[χ2]⊗ [3χ15, 13χ15] = [χ2]⊗ ([20χ15, 13χ15] + [3χ15, 10χ15])

= [χ2]⊗ [20χ15, 13χ15] + [χ2]⊗ [3χ15, 10χ15],

we have

∇B([χ2]⊗ [20χ15, 13χ15]) =
14∑
i=0

[(2i+ 1)χ30, 10χ30, 22χ30]

and

∇B([χ2]⊗ [3χ15, 10χ15]) =
14∑
i=0

[(2i+ 1)χ30, 6χ30, 20χ30].

But since we have for all i

[(2i+ 1)χ30, 6χ30, 26χ30]

= [(2i+ 1)χ30, 10χ30, 22χ30] + [(2i+ 1)χ30, 6χ30, 20χ30]
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the above relation holds under ∇B. This example illustrates how the
compatibility with de�ning relations (S) and (B) is obvious, as a con-
sequence of tensor products.
Next we will look at the `co-multiplication' map

∆B : B3(Z/30Z)→ B1(Z/2Z)⊗ B−2 (Z/15Z).

The image of the element

[χ30, 6χ30, 26χ30]

under ∆B is

[χ30 mod A15]⊗ [3χ15, 13χ15]− = [χ2]⊗ [3χ15, 13χ15]−.

We can check the case of a relation where a1, a2 are distributed over
di�erent factors

[χ30, 6χ30, 26χ30] = [25χ30, 6χ30, 26χ30] + [χ30, 5χ30, 26χ30]

we have

∆B([25χ30, 6χ30, 26χ30]) = [χ2]⊗ [3χ15, 13χ15]−

and

∆B([χ30, 5χ30, 26χ30]) = 0

which means the above relation holds. So far this is exactly the same
as the case forMn(G), so let's check the relation

[2χ30, 2χ30, 3χ30] = [0, 2χ30, 3χ30].

We have

∆B([2χ30, 2χ30, 3χ30]) = [χ2]⊗ [χ15, χ15]− = [χ2]⊗ [0, χ15]− = 0

and

∆B([0, 2χ30, 3χ30]) = [χ2]⊗ [0, χ15]− = 0

so the image of both sides are trivial, which means the relation holds.
Now let's look at a di�erent map in order to show the case where

there is a 0 in the symbol

∆B : B4(Z/30Z)→ B2(Z/2Z)⊗ B−2 (Z/15Z).

i.e. n′ = n′′ = 2. Consider the relation

[2χ30, 2χ30, χ30, 0] = [0, 2χ30, χ30, 0].
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We have

∆B([2χ30, 2χ30, χ30, 0])

= 2([χ2, 0]⊗ [χ15, χ15]− + [χ2, 0]⊗ [0, χ15]− + [χ2, 0]⊗ [0, χ15]−)

= 2[χ2, 0]⊗ [χ15, χ15]−

= 2[χ2, 0]⊗ [0, χ15]− = 0

and

∆B([0, 2χ30, χ30, 0]) = 0

so the relation holds. Now for a case where a1 6= a2, consider

[2χ30, χ30, 2χ30, 0] = [χ30, χ30, 2χ30, 0] + [2χ30, 29χ30, 2χ30, 0]

we have

∆B([χ30, χ30, 2χ30, 0]) = 2[χ2, χ2]⊗ [χ15, 0]− = 0

and

∆B([2χ30, 29χ30, 2χ30, 0]) = 2[χ2, χ2]⊗ [χ15, χ15]− = 0

which works too.

5. Explanation of proofs of Theorem 12 and 14 in [2]
sect: explain

In this section we give a more detailed explanation of the proofs
of Theorem 12 and 14 found in [2, Section 5]. In particular some of
the non-trivial steps of the proofs will be proven in more detail, with
concrete examples at the end showing the proofs more explicitly.
We have the following multiplication and co-multiplication maps

∆− :M−
n′+n′′(G)→M−

n′(G
′)⊗M−

n′′(G
′′)

∇− :M−
n′(G

′)⊗M−
n′′(G

′′)→M−
n′+n′′(G)

given a short exact sequence of �nite abelian groups

0→ G′ → G→ G′′ → 0

and their corresponding character groups.
We can obtain a chain complex from these maps induced from sim-

plicial complexes, in both directions: let G• be a �ag of subgroups of
length r

0 = G≤0 ( G≤1 ( · · · ( G≤r = G.
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This means that we get the following diagram

M−
n (G) �

⊕
n1+n2=n

G• of lengths 2

M−
n1

(gr1(G•))⊗M−
n2

(gr2(G•))

�
⊕

n1+n2+n3=n
G• of lengths 3

M−
n1

(gr1(G•))⊗M−
n2

(gr2(G•))⊗M−
n3

(gr3(G•)) � . . .

where gri(G•) = G≤i/G≤i−1, which is well de�ned since everything is
abelian and hence all subgroups are normal. The left and right arrows
are obtained via the following: given

· · · ( Gi ( Gi+1 ( Gi+2 ( · · ·

which is part of some �ag G• of length s ≥ 2, we get the short exact
sequence

0→ Gi+1/Gi → Gi+2/Gi → Gi+2/Gi+1 → 0

which is due to the third isomorphism theorem

(Gi+2/Gi)/(Gi+1/Gi) ∼= Gi+2/Gi+1.

Write

Gi+1/Gi = gri+1(G•), Gi+2/Gi+1 = gri+2(G•), Gi+2/Gi = gri+1(H•)

where H• = G• \ {Gi+1} is the �ag of length s − 1 obtained by re-
moving the group Gi+1, then the short exact sequence will give us the
homomorphisms

∆− :M−
n′+n′′(gri+1(H•))→M−

n′(gri+1(G•))⊗M−
n′′(gri+2(G•))

∇− :M−
n′(gri+1(G•))⊗M−

n′′(gri+2(G•))→M−
n′+n′′(gri+1(H•)).

where if n′ + n′′ = 1 then we have the trivial map. This �ts into the
complex via

· · · ⊗M−
n′(gri+1(G•))⊗M−

n′′(gri+2(G•))⊗ · · · ∈ Cs−1,−(G, n), C−s−1(G, n)

· · · ⊗M−
n′+n′′(gri+1(H•))⊗ · · · ∈ Cs−2,−(G, n), C−s−2(G, n),

where Cs,−(G, n), C−s (G, n) is the s-th term in the diagram of homo-
morphism above.
Now we give a simplicial complex structure to the whole diagram.

Consider each �ag of subgroups G• of length r as an oriented r-simplex

(G0, G1, . . . , Gr)
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we can get the boundary map to oriented (r − 1)-simplexes, i.e. �ags
of length r − 1,

(G0, G1, . . . , Gr) 7→
r−1∑
i=1

(−1)i(G0, . . . ,ZZGi, . . . , Gr).

Using the maps ∇− as discussed above, with H• being each �ag of
length r− 1 on the right, this boundary map generates the left arrows
in the diagram, which we denote by the di�erential d∇− . It satis�es the
condition ∂r−1∂r = 0 for d∇− due to the simplicial complex structure,
so we obtain a chain complex

C−• (G, n).

We can also get the corresponding boundary map to oriented (r+1)-
simplexes, i.e. �ags of length r + 1,

(G0, G1, . . . , Gr) 7→
∑

(−1)i(G0, . . . , Gi, Gk, Gi+1, . . . , Gr).

where the sum is over all possible ways G• can be extended into a �ag
of length r + 1 by adding a subgroup Gi ( Gk ( Gi+1. Again we can
use the maps ∆− as above, to generate the right arrows in the diagram,
which we denote by the di�erential d∆− . It satis�es ∂

r∂r−1 = 0 for d∆−

since each term

(G0, . . . , Gi, Gk, Gi+1, . . . Gj, Gl, Gj+1, . . . , Gr)

in the image of ∂r∂r−1 occurs twice, once with sign (−1)i+j and once
with sign (−1)i+j+1. So we again obtain a chain complex

C•,−(G, n).

Theorem 10. [2, Theorem 12] Let G be a �nite cyclic group. Then

the cohomology of both complexes

C•,−(G, n), C−• (G, n)

after tensoring by Q, is concentrated in degree 0.

Proof. We will not need to use the assumption that G is a �nite cyclic
group until the last step of the proof, since all constructions prior does
not reply on this assumption.
First we de�ne

M∼
n (G)

to be Sn(G)⊗Q with the additional condition that aj 6= 0 for all j, i.e.
the Q-vector space generated by symbols of the form

〈a1, . . . , an〉∼
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which satisfy the symmetry condition (S) and the generation condition
(G) with aj 6= 0 for all j. We get a natural linear map between Q-vector
spaces

M∼
n (G)→M−

n (G)⊗Q,
de�ned on generators by

〈a1, . . . , an〉∼ 7→ 〈a1, . . . , an〉−.
We can de�ne the co-multiplication

∆∼ :M∼
n′+n′′(G)→M∼

n′(G
′)⊗M∼

n′′(G
′′)

de�ned similarly to ∆− by

〈a1, . . . , an〉∼ 7→
∑
〈aI′ mod A′′〉∼ ⊗ 〈aI′′〉∼

where I ′, I ′′ ( I are nonempty subsets such that I ′ t I ′′ = {1, . . . , n},
and I ′′ satisfy ai ∈ A′′ for all i ∈ I ′′ and

∑
i∈I′′ Zai = A′′. This map is

well de�ned due to the same reason as ∆−.
We can also de�ne the multiplication

∇∼ :M∼
n′(G

′)⊗M∼
n′′(G

′′)→M∼
n′+n′′(G).

de�ned similarly to ∇− by

〈a′1, . . . , a′n′〉 ⊗ 〈a′′1, . . . , a′′n′′〉 7→
∑
〈a1, . . . , an′ , a

′′
1, . . . , a

′′
n′′〉

where the sum runs over all lifts ai ∈ A of a′i ∈ A′ from the short exact
sequence, and the elements a′′i ∈ A via A′′ ↪→ A. Again this map is
well de�ned due to the same reason as ∇−.
Using the same construction as above, we get the following diagram

of homomorphisms

M∼
n (G) �

⊕
n1+n2=n

G• of lengths 2

M∼
n1

(gr1(G•))⊗M∼
n2

(gr2(G•))

�
⊕

n1+n2+n3=n
G• of lengths 3

M∼
n1

(gr1(G•))⊗M∼
n2

(gr2(G•))⊗M∼
n3

(gr3(G•)) � . . .

which gives us two chain complexes

C•,∼(G, n), C∼• (G, n)

with di�erentials d∆∼ and d∇∼ respectively. There are natural linear
maps

g• : C•,∼(G, n) � C•,−(G, n)⊗Q, g• : C∼• (G, n) � C−• (G, n)⊗Q
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induced by
〈a1, . . . , ani

〉∼ 7→ 〈a1, . . . , ani
〉−

which is surjective since nothing inM∼
n (G) contains 0, and 〈a1, . . . , ani

〉− =
0 if at least one aj = 0 for some j, since then it is a torsion element of
order 2 inM−

n (G). This also tells us that these maps are compatible
with their di�erentials, so that the following diagrams commutes

Cs,∼(G, n) Cs+1,∼(G, n)

Cs,−(G, n)⊗Q Cs+1,−(G, n)⊗Q

d∆∼

g• g•

d∆−

C∼s (G, n) C∼s+1(G, n)

C−s (G, n)⊗Q C−s+1(G, n)⊗Q.

g• g•

d∇∼

d∇−

Lemma 11. There is a series of implications

(1)⇒ (2)⇒ (3)⇒ (4)

where

(1) H>0(C•,∼(G, n)) = 0,
(2) The operator

∆∼ = d∆∼ ◦ d∇∼ + d∇∼ ◦ d∆∼

in invertible in degree > 0,
(3) The operator

∆− = d∆− ◦ d∇− + d∇− ◦ d∆−

in invertible in degree > 0,
(4) H>0(C•,−(G, n)) = 0, H>0(C−• (G, n)) = 0.

Proof. (1)⇔ (2) : We can verify that the di�erentials d∇∼ and d∆∼ are
adjoint with respect to inner products de�ned on each Cj,∼(G, n), in-
duced from the identity matrix. Letting (·, ·) denote the inner products,
and

∆∼j = ∂j∂
j + ∂j−1∂j−1

we have the following facts:

• im(∂j−1)∩im(∂j) is trivial: Suppose z ∈ im(∂j−1)∩im(∂j), then

(z, z) = (∂j−1(y), z) = (y, ∂j−1(z)) = (y, ∂j−1∂j(x)) = (y, 0) = 0

which means that z = 0.
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• ker(∂j) = (im(∂j))
⊥: Since z ∈ ker(∂j) implies for any y

(z, ∂j(y)) = (∂j(z), y) = (0, y) = 0.

• ker(∂j−1) = (im(∂j−1))⊥: Same argument as above.
• ker(∆∼) = ker(∂j∂

j)∩ker(∂j−1∂j−1) = ker(∂j)∩ker(∂j−1): First
we show

ker(∂j) = ker(∂j∂
j).

Obviously ker(∂j) ⊆ ker(∂j∂
j), so suppose z ∈ ker(∂j∂

j), then
we have

0 = (∂j∂
j(z), z) = (∂j(z), ∂j(z))

which implies ∂j(z) = 0 and so ker(∂j) ⊇ ker(∂j∂
j). We can

repeat this argument to also get

ker(∂j−1) = ker(∂j−1∂j−1)

as required.
Now we just need to show the �rst equality, which is equiva-

lent to showing

ker(∆∼) ⊆ ker(∂j∂
j) ∩ ker(∂j−1∂j−1)

since the other inclusion is trivial. Let z ∈ ker(∆∼), then we
have, for any y

0 = (∆∼z, ∂j∂
j(y)) = (∂j∂

j(z) + ∂j−1∂j−1(z), ∂j∂
j(y))

= (∂j∂
j(z), ∂j∂

j(y)) + (∂j−1∂j−1(z), ∂j∂
j(y))

= (∂j∂
j(z), ∂j∂

j(y)) + (∂j−1(z), ∂j−1∂j∂
j(y))

= (∂j∂
j(z), ∂j∂

j(y)) + 0

which implies z ∈ ker(∂j∂
j), and so ker(∆∼) ⊆ ker(∂j∂

j). We
can repeat this argument with ∂j−1∂j−1(y) to also get ker(∆∼) ⊆
ker(∂j−1∂j−1).

This means that there is an orthogonal decomposition

Cj,∼(G, n) = im(∂j−1)⊕ ker(∆∼)⊕ im(∂j)

where
ker(∂j) = im(∂j−1)⊕ ker(∆∼).

So we have

Hj(C•,∼(G, n)) = ker(∂j)/im(∂j−1) ∼= ker(∆∼)

and therefore these two statements are equivalent.
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(2) ⇒ (3) : Since ∆∼ is invertible, for any β ∈ Cs,∼(G, n), C∼s (G, n)
there exists an α such that

∆∼(α) = β

i.e.

(∆∼)−1(β) = α.

Since g is compatible with respective di�erentials, we have

g(β) = g ◦∆∼(α)

g(β) = g ◦ (d∆∼ ◦ d∇∼ + d∇∼ ◦ d∆∼)(α)

g(β) = g ◦ d∆∼ ◦ d∇∼(α) + g ◦ d∇∼ ◦ d∆∼(α)

g(β) = d∆− ◦ g ◦ d∇∼(α) + d∇− ◦ g ◦ d∆∼(α)

g(β) = d∆− ◦ d∇− ◦ g(α) + d∇− ◦ d∆− ◦ g(α)

g(β) = ∆−(g(α))

which means for all β

g(α) = g ◦ (∆∼)−1(β)

∆−(g(α)) = ∆− ◦ g ◦ (∆∼)−1(β) = g(β)

∆− ◦ g ◦ (∆∼)−1 ◦ g−1 ◦ g(β) = g(β).

Using the fact that g is surjective, we must have

∆− ◦ g ◦ (∆∼)−1 ◦ g−1 = Id

and therefore ∆− is invertible.

(3) ⇒ (4) : Abusing notation, we can consider ∆− to be two chain
maps

∆− : C•,−(G, n)→ C•,−(G, n)

∆− : C−• (G, n)→ C−• (G, n)

which are both homotopic to zero. Now suppose z ∈ Zj(C•,−(G, n))
represents x ∈ Hj(C•,−(G, n)), then

∆−j (z)− 0j(z) = ∂j−1∂j(z) ∈ Bj(C•,−(G, n)).

We can repeat this same reasoning with ∆− to get that they both
induce the same trivial homomorphisms

(∆−)∗ = 0∗ : Hj(C•,−(G, n))→ Hj(C•,−(G, n))

(∆−)∗ = 0∗ : Hj(C−• (G, n))→ Hj(C−• (G, n)).
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Now ∆− is invertible in degree ≥ 0, which implies that (∆−)∗ and
(∆−)∗ are also invertible (and trivial), which means that

H>0(C•,−(G, n)) = 0, H>0(C−• (G, n)) = 0.

as required. �

This means that we just need to prove statement (1). We will do
this by constructing a homotopy

h : C∼j (G, n)→ C∼j−1(G, n)

such that
∆∼h := h ◦ d∆∼ + d∆∼ ◦ h

is invertible, in degrees > 0. This would imply (∆∼h )∗ = 0∗ is invertible,
as above, and hence

H>0(C•,∼(G, n)) = 0.

If we have a �ags of subgroups

0 = G≤0 ( G≤1 ( · · · ( G≤r = G,

which give the terms in C∼r (G, n), we can obtain a chain of surjective
homomorphisms

0 = A≤0

6=
� A≤1

6=
� . . .

6=
� A≤r = A

by pullbacks of the inclusion maps G≤i ↪→ G≤i+1, and the surjectivity is
from the fact that every element of A≤i has an induced representation
in A≤i+1. This allows us to de�ne the homotopy h as below

h :=M∼
n1

(A≤1)⊗M∼
n2

(Ker(A≤2 � A≤1))⊗ · · · →M∼
n1+n2

(A≤2)⊗ · · ·
where on the �rst two terms we have

〈a1, . . . , an1〉∼ ⊗ 〈b1, . . . , bn2〉∼ 7→ 〈ψ(a1), . . . , ψ(an1), b1, . . . , bn2〉∼,
and the identity on the rest. Here

ψ : A≤1 → A≤2

is a section of the natural surjective homomorphism, which we will
de�ned below.
Now we will use the assumption that G is cyclic, which also implies

all A≥n are also cyclic. This means we have

G = Z/NZ =
∏
i

Z/pkii Z,

and we can identify as follows

Z/pkii Z = {0, . . . , pi − 1}ki ,
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by considering each element as a string of digits in the base pi. Then
we can have a natural map

ψ : A≤1 → A≤2

by adding zeroes to the corresponding strings of digits, for all pi, such
that the size of the cyclic group �ts.
The generation condition (G) is satis�ed on the RHS because a1, . . . , an1

generate A≤1 and b1, . . . , bn2 generate Ker(A≤2 � A≤1), and the map
ψ is essentially lifts from A≤1 to A≤2 and

A≤1
∼= A≤2/Ker(A≤2 � A≤1)

due to the isomorphism theorem.
The di�erential d∆∼ is given by removing digits in this presentation,

since the co-multiplication map is de�ned by

〈a1, . . . , an〉∼ 7→
∑
〈aI′ mod A′′〉∼ ⊗ 〈aI′′〉∼;

the 〈aI′′〉∼ part is obviously obtained by removing digits, and subgroups
of Z/pkii Z are of the form

Z/plii Z = {0, . . . , pi − 1}li

for some li ≤ ki, so we can represent 〈aI′ mod A′′〉∼ by removing li
digits for each pi.
Now consider the operator

∆∼h − Id

acting on Cj,∼(G, n), for j ≥ 1. Since the digit 0 is invariant under
∆∼h − Id, and a non-trivial part is invariant under ∆∼h from the de�ni-
tion of h and d∆∼ , this implies that the number of zeros in the string
of digits is strictly increased by the operator. Therefore it is nilpotent.
So suppose (∆∼h − Id)m = 0 for some m, then

Id = Idm − (Id−∆∼h )m

=
(
Id− (Id−∆∼h )

)(
Id + (Id−∆∼h )

+ (Id−∆∼h )2 + · · ·+ (Id−∆∼h )m−1
)

=
(
∆∼h

)(
Id + (Id−∆∼h ) + (Id−∆∼h )2 + · · ·+ (Id−∆∼h )m−1

)
Which means we can conclude that∆∼h is invertible in degrees ≥ 1. �
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Now we will go through each step of the proof with a speci�c example.
Consider the case of

G = Z/30Z = 〈g | g30 = 1〉, n = 3

which has the following subgroups

〈g15〉 = C2, 〈g10〉 = C3, 〈g6〉 = C5,

〈g5〉 = C6, 〈g3〉 = C10, 〈g2〉 = C15.

Using the Cn notation from now on, this gives the following �ags of
subgroups of length 2

0 ( C2 ( G, 0 ( C3 ( G, 0 ( C5 ( G

0 ( C6 ( G, 0 ( C10 ( G, 0 ( C15 ( G

and the following �ags of subgroups of length 3

0 ( C2 ( C6 ( G, 0 ( C2 ( C10 ( G

0 ( C3 ( C6 ( G, 0 ( C3 ( C15 ( G

0 ( C5 ( C10 ( G, 0 ( C5 ( C15 ( G.

So we have the chain complexes

M−
3 (Z/30Z) �M−

1 (C2)⊗M−
2 (C15)⊕M−

2 (C2)⊗M−
1 (C15)

⊕M−
1 (C3)⊗M−

2 (C10)⊕M−
2 (C3)⊗M−

1 (C10)⊕M−
1 (C5)⊗M−

2 (C6)

⊕M−
2 (C5)⊗M−

1 (C6)⊕M−
1 (C6)⊗M−

2 (C5)⊕M−
2 (C6)⊗M−

1 (C5)

⊕M−
1 (C10)⊗M−

2 (C3)⊕M−
2 (C10)⊗M−

1 (C3)⊕M−
1 (C15)⊗M−

2 (C2)

⊕M−
2 (C15)⊗M−

1 (C2)

�M−
1 (C2)⊗M−

1 (C3)⊗M−
1 (C5)⊕M−

1 (C2)⊗M−
1 (C5)⊗M−

1 (C3)

⊕M−
1 (C3)⊗M−

1 (C2)⊗M−
1 (C5)⊕M−

1 (C3)⊗M−
1 (C3)⊗M−

1 (C2)

⊕M−
1 (C5)⊗M−

1 (C2)⊗M−
1 (C3)⊕M−

1 (C5)⊗M−
1 (C3)⊗M−

1 (C2)

with corresponding di�erentials d∇− and d∆− respectively. Note that
we used the notation C(30/k) to denote the cyclic group obtained by
G/Ck. We now verify the condition ∂1∂0 = 0 for the element

〈χ30, 24χ30, 14χ30〉− ∈M−
3 (Z/30Z)

where χ30 is the generator of the character group of Z/30Z as in sections
before. We will use similar notations for subgroups and quotients of
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Z/30Z below. The image of this element under ∂0 is

(〈χ2〉− ⊗ 〈12χ15, 7χ15〉−)⊕
=0︷ ︸︸ ︷

(〈0, χ2〉− ⊗ 〈7χ15〉−)⊕0⊕ 0⊕ 0⊕ 0⊕ 0

⊕(〈χ6, 2χ6〉− ⊗ 〈4χ5〉−)⊕ 0⊕ 0⊕ 0⊕ 0

and the image of the above element under ∂1 is

((−1)1〈χ2〉− ⊗ 〈χ3〉− ⊗ 〈4χ5〉−)⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0

+((−1)0〈χ2〉− ⊗ 〈χ3〉− ⊗ 〈4χ5〉−)⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0

= 0

which is what is expected. Here we can see that the �ag of subgroup
associated with the non-trivial element

0 ( C2 ( C6 ( G

occurs twice, once from each �ag

0 ( C2 ( G, 0 ( C6 ( G

with opposite signs, which cancels out.
The Q-vector space

M∼
3 (Z/30Z)

has similar complexes as above

C•,∼(Z/30Z, 3), C∼• (Z/30Z, 3)

with di�erentials compatible with the surjective natural linear maps
g•, g•. Consider the homotopy constructed above

h : C∼1 (Z/30Z, 3)→ C∼0 (Z/30Z, 3)

and

∆∼h := h ◦ d∆∼ + d∆∼ ◦ h.
We will look at the image of

α := (〈χ2〉∼ ⊗ 〈12χ15, 7χ15〉∼)⊕ 0⊕ 0⊕ · · · ∈ C1,∼(Z/30Z, 3)

under both of these maps. The element has the �ag of subgroups

0 ( C2 ( G

and induces the surjective homomorphisms

0
f
� A2

g
� A
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where A2 is the character group of C2. The maps f and g can by
explicitly given as

f :=χ2 7→ 0

g :=χ30 7→ χ2

so we have

Ker(A� A2) = 〈χ2
30〉 ∼= Z/15Z

which we will denote by A15 generated by χ15. This means the map h
is only relevant on

h :M∼
1 (A2)⊗M∼

2 (A15)⊕ 0⊕ · · · →M∼
3 (A).

Now we need �nd the map

ψ : A2 → A

explicitly. To do this we just need to �nd the image of the element χ2,
converting this into strings of digits we get

χ2 = {1} ∈ Z/2Z.

Now we can write

Z/30Z = Z/2Z× Z/3Z× Z/5Z

so by adding zeroes we get

ψ(χ2) = {100} = 15χ30 ∈ Z/30Z

so we have

ψ : χ2 7→ 15χ30.

Therefore we have

h(α) = 〈15χ30, 24χ30, 14χ30〉∼
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and

∆∼h (α) = h ◦ d∆∼(α) + d∆∼ ◦ h(α)

= h((−〈χ2〉∼ ⊗ 〈χ3〉∼ ⊗ 〈4χ5〉∼)⊕ 0⊕ · · · )
+ d∆∼(〈15χ30, 24χ30, 14χ30〉∼)

= · · · ⊕ 0⊕ (−〈3χ6, 2χ6〉∼ ⊗ 〈4χ5〉∼)⊕ 0⊕ · · ·
+ (〈χ2〉∼ ⊗ 〈12χ15, 7χ15〉∼)⊕ 0⊕ (〈2χ3〉∼ ⊗ 〈5χ10, 8χ10〉∼)

⊕ 0⊕ 0⊕ 0⊕ 0⊕ (〈3χ6, 2χ6〉∼ ⊗ 〈4χ5〉∼)⊕ 0⊕ 0⊕ 0

⊕ (〈9χ15, 14χ15〉∼ ⊗ 〈χ2〉∼)

= (〈χ2〉∼ ⊗ 〈12χ15, 7χ15〉∼)⊕ 0⊕ (〈2χ3〉∼ ⊗ 〈5χ10, 8χ10〉∼)

⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0

⊕ (〈9χ15, 14χ15〉∼ ⊗ 〈χ2〉∼)

which gives

(∆∼h − Id)(α) = 0⊕ 0⊕ (〈2χ3〉∼ ⊗ 〈5χ10, 8χ10〉∼)

⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0

⊕ (〈9χ15, 14χ15〉∼ ⊗ 〈χ2〉∼).

Now the string of digits for α is

(〈{1}〉∼ ⊗ 〈{02}, {12}〉∼)⊕ 0⊕ 0⊕ . . .
and for (∆∼h − Id)(α) is

0⊕ 0⊕ (〈{2}〉∼ ⊗ 〈{10}, {03}〉∼)

⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0

⊕ (〈{04}, {24}〉∼ ⊗ 〈{1}〉∼).

so we can see that the number of zeroes in the presentation has been
strictly increased from 1 to 3, which implies that ∆∼h − Id is nilpotent.
Therefore ∆∼h is invertible as expected.
Now we will verify that the di�erentials d∇∼ and d∆∼ are adjoint

with respect to inner products induced from the identity matrix on the
elements α and

β := 2(〈χ2〉∼ ⊗ 〈χ3〉∼ ⊗ 〈4χ5〉∼)⊕ 0⊕ · · · ∈ C2,∼(Z/30Z, 3).

We have

(β, d∆∼(α)) = (β, (−〈χ2〉∼ ⊗ 〈χ3〉∼ ⊗ 〈4χ5〉∼)⊕ 0⊕ · · · )
= −2
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and

(d∇∼(β), α) = (2(
∑
i=1,3,5

〈iχ6, 2χ6〉∼ ⊗ 〈4χ5〉∼)⊕ 0⊕ · · ·

⊕ 2((−1)1
∑

i=1,4,7,10,13

〈χ2〉∼ ⊗ 〈iχ15, 12χ15〉∼)⊕ 0⊕ · · · , α)

= −2

which is as expected.

Now we will look at a new diagram of homomorphisms

Mn(G)→
⊕

n1+n2=n
G• of lengths 2

Mn1(gr1(G•))⊗M−
n2

(gr2(G•))

→
⊕

n1+n2+n3=n
G• of lengths 3

Mn1(gr1(G•))⊗M−
n2

(gr2(G•))⊗M−
n3

(gr3(G•))→ . . .

where G• is a �ag of subgroups as follows

0 = G≤0 ⊆ G≤1 ( · · · ( G≤r = G, r ≥ 1

where every inclusion is strict except the G≤0 ⊆ G≤1 part; and the
leftmost part of the tensor product is not the quotientM−

n (G) but the
full groupMn(G).
There is both maps ∆ and ∆− in the di�erential. This is a complex

with the same construction as above but we only use the map ∆ when
we map the leftmost terms

Mn1(gr1(H•))⊗ · · · →Mn1(gr1(G•))⊗M−
n2

(gr2(G•))⊗ . . .
where H• = G• \ {G1} is the �ag obtained by removing the group G1.
This complex is denoted by

C•(G, n).

Theorem 12. [2, Theorem 14] Let G be a �nite cyclic group. Then

the cohomology of the complex

C•(G, n)

after tensoring by Q, is concentrated in degree 0.

Proof. The proof is similar to the one given above. Here we show that
for �nite cyclic groups, the projection

µ− :Mn(G)→M−
n (G)
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has a section
ν :M−

n (G)→Mn(G)

de�ned on generators by

〈a1, . . . , an〉− 7→
∑

ε1,...,εn

ε1ε2 . . . εn〈ε1a1, . . . , εnan〉

where εi ∈ {+1,−1}, and the sum is over all possibilities.
For n = 1, we have

〈a1〉− 7→
∑
ε1

ε1〈ε1a1〉 = 〈a1〉+−〈−a1〉

which is trivially compatible. Now we just need to check the case n = 2,
where for

a, b ∈ Z/NZ, gcd(a, b,N) = 1,

the equation above gives

〈a, b〉− 7→ 〈a, b〉+ 〈−a,−b〉 − 〈−a, b〉 − 〈a,−b〉.
We just need to verify that both sides of the relation

〈a, b〉− = 〈a, b− a〉− + 〈a− b, b〉−

is mapped to the same thing. This means we need show the following
equation holds

〈a, b〉+ 〈−a,−b〉 − 〈−a, b〉 − 〈a,−b〉
?
= 〈a, b− a〉+ 〈−a, a− b〉 − 〈−a, b− a〉 − 〈a, a− b〉

+ 〈a− b, b〉+ 〈b− a,−b〉 − 〈b− a, b〉 − 〈a− b,−b〉.
The �rst terms and the second terms on each line are

〈a, b〉 = 〈a, b− a〉+ 〈a− b, b〉
〈−a,−b〉 = 〈−a, a− b〉+ 〈b− a,−b〉

which are relations inM2(Z/NZ). So it is su�cient to check

− 〈−a, b〉 − 〈a,−b〉
?
= −〈−a, b− a〉 − 〈a, a− b〉 − 〈b− a, b〉 − 〈a− b,−b〉.

We can replace a with −a to make the equation more symmetrical, this
then gives

〈a, b〉+ 〈−a,−b〉
?
= 〈a, b+ a〉+ 〈−a,−a− b〉+ 〈b+ a, b〉+ 〈−a− b,−b〉.
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Plug in the relations

〈a, b+ a〉 = 〈a, b〉+ 〈−b, b+ a〉, 〈−a,−b− a〉 = 〈−a,−b〉+ 〈b,−b− a〉
we get

〈a, b〉+ 〈−a,−b〉
?
= 〈a, b〉+〈−b, b+a〉+〈−a,−a−b〉+〈b+a, b〉+〈−a,−b〉+〈b,−b−a〉
which is equivalent to

0
?
= 〈−b, b+ a〉+ 〈−a,−a− b〉+ 〈b+ a, b〉+ 〈b,−b− a〉.

We will use
δ(a+ b, b)

to denote the four terms on the right hand side. Here we can replace
a+ b in the notation by a to simplify the above to

δ(a, b)
?
= 0 ∈M2(Z/NZ)

which is what we will need to show. Now we have

δ(a+ b, b) = δ(a+ b, a), δ(a, b) = δ(−a, b) = δ(b, a),

we can verify the �rst relation by using the same relations as above

δ(a+ b, b)

= 〈a+ b, b〉+ 〈−(a+ b), b〉+ 〈a+ b,−b〉+ 〈−(a+ b),−b〉
= 〈a+ b, b〉+ (〈−a,−b− a〉 − 〈−a,−b〉)

+ (〈a, b+ a〉 − 〈a, b〉) + 〈−(a+ b),−b〉
= (〈a, b〉+ 〈−a, b+ a〉) + (〈−a,−b− a〉 − 〈−a,−b〉)

+ (〈a, b+ a〉 − 〈a, b〉) + (〈−a,−b〉+ 〈a,−b− a〉)
= 〈a+ b, a〉+ 〈−(a+ b), a〉+ 〈a+ b,−a〉+ 〈−(a+ b),−a〉
= δ(a+ b, a)

and the latter relation is from the fact that they are all the same
equation

δ(a, b) = δ(−a, b) = δ(b, a) = 〈a, b〉+ 〈−a, b〉+ 〈a,−b〉+ 〈−a,−b〉.
By replacing a+ b with a in the �rst relation above we get

δ(a, b) = δ(a, a− b) = δ(a− b, a)

and so δ is invariant under the matrices(
1 −1
0 1

)
,

(
0 1
1 0

)
,
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which generate SL2(Z), and thus SL2(Z/NZ), so that δ(a, b) is con-
stant.
Now by applying the de�ning relation to each term in the sum S,

de�ned below, we obtain

S :=
∑
a,b

δ(a, b)

=
∑
a,b

(
〈a, b〉+ 〈−a, b〉+ 〈a,−b〉+ 〈−a,−b〉

)
=
∑
a,b

〈a− b, b〉+
∑
a,b

〈a, b− a〉+
∑
a,b

〈−a− b, b〉+
∑
a,b

〈−a, b+ a〉

+
∑
a,b

〈−a+ b,−b〉+
∑
a,b

〈−a,−b+ a〉+
∑
a,b

〈a+ b,−b〉+
∑
a,b

〈a,−b− a〉

= 8
∑
a,b

〈a, b〉

= 2
(∑

a,b

〈a, b〉+
∑
a,b

〈−a, b〉+
∑
a,b

〈a,−b〉+
∑
a,b

〈−a,−b〉
)

= 2
∑
a,b

δ(a, b)

= 2S

which gives S = 0 and thus δ(a, b) = 0. So the section

ν :M−
n (G)→Mn(G)

is compatible with the de�ning relations.
To prove the statement of the theorem we just need to show that the

map

Mn(Z/NZ)→
⊕

N=N ′N ′′

Mn′(Z/N ′Z)⊗M−
n′′(Z/N

′′Z), n = n′ + n′′

is surjective, where the sum is over all exact sequences

0→ Z/N ′′Z→ Z/NZ→ Z/N ′Z→ 0, N = N ′N ′′, N ≥ 2,

of �nite cyclic groups. Since the image is contained inside the kernel
of the next map in the complex, this map being surjective would mean
that the image is equal to the kernel in this part of the di�erential. This,
along with the previous results on the complexes ofM−

n (G) implies the
vanishing of the cohomology in degrees > 0.
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This can be shown by �nding the inverse

∼
∇:Mn′(Z/N ′Z)⊗M−

n′′(Z/N
′′Z)→Mn(Z/NZ), n = n′ + n′′

which on generators is given by

〈a′1, . . . , a′n′〉 ⊗ 〈b1, . . . , bn′′〉− 7→∑
all lifts
ε1,··· ,εn′′

(ε1 . . . εn′′)〈a1, . . . , an′ , ε1b1, . . . , εn′′bn′′〉

where the sum is over all lifts ai ∈ Z/NZ of a′i ∈ Z/N ′Z and all
possibilities for εj ∈ {+1,−1} similar to de�nition the of ν above. This
is compatible with de�ning equations since we are using the sections ν
to get

Mn′(Z/N ′Z)⊗M−
n′′(Z/N

′′Z)
Id⊗ν−→

Mn′(Z/N ′Z)⊗Mn′′(Z/N ′′Z)
∇−→Mn(Z/NZ)

in other words we have ∇ ◦ (Id ⊗ ν) =
∼
∇ and both ∇ and ν are com-

patible. �

Now we will give an example for the above proof. Consider the same
group as above

G = Z/30Z, n = 3

by similar construction we get the complex

M3(Z/30Z) �M1(C2)⊗M−
2 (C15)⊕M2(C2)⊗M−

1 (C15)

⊕M1(C3)⊗M−
2 (C10)⊕M2(C3)⊗M−

1 (C10)⊕M1(C5)⊗M−
2 (C6)

⊕M2(C5)⊗M−
1 (C6)⊕M1(C6)⊗M−

2 (C5)⊕M2(C6)⊗M−
1 (C5)

⊕M1(C10)⊗M−
2 (C3)⊕M2(C10)⊗M−

1 (C3)⊕M1(C15)⊗M−
2 (C2)

⊕M2(C15)⊗M−
1 (C2)

�M1(C2)⊗M−
1 (C3)⊗M−

1 (C5)⊕M1(C2)⊗M−
1 (C5)⊗M−

1 (C3)

⊕M1(C3)⊗M−
1 (C2)⊗M−

1 (C5)⊕M1(C3)⊗M−
1 (C3)⊗M−

1 (C2)

⊕M1(C5)⊗M−
1 (C2)⊗M−

1 (C3)⊕M1(C5)⊗M−
1 (C3)⊗M−

1 (C2).

Consider the element

〈χ30, 24χ30, 14χ30〉 ∈ M3(Z/30Z)
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the image under ∂0 is

(〈χ2〉 ⊗ 〈12χ15, 7χ15〉−)⊕ (〈0, χ2〉 ⊗ 〈7χ15〉−)⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0

⊕(〈χ6, 2χ6〉 ⊗ 〈4χ5〉−)⊕ 0⊕ 0⊕ 0⊕ 0

and the image of the above element under ∂1 is

((−1)1〈χ2〉 ⊗ 〈χ3〉− ⊗ 〈4χ5〉−)⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0

+((−1)0〈χ2〉 ⊗ 〈χ3〉− ⊗ 〈4χ5〉−)⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0 = 0

and so the condition ∂1∂0 = 0 is satis�ed similar to above.
Now we will look at the section

ν :M−
3 (Z/30Z)→M3(Z/30Z).

Consider the relation

〈χ30, 24χ30, 14χ30〉− = 〈−23χ30, 24χ30, 14χ30〉− + 〈χ30, 23χ30, 14χ30〉−

we have

ν(〈χ30, 24χ30, 14χ30〉−)

= 〈χ30, 24χ30, 14χ30〉 − 〈−χ30, 24χ30, 14χ30〉
− 〈χ30,−24χ30, 14χ30〉 − 〈χ30, 24χ30,−14χ30〉
+ 〈χ30,−24χ30,−14χ30〉+ 〈−χ30, 24χ30,−14χ30〉
+ 〈−χ30,−24χ30, 14χ30〉 − 〈−χ30,−24χ30,−14χ30〉

and

ν(〈−23χ30, 24χ30, 14χ30〉−)

= 〈−23χ30, 24χ30, 14χ30〉 − 〈23χ30, 24χ30, 14χ30〉
− 〈−23χ30,−24χ30, 14χ30〉 − 〈−23χ30, 24χ30,−14χ30〉
+ 〈−23χ30,−24χ30,−14χ30〉+ 〈23χ30, 24χ30,−14χ30〉
+ 〈23χ30,−24χ30, 14χ30〉 − 〈23χ30,−24χ30,−14χ30〉

ν(〈χ30, 23χ30, 14χ30〉−)

= 〈χ30, 23χ30, 14χ30〉 − 〈−χ30, 23χ30, 14χ30〉
− 〈χ30,−23χ30, 14χ30〉 − 〈χ30, 23χ30,−14χ30〉
+ 〈χ30,−23χ30,−14χ30〉+ 〈−χ30, 23χ30,−14χ30〉
+ 〈−χ30,−23χ30, 14χ30〉 − 〈−χ30,−23χ30,−14χ30〉.
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If the �rst two elements in the symbol have the same sign, then the
relation trivially holds. So the relation reduces to

− 〈−χ30, 24χ30, 14χ30〉 − 〈χ30,−24χ30, 14χ30〉
+ 〈χ30,−24χ30,−14χ30〉+ 〈−χ30, 24χ30,−14χ30〉
?
= −〈23χ30, 24χ30, 14χ30〉 − 〈−23χ30,−24χ30, 14χ30〉

+ 〈−23χ30,−24χ30,−14χ30〉+ 〈23χ30, 24χ30,−14χ30〉
− 〈−χ30, 23χ30, 14χ30〉 − 〈χ30,−23χ30, 14χ30〉
+ 〈χ30,−23χ30,−14χ30〉+ 〈−χ30, 23χ30,−14χ30〉

we just need to show

− 〈−χ30, 24χ30, 14χ30〉 − 〈χ30,−24χ30, 14χ30〉
?
= −〈23χ30, 24χ30, 14χ30〉 − 〈−23χ30,−24χ30, 14χ30〉
− 〈−χ30, 23χ30, 14χ30〉 − 〈χ30,−23χ30, 14χ30〉

since all the terms with −14χ30 just have the opposite sign. Using the
relations

〈−χ30, 23χ30, 14χ30〉 = 〈−24χ30, 23χ30, 14χ30〉+ 〈−χ30, 24χ30, 14χ30〉
〈χ30,−23χ30, 14χ30〉 = 〈24χ30,−23χ30, 14χ30〉+ 〈χ30,−24χ30, 14χ30〉

it is further reduced to

δ(23, 24) := 〈23χ30, 24χ30, 14χ30〉+ 〈−23χ30,−24χ30, 14χ30〉
〈−24χ30, 23χ30, 14χ30〉+ 〈24χ30,−23χ30, 14χ30〉

?
= 0

which holds by the proof given above. So the section ν is compatible
with the de�ning relation (M).
Now we will look at the map

∼
∆:M3(Z/30Z)→

⊕
30=N ′N ′′

Mn′(Z/N ′Z)⊗M−
n′′(Z/N

′′Z), 3 = n′+n′′

and its inverse. The image of the element

〈χ30, 24χ30, 14χ30〉 ∈ M3(Z/30Z)

under this map is

(〈χ2〉 ⊗ 〈12χ15, 7χ15〉−)⊕ (〈0, χ2〉 ⊗ 〈7χ15〉−)⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0

⊕(〈χ6, 2χ6〉 ⊗ 〈4χ5〉−)⊕ 0⊕ 0⊕ 0⊕ 0
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and the image of this element under
∼
∇= ∇ ◦ (Id⊗ ν) is∑

i = 0,. . . ,14
ε1,ε2∈{+1,−1}

ε1ε2〈(2i+ 1)χ30, ε124χ30, ε214χ30〉

+
∑

i,j = 0,. . . ,14
ε1∈{+1,−1}

ε1〈(2i+ 1)χ30, (2j)χ30, ε114χ30〉

+
∑

i,j = 0,. . . ,4
ε1∈{+1,−1}

ε1〈(6i+ 1)χ30, ε124χ30, (6j + 2)χ30〉.
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