EQUIVARIANT BIRATIONAL TYPES

XIANGJIA KONG

1. INTRODUCTION

This thesis concern the study of new invariants of complex algebraic
varieties equipped with actions of abelian groups. These invariants,
called birational types, were introduced in [2]. Our focus here is on
arithmetic and algebraic properties of birational types; their first geo-
metric applications can be found in [I]. Informally, consider an n-
dimensional variety X with an action of a finite abelian group G. The
locus of points in X fixed by G is a finite union of disjoint subvarieties
Y, C X, possibly of different dimensions. For each such subvariety Y,
one records the weights of the G-action in the tangent space at some
point y, € Y,, i.e., an unordered n-tupel

(@105 -5 Anal
of characters of G:
aio € A= G =Hom(G,C").
Then one forms the sum

BX) = [ara:- - anal.

(0%
One would like these classes to be inwvariant under a basic operation,
called an equivariant blowup. This operation replaces X by another
variety X, which coincides with X on the complement to a G-stable
subvariety on X. In short, one introduces relations of the type

B(X) - B(X) =0,

for all such blowups.
It turns out that this geometric picture admits a nice algebraic de-
scription. Let

Sn(G)
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be the Z-module generated by n-tupels
lai,...,a,), a; €A,
subjection to the following
(G) Generation: ay,...,a, generate A, i.e.,

ZZCLZ‘ = A,

(S) Symmetry: for all permutations o € &,, and all ay,...,a, € A
we have
[ag(l), c. ,ag(n)} = [al, c. ,an].
Consider the quotient
S.(G) = B,(G)
by the additional relation
(B) Blowup: for all [a;, ag, b1, ...,b, 2] € S,(G), the symbol

{ala ag, b17 ey bn—2}
equals
_ [a1—ag,ag,bl,...,bn_g}—|—[a1,a2—a1,b1,...,bn_g] lf CLI#G/Q
[al,(),bl,...,bn,g] if a; = ag

The first main result states that the class 5(X) € B, (G) does not
change under equivariant blowups [2]. Here we will not discuss the
applications of B, (G) to algebraic geometry, as in [I]. Instead, we
explore arithmetic and algebraic properties of these groups, focusing
on examples.

It is helpful to define the quotient

B.(G) = B, (G)
by the relation
(1.1) [—ai,...,a,) = —las,. .., ay]
which will play an important role in this thesis. Note that
lai,...,a,]" € B, (G)

denotes the image of [a,. .., a,] under this quotient.

We also have another quotient
Sn(G) = M, (G)
by the relation
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(M) Modular Blowup: for all [a1,as,b1,...,b, 2] € S,(G),

<CL1, as, bl, Ce >bn72> =
<al — a9, G2, b17 S 7bn—2> + <a17 az — aq, bla o >bn—2>
where (ay,...,a,) is the image of [ay,...,a,] under this quo-
tient.

Note that we can also define, similar to above
M (G) = M (G)
which is a quotient by the relation

(1.2) (—ay,...,an) = —(a1,...,a,).

The introduction of M,,(G), M, (G) were motivated by experimenta-

tions with relations in B, (&), and various constructions connected to
M, (G) were shown in [2, Sections 4,5]|.
There is also a map

w: Bu(G) = M, (G),

first introduced in [2], defined on symbols as follows:

lai,...,a,) — {a1,...,a,), ifallay,...,a, #0,
0,ag,...,a,] = 2(0,a9,...,a,), ifallay,..., a, #0,
[0,0,as,...,a,] — 0, forallas,...,a,,

and extend by Z-linearity. This is a well-defined homomorphism from
[2, Section 3|. It is also an isomorphism modulo torsion from |1 Prop.
7.1], which settles Conjecture 8 and 9 in [2].

The main result of section [2is
Proposition 7. For p prime, B, ((Z/pZ)") # 0 for all n € N.
which is shown by induction on n. The idea is to use a surjective map
Mo B (Z/pZ)") — B,_(Z/pZ)" )
to show that B, ((Z/pZ)™) is non-trivial given the induction hypothe-

sis. The base case of n = 1 can be found explicitly, and some further
calculations were also carried out in MAGMA.

In 2, Section 4] we have a lattices and cones construction for M,,(G)®
Q, each element is identified with an equivalence class of triples

(L, x; A)
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where L = 7Z" is a lattice, y is an element in L ® A and A € Ly is a
strictly convex cone spanned by a basis of L. Explicitly we can choose
a basis e, ..., e, of L that spans A, and write

X = Z € & a;
i=1
and identify

(L x, A) = {a, ... an) € Mo (G) © Q.

The relation (M) is then equivalent to decomposing the cone A into
smaller subcones. Section |3| of this thesis uses the map p to generalise
the above construction to B, (G) ® Q and show explicitly that these
structures are compatible with the defining relations in B, (G).

Section [] again uses p to generalises |2, Section 5| to B,(G) ® Q,
which defined the following multiplication and co-multiplication maps:
given a short exact sequence of finite abelian groups

0-G —-G—->G"=0
we get a short exact sequence of their character groups
0—>A" A A —0.
This gives a Z-bilinear multiplication map
VMoo (@) © Mo (G") = Mo (G)
where n’',n” > 1, defined by

(@, al) @ (df, .. al) =Y ar,.. . aw,df, .. a))

where the sum is over all lifts from a; € A to a; € A’. There is also a
Z-bilinear co-multiplication map, noting that there is a minus on the
second factor of the image,

A My (G) = My (G @ M, (G"),
defined by
(ay, ..., ap) Z(ap mod A") ® (ap)~
where the sum is over all ways to split
{1,...,n}=T"UI", with #I' =n/,#I" =n",

such that for all j € I” we have a; € A” C A and the elements a; span
A”.
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Section 5| explains the chain complexes induced from the maps V
and A via simplicial complexes and the proofs of [2, Theorems 12, 14|
in more detail, both of which are found in |2 Section 5|. In particular
|2, Theorems 12, 14| state that the cohomology of the chain complexes
defined is concentrated in degree 0. The chain complex is constructed
more explicitly and the non-trivial steps of the proofs are written out
in more detail.

Each section will also have a few specific examples at the end, show-
casing the details of each section.

2. EXAMPLES

We know that
B\(Z/NZ) = 7MW,
where ¢ = |(Z/N7Z)*| is the Euler function; in particular,
B\(Z)27) = 7°® = 7.
We also have [I], Section 3.2]:
Bo((Z/22)%) = (2/2L)°
We now calculate B3((Z/27)3). Write

((Z/2Z))" = {0, X1, X2, X35 X1+ X25 X2 + X3, X3 + X1, X1 + X + X3}
using numbers to simplify notation, the possible symbols are
1,2,3]
[1,2,2+3],[1,2,1 +3],[1,2,1+2+ 3]
2,3,3+1],(2,3,2+1],[2,3,1 +2 + 3]
3,1,14+2],3,1,3+2],[3,1,1 4+ 2 + 3]
1,1+2,2+3],[1,2+3,3+1],[1,3+ 1,1+ 2]
2,1+2,2+3],[2,2+3,3+1],[2,3+ 1,1+ 2]
3,14+2,2+3],(3,2+3,3+1],[3,3+1,1+2]
1,1+2,1+2+3],[1,3+1,1+2+ 3]
2,1+2,1+2+3],[2,243,1+2+3]
3,2+3,1+2+3],[3,3+1,1+2+ 3]
14+2,34+1,14+243],[2+3,3+1,14+2+3]
1+2,2+3,1+2+3].



6 XIANGJIA KONG

Using MAGMA to calculate this Z-module, we get
By((Z/22)?) = (Z/22)} #0.
Now consider the surjective map, for n > 3,
(Z/22)" — (222)"",

where the n-th generator is mapped to zero, which induces an inclusion
map between character groups

Apr = (Z)22) 1) — A, = ((Z/22)")".
This allows us to define a map
n: Bo(Z/22)") = Bu—a(Z/22)"7)

given by the formula

lay, ... a,) — Z[am R

where i1,...,i,-1 € I C{1l,...,n} with #I = n — 1. The sum is over
all I such that a; € A,_1 — A, for all j € I and {a;,,...,q;, ,} span
An_1.

Lemma 1. The map n is well-defined.

Proof. We have the following two facts about B, ((Z/2Z)"):

e Since the rank of the group A, is n, we need n distinct, non-zero
entries in each symbol to satisfy the generating condition (G).
This means the relation (B) reduces to

[a/17a27“'7an] - [(ll—CLQ,CLQ,...7(ITL]+[a1,a2—a1,...,an]

which is essentially the relation (M).
e Since every element of (Z/27)" has order 2, so does A,,. So for

every
a1, a3, - an] € Bu((Z/22)")
we have
[CLl +CL2,(I2,...] = [al,aZ,...} + [CLl —|—CL2,CL1,...]
lai, a1 + ag,...] = [a1,aq,...] + a2, a1 + ag, . . .|

which when added together gives
2[ay, as,...,a,] = 0.
So we have

[—ay,...,a,) = lar,...,a,) = —[a1, ..., a).
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These two facts combined gives
B.((Z/22)") = B, ((2/22)") = M, (Z/2Z)") = Mn((Z/2Z)").

Now we can just reuse the argument of |2, Prop. 11], the details of
which is shown explicitly in the proof of Lemma 4 below. U

Lemma 2. The map n is surjective.
Proof. Each
(b, bo, . bor] € Bt ((Z/22)" )
is the image of
[b1,b9, ... by_1,b,) € B,((Z/22)")
under 7, where b, satisfies b, € A,_1 and Z?:l Zb; = A,. d
Proposition 3. B,((Z/27Z)") # 0 for all n € N.

Proof. We want to show this via induction, i.e. B, 1((Z/2Z)"" ') # 0
implies B, ((Z/2Z)") # 0. The base case n = 1, 2,3 is shown above.
So suppose B,,_1((Z/2Z)"') # 0. The lemmas above tell us that

0 Bu((Z/22)") = Bua(Z/22)" )

is a well-defined surjective map, from which we can conclude that
B, ((Z/27Z)") is also nontrivial. O

As an aside every element of B, ((Z/2Z)") has order 2, so by the
fundamental theorem of finite abelian groups we must have

B.((Z)22)") = (Z/2Z)"

for some integer k,,.

Now we extend this result to B,((Z/pZ)") where p is a prime. We
have, for p prime,

By(Z/pZ) = 72W) = 7P~1 £ 0

as above.
We now calculate By ((Z/3Z)?), write

((2/32)2)\/ = {0, X1, X2, 2X1, 2X2: X1+ X2: 2X1 +X25 X1 +2X2, 2X1+2X2 ],
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the possible symbols and relations are

2X2, 2X1] + [x1,2x1 + 2x2]

X1+ X2, xa] + [2x1, 2x1 + X2]
X1+ X2, X2] + [2X2, X1 + 2x2]
2x1 + X2, X2] + [2x2, 2x1 + 2x2]
X1+ 2x2, xa] + [2xa, 2xa + 2xel.

[2X2,2x1 + 2X2

[X1 + X2, 2x1 + X2
[X1+ X2, X1 + 2Xx2
2x1 + X2, 2X1 + 2Xx2
[X1 + 2x2, 2x1 + 2x2

[X15 X2 = [x1,2x1 + Xa] + [X1 + 2x2, x2]
(X1, 2x2] = [x1, 2x1 + 2x2) + [x1 + X2, 2x2]
(X1, x1 + Xa] = [x1, x2] + [2x2, X1 + X2
[X1,2x1 + X2l =[x, X1+ xel + [2x1 + 2x2, 2x1 + X2
[X1, X1+ 2X2] = [x1,2x2) + [x2; X1 + 2x2)
[X1, 2x1 + 2x2) = [x1, X1 + 2x2) + [2x1 + X2, 2x1 + 2X2]
(X2, 2x1] = [X2,2x1 + 2x2] + [x1 + X2, 2x1]
[X2: X1+ x2] = [x2, xa] + [2x1, X1 + X2
[x2,2x1 + x2] = [X2, 2x1) + [x1, 2x1 + X2
[x2, X1+ 2x2] = [x2 X1 + X2] + [2xa + 2x2, x1 + 2x2]
(X2, 2X1 + 2x2] = [X2, 2x1 + Xal + X1 + 2x2, 2X1 + 2x2]
[2x1, 2x2) = [2x1, x1 + 2x2] + [2x1 + X2, 2Xx2]
2x1, x1 + xal = [2x1, 2xa + xal + Dxa + 2x2, xa + X2
2x1,2X1 + X2] = [2x1, X2l + [2X2, 2x1 + Xe]
[2x1, X1+ 2x2) = [2x1, 2x1 + 2x2] + Dxa + X2, X1 + 2x2)
[2x1,2X1 + 2x2] = [2X1, 2x2] + [x2, 2X1 + 2X2]
2x2, x1 + Xa| = [2x2, X1 + 2x2] + [2X1 + X2, X1 + X2
[2X2,2x1 + x2] = [2x2, 2x1 + 2x2] + [x1 + X2, 2X1 + X2
[2x2, X1 + 2X2) = [2x2, xa] + [2x1, X1 + 2x2]
J=1
=1
J=1
=1
=1

Using MAGMA to calculate this, we get
By((Z)37)*) = 7.

This suggests that we can use the same idea as p = 2 but with the base
case of the induction as n = 1. The difference is that we will first show

B, ((Z/pZ)") # 0,
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which will then imply
B, ((Z/pZ)") # 0
since the former is a quotient of the latter.
So consider the surjective map similar to above, this time for n > 2,
(Z/pZ)" — (Z/pZ)"""

where the n-th generator is mapped to zero, which induces an inclusion
map between character groups

Apnr = (Z)pZ)" 1) = Ay = (2/p2)")".
This allows us to define a map analogous to 7 above
Ny Ba (Z/pZ)") — B,_(Z/pZ)"™")

given by the formula

[ala s 7Cln]_ = Z[aiw s 7ain—1]_

where i1,...,i,—1 € I C{l,...,n} with #I = n — 1. The sum is over
all I such that a; € A,,,—1 — A,, for all j € I and {a;,,...,q;, ,}
span A, ,—1. Note that there can only be at most one term in the image
on the right.

Lemma 4. The maps n,,, are well-defined for primes p > 2.

Proof. We modify the proof of p = 2 so that it works for any n > 2
and any prime p. Again, since the rank of the group A, ,, is n, we need
n distinct, non-zero entries in each symbol to satisfy the generating
condition (G). So the relation (B) reduces to

(2.1) [a1,a9,...,a,]" =[a1 — az,as,...,a,]" + a1, a2 —ay, ..., a,]
which is essentially the relation (M). This means

B, ((Z/p2)") = M, (Z/pZ)").

The rest of the proof is the same idea as in |2, Prop. 11|, but written
out explicitly. We just have to show the relation (2.1) holds under 7, .
We have the following cases:

(1) ar,a2 € Ap s
(2) WLOG a1 € App1, a2 € Ay
(3) a,as & Apn-a

In case (1), we must have

[al,ag, C.. 7Cln]_ — [al,ag, ey i1, A1y - - ,an]
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for some 7 such that a; € Ap,_1, or everything is mapped to zero on
both sides of the relation (2.1). Then this works with

[al _a27a27"'7an]_+ [a17a2_a17---aa’n]
= lar — g, a0, G, Qi )
—|—[al,ag—al,...,ai_l,aiﬂ,...,an N

as required.

In case (2), we must have

a1, as, ... ,a,]" > [ag, ..., ay]

or again everything is mapped to zero on both sides of the relation
(2.1). Then we have

l[a1 — ag,ag, ..., a,]" + [a1,a0 —aq,...,a,]" — [ag,...,a,]” +0

since ay —a; € App_1.

In case (3), we have

lai,as,...,a,]" — 0
and
a1 — ag,ag,...,a,)" + [a1,a0 —aq, ..., a,)"
= [al _a27a37"'7an]_+ [a2_alya37"'aan]_ =0
so everything maps to zero no matter what. 0

Lemma 5. The maps n,, are surjective for primes p > 2.
Proof. Exactly the same as the case p = 2 in Lemma 2 above. U
Proposition 6. For p prime, B, ((Z/pZ)") # 0 for all n € N.

Proof. Exactly the same induction as p = 2, but with the base case
n=1:
p—1
By (Z/pZ) =77 #0.

Proposition 7. For p prime, B,,((Z/pZ)™) # 0 for all n € N.

Proof. By definition, B, ((Z/pZ)") is a quotient of B, ((Z/pZ)™), this
combined with Prop. 6 give the required result. U
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Everything done above can be generalized to prove B,,((Z/NZ)™) # 0
for composite N as well, we just need to show

By (Z/NTZ) £,

since we did not use the fact that p is prime apart from proving the
base case n = 1. This can be shown by the fact that

By(Z/NZ) = 7°W) £

and the quotient (1.1) will not annihilate the whole module.

3. LATTICE AND CONES

This section is heavily linked with |2 Section 4|, which gave a geo-
metric interpretation of the elements and defining relations of M,,(G).
The initial problem with trying to find analogues of this lattice and
cone structure for B, (G) is that the decomposition A = Ay U -+ U Ay
always produces k subcones, whereas the relation (B) does not have
a consistent number of terms on the right hand side. This problem
was resolved by changing the way we identify the triples (L, x, A) with
symbols in B, (G) ® Q, inspired by the map p as discussed above, so
that the excess cones are identified with either a torsion element or a
zero element in B, (G).

We have n > 2 is an integer, GG is a finite abelian group and A =
Hom(G, C*) is the character group of G. We can consider equivalence
class of triples

(L7 X7 A)?
up to isomorphism, where

o L ~ 7" is a (torsion-free) lattice of rank n,
e \ is an element of L ® A, such that the following induced ho-
momorphism is a surjection:

(3.1) LY — A,
e A is a strictly convex cone in Lr spanned by a basis of L, i.e.
it is isomorphic to the standard octant RY, for L = Z" C R™.
Now for each symbol
[al, Ce ,an] € Bn(G) & Q

we can identify it in terms of

o(L, x, A)



12 XIANGJIA KONG

by choosing a basis ey, ...,e, of L spanning A, and writing

(3.2) X = Z e ® a;
i=1

we can identify

(a1, ..., ay) if ay,...,a, #0
(L, x,A) = 1 3lay,...,a,] if exactly one of a1, ..., a, is 0

(a1, ..., ay] if two or more of aq, ..., a, is 0.

Here the condition (G) is satisfied via the surjectivity of (3.1), and since
the order of the basis does not matter we satisfy (S). We just need to
check the blowup condition (B), i.e. it is obeyed by

(3.3) o(L, x, A) = (L, x, A1) + o(L, x, Az)
where
Ay :=Rsp(er + e2) + Rspea + ... + Rogey,
As :=Rspe; + Rupleg + €2) + ... + Rxgey,

and so
A=A UA,.
Note that (3.3) comes from the fact that we have

in the basis of Ay @ x=(e1+e)®a;+e2® (az—ay) + ...
in the basisof Ay : x=e€1® (a1 —az)+ (e1 +e2) ®as+ ...

There are the following cases:

(1) aq 7é ag
(a) ar,as #0
(i) exactly one of as, ...,a, is 0
(i) else
(b) WLOG a; =0
(i) as,...,an #0
(ii) exactly one of as, ..., a, is 0
(iii) two or more of ag, ..., a, is 0
(2) a1 =as=a
(a) a#0
(1) as, ..., Ay 7£ 0
(ii) exactly one of as, ..., a, is 0
(iii) two or more of as, ..., a, is 0

(b) a=0
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Each case is checked below:

In Case 1(a)i we have

[alu az, ] - 2¢(L?X7A)
= 2¢(L7 X?Al) + 2¢(L7 X5 AZ)
= [a17a2 —ar, ] + [al — a2, 2, ]

In Case 1(a)ii this is the same as the case for M,,(G).
In Case 1(b)i we have

0, as,...] = 2¢(L, x, A)
= 2¢(L, x, A1) + 26(L, x, As)
= [0, aq, ...| + 2[—az, as, ...]
which holds since [—ag, as,...] = 0 by the lemma below.
Lemma 8. [—a,a,...] =0 for any a € A.

Proof. We have the relation

0,a,..] =[-a,a,..] +10,a,..]
by the blowup condition (B), subtract [0, a,...] from both sides to get
the required result. U
In Case 1(b)ii we have
[0,as,...,0,...] = ¢(L,x,A)

= ¢(L7 X5 AI) + qb(La X5 A2)

1
= [O, as, ...,0, ] + 5[-&2, as, ...,O, ]

which holds since [—ag, as, ...] = 0 by Lemma 8.
In Case 1(b)iii this is the same as the case for M,,(G).
In Case 2(a)i we have

la,a,..] = ¢(L,x, )
= ¢(L7 X Al) + ¢(L7 XaAQ)

as required.
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In Case 2(a)ii we have

la,a,...,0,..] =2¢(L, x,A)
- 2¢<L7X7 Al) + 2¢(L7 X?AQ)
=2[0,a,...,0,..] +2[a,0, ..., 0, ..]
=40,a,...,0,...]
this holds since [a,a,...,0,...] = [0,a,...,0,...] = [0,0,a,...] so both

sides are torsion elements.
In Case 2(a)iii this is the same as the case for M,,(G).
In Case 2(b) this is the same as the case for M,,(G).

We will now give a few explicit examples of this structure. Consider
the group

G=17/3Z
which has characters
{0,a,2a}.
In the case of n = 3, let
1 0 0
L=273 e =[0],ea=[1],e5=10
0 0 1

A =Rspe; + Rxpes + Rxpes.
Now if we let
X1=€e1®a+e®2a+e3Ra
then we have
o(L, x1,A) = [a,2a,a] € B3(Z/3Z) @ Q.
The relation
la,2a,a] = [2a,2a,a] + [a,a, a
exactly corresponds to
o(L, x1,A) = d(L, x1, A1) + d(L, x1, Az)
where

Al = Rzoel + Rzg(el + 62) + Rzoeg
A2 = R20(61 + 62) + Rzoez + Rzoeg.
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Geometrically this represents the cone A splitting into two cones along
the plane spanned by (e; + e3) and e3. Now in the basis of A; we have

X1 =€ ®(a—2a)+ (e1+e2) ®2a+e3@a
=e1®2a+(e1+e)®2a+e3®a
which gives
o(L, x1, A1) = [2a,2a, d

and similarly we have in the basis of Ay

xi=(e1+e)®@a+te®(2a—a)+e3Ra

=(e1+e)®Rat+ea®a+e3®a
which gives
o(L, x1,A2) = [a, a,a]

as required. So far this is exactly the same as the case for M3(Z/37Z),
so we will look at the relation

la,a,2a] =0, a, 2a]
which does not hold in M3(Z/3Z), this should correspond to
¢(L, x1,A) = o(L, x1,A3) + ¢(L, x1, Au)
where
Az = Rxper + Rxpez + Rxo(er + e3)
Ay :=Ryp(er +e3) + Rxpen + Rxges.

This time the cone A is split along the plane spanned by (e; + e3) and
es. In the basis of A3, we get

X1=€e1®(a—a)+e®2a+ (e +e3)Ra
=1 ®0+e®2a+ (61 +e3)®a

since there is a 0 in the above expansion, this gives
o(L, x1,A3) = %[O, 2a, al
and in the basis of Ay
x1=(e1+e3)®a+e;®2a+e3® (a—a)
=(e1+e3)Rat+ea®2a+e3®0
which gives

1
o(L, x1,A4) = 5[@,2@,0].
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Using the symmetry condition (S) we have
o(L, x1,A3) + o(L, x1, Ag) = %[C% 2a,0] + %[07 2a,a] = [0, a, 2d]
exactly as expected.
Now let’s have look at a case where there is a 0 in the symbol
Yo=€X0+e3Ra+e3Ra
which is identified with
ST, 2. N) = 50,0,
There is a few relations we can check, first consider
0,a,a] = [2a,a,a] + [0, a, a]
we expect this to correspond to
26(L, x1, A) = 26(L, x1, A1) +2¢(L, x1, Ag)
where Ay and Ay is as above. We have in the basis of Ay
X2=€1®(0—a)+(e1+e)®Ra+es®a
=e1®20+ (e1+e)Ra+es®a
which gives
20(L, x2, A1) = 2[2a,a,a] = [2a,a, d
where the second equality is from the fact that [2a, a,a] = [—a,a,a] =0
by Lemma 8, and in the basis of As

X2=(e1+e)®@0+ea®@(a—0)+e3®a
=(e1+e)R0+eRa+e3®a
which gives
20(L, x2, A2) = [0, a, a]
as required. Now consider the relation
la,a,0] =[0,a,0]

which also tells us that this is a torsion element in B3(Z/3Z) and there-
fore trivial in B3(Z/3Z) @ Q, this should correspond to

26(L, x1, A) = 26(L, x1, As) + 2¢(L, x1, Ag)
where
As :=Rspe; + Rxpea + Rooleg + e3)
Ag := Rsoe1 + Rxg(ea + e3) + Rxges.
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In the basis of A5 we have
Xo=€1®0+e®(a—a)+ (e2+e3)®a
=e1®0+e®0+ (e2+e3)®a

which gives

2¢(L, x2, A5) = 2(0,0, d]
and by symmetry we have

20(L, x2, Ag) = 2[0,0, a].
So we get the relation

la,a,0] =4[0,a,0] = [0,a,0]

which holds since all elements are trivial.

4. MULTIPLICATION AND CO-MULTIPLICATION

In this section is heavily linked with |2, Section 5|, which gives mul-
tiplication and co-multiplication maps defined on M,,(G) and M (G).
Here we find analogous maps for B,,(G) ® Q, and show these new maps
are well defined and compatible with defining relations. Note that in
this section all B, (G) are tensored with @, so that it is a Q-vector
space.

Now given a short exact sequence of finite abelian groups

0-G —-G—-G" =0
this induces short exact sequence of character groups
0A">A—-A =0

since the pullback of Gy — C* by G; — G5 gives Ay, — Ay, where
A; = G} = Hom(G;,C*). Letting

n=n'+ n//’ n/’n// > 1,
we can define a Z-bilinear ‘multiplication’ map
VB : Bn/(G/) ® Bn"(G”) — Bn/Jrn”(G)
which is defined by
[all, .. ’a;{/] ® {alll, [ ,a/;;//] — Z[CL17 N P a/1/7 e ’a,/r://]

where the sum is over all lifts a; € A of a; € A’ from the short exact
sequence, and the elements a € A via A” — A.
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The compatibility with defining relations (S) and (B) are obvious for
exactly the same reasons as |2, Section 5]. This map descends into a
Z-bilinear map via (1.1)

Vs :B,,(G)®B,,(G") = B, ,..(G)
where both G' and G” are nontrivial.
We can also define the corresponding ‘co-multiplication” map

Ap: Bn/+n//(G) — Bn/(G/) & B;,,(GH)

by
> lap mod A" ® [ap/]”  ai,..,a, #0
lar,...,an] = < 2> Jap mod A”] @ [a;]”  exactly one of ay, ..., a, is 0
0 otherwise
where
[a; mod A"] = [a;, mod A", ... a; , mod A"], I':={i1,... in}
[a’l”}i = [a’jN s 7a/-jn//j|77 ]H = {jlv oo ;jn”}-

The sum is over all subdivisions
{1,...,n}=T"UTI", such that #I' =n' #I" =n",
satisfying a; € A”, for all j € I" and a;, j € I”, generate A”.

Proposition 9. The map Ap extends to a well-defined Z-linear homo-
morphism.

Proof. The proof is similar to the proof of Proposition 11 in [2], except
this time there is more cases to deal with. We just need to check that
the relation (B) is compatible. We only care about cases where aq, as
are in different sides of the tensor product, since all other cases are
trivial as it is the consequence of tensor products. These are

(41) [al,(zQ,...] —
A@ﬂM{@mMAﬂJ®@WT

% g+ lar mod A”,.] @ [a,..]")
where
1 ay,..,a, #0
A =<2 exactly one of ay,...,a, is 0
0 otherwise
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and for a € A,
59671 L= 1 a - A// and ZCL + Zjé.]” Za] — A//
acA 0 otherwise
where

Jo=Tn0{3,...n}, J=1"0{3,...n}

of cardinality n’ — 1 and n” — 1 respectively.

First suppose a; # ao, there are three cases:

(1) as,...,an #0
(2) exactly one of ag, ..., a, is 0
(3) more than two of as, ..., a, is 0

In Case 1, if a1, ay # 0, then this is the same as M,,(G). So assume
WLOG a; = 0, ay # 0, the relation is then

[0,(127...} = [O,CLQ,...] + [—CLQ,G,Q,...]
but the last term on the right is mapped to zero since
[—ag, ag, ...] — 52;214" [0, ...]®[as, ...]‘—f—éﬁ;em [0, ..]®[—as,...]” = 0.

In Case 2, if a;,ay # 0 then we have basically the same case as
M., (G) since every term involved contains exactly one zero, except the
image of everything is effectively doubled due to A = 2. So we can
assume WLOG that a; = 0,as # 0, the relation is then

[O,CLQ,...,O,...]:[O,CLQ,...,O,...]—l—[—ag,CLQ,...,O,...}

again the last term is mapped to zero since
[—ap, as, ..] — 2(5222/4//-[0, I®las, . ] [0, -] @[—as, ...]—) —0.

In Case 3, everything maps to zero.

So we can assume a; = ag = a. Furthermore if a = 0 then everything
is mapped to zero, so we can assume further a # 0. We have the
following cases:

(1) a € A"
(a) as,...,an #0
(b) exactly one of as, ..., a, is 0
(¢) two or more of ag, ..., a, is 0
(2) ag A"



20 XIANGJIA KONG

In Case 1(a), we have
la,a,..] — 267", - 0,..]®[a,..]”
and

0,a,..] — 2(53;’;/, 0, ] @10, .]" 48", - 0,..] @ [a, ...]*).

Clearly they are equal.
In Case 1(b), WLOG let a3 be the zero element, then we have
la,a,..] — 40697, - 0,..]®[a,..]”.

Now if ag = 0 is in left side of the tensor product, then the term is a
torsion element due to [I, Prop 7.1]. If a3 = 0 is in the right side, then
the whole term disappears since [0,...]” € B, is equal to 0. This is
consistent with

0,a,...] — 0.

In Case 1(c), everything maps to zero.
In Case 2, we have

[a,a,..] =0
and
0,a,...] = 0gcy - [amod A", .]®[0,..]” =0
again everything maps to 0. U

We will now give a few explicit examples of this map. Consider the
short exact sequence

0—2/22 % 7./30Z % Z/15Z — 0
letting gy denote the generator of Z/kZ, the maps f, g are defined on

generators by
f 92— 930
9 ‘930 = g1s5-

This is a short exact sequence since

im(f) = {g5) = ker(g),

with f being an injective map and g being an surjective map. Now let
Ay denote the character group of Z/kZ with generator xy, we get the
short exact sequence

O—)A159—*>A30£)A2—>0
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by the pullbacks f*, g* which are defined by

9" 1X15 — 2X30
5 ixs0 = Xxo-
so that

f(xas)(9) = xa5(f(9))
9*(){30)(9) = Xso(f(g))

is satisfied.
So we can now calculate the ‘multiplication’ and ‘co-multiplication’
maps induced from the above short exact sequence. Let

n=1, n"=2
we will first look at the map
Vi :Bi(Z)2Z) @ By(Z/15Z) — Bs(Z/30Z).
The image of the element

[x2] ® [3x15, 13x15)

under Vg is
14

Z[(ZZ + 1)X30, 6X30, 26X30] -
i=0
Now let’s check if Vg is compatible with the following relation
[x2] ® [3x15, 13x15] = [x2] ® ([20x15, 13X15] + [3X15, 10x15])
= [x2] ® [20x15, 13x15] + [x2] ® [3x15, 10X15),

we have
14
Va([x2] ® [20x15, 13x15]) = ) [(2i + 1)xs0, 10x30, 22x30]
=0
and
14
Vi ([x2] ® [3x15, 10x15]) = Z[(Ql + 1)x30, 6x30, 20X30]-
=0

But since we have for all ¢

[(2 + 1)x30, 6X30, 26X 30]
= [(2¢ + 1)x30, 10x30, 22x30] + [(2¢ + 1)x30, 6:x30, 20X 30]
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the above relation holds under V. This example illustrates how the
compatibility with defining relations (S) and (B) is obvious, as a con-
sequence of tensor products.

Next we will look at the ‘co-multiplication” map

Ap: B3(Z/30Z) — B1(Z/27) @ By (Z/15Z).
The image of the element
[X30, 6X30, 26 X30]
under Ap is
[xzo mod Ais5] @ [3x15, 13x15]” = [X2] ® [3x15, 13X15]

We can check the case of a relation where aq, as are distributed over
different factors

[X30a 630, 26X30] = [25X30, 630, 26X30] + [X307 9X30, 26X30]

we have

Ap([25x30, 6X30, 26X30]) = [x2] ® [3x15, 13X15]~
and

Ap([x30, 5X30, 26x30]) = 0

which means the above relation holds. So far this is exactly the same
as the case for M,,(G), so let’s check the relation

[2X30, 2X30, 3X30] = [07 2X30, 3X30]-
We have
AB([2X307 2X30, 3X30]) = [Xz] ® [X157 X15]7 = [XZ] ® [07X15]7 =0

and
Ap([0,2x30,3X30]) = [x2] ® [0, x15] =0

so the image of both sides are trivial, which means the relation holds.
Now let’s look at a different map in order to show the case where
there is a 0 in the symbol

i.e. n' =n" = 2. Consider the relation

230, 2X30, X30, 0] = [0, 2X30, X30, 0].
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We have

Ap([2x30, 2X30, X305 0])

= 2([)@7 0] ® [X157 X15]_ + [X27 0] ® [Oa X15]_ + [X27 0] ® [07 X15}_)
= 2[x2, 0] ® [x15, X15) "
=2[x2,0] ®[0,x15]” =0

and
Ap([0,2x30, X30,0]) =0

so the relation holds. Now for a case where a; # as, consider

[2X30, X305 2X30, 0] = [X30, X305 2X30, 0] + [2X30, 29X30, 2X30, 0]

we have

Ap([x30, X30, 2X30, 0]) = 2[x2, x2] ® [x15,0]" =0
and
Ap([2x30, 29X30, 2X30, 0]) = 2[x2, X2] ® [X15, X15] =0

which works too.

5. EXPLANATION OF PROOFS OF THEOREM 12 AND 14 IN [2]

In this section we give a more detailed explanation of the proofs
of Theorem 12 and 14 found in |2, Section 5]. In particular some of
the non-trivial steps of the proofs will be proven in more detail, with
concrete examples at the end showing the proofs more explicitly.

We have the following multiplication and co-multiplication maps

A" M (G) = M (G @ ML (GY)
VT MG @M (G") = M, ..(G)
given a short exact sequence of finite abelian groups

0—-G ->G—->G"=0

and their corresponding character groups.

We can obtain a chain complex from these maps induced from sim-
plicial complexes, in both directions: let G, be a flag of subgroups of
length r
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This means that we get the following diagram

MG = P M, (9r1(G) @ M, (gr2(Ga))

ni+no=n
Ge of lengths 2

= D Moeri(Ge) © My, (gra(Ga)) @ M, (9r3(Ga) = ...

ni+nz2+nz=n
Ge of lengths 3

where gr;(Gs) = G<;/G<;_1, which is well defined since everything is
abelian and hence all subgroups are normal. The left and right arrows
are obtained via the following: given

GG GG GG G

which is part of some flag G, of length s > 2, we get the short exact
sequence

0— Gi+1/Gi — Gi+2/Gi — Gi+2/Gi+1 — 0

which is due to the third isomorphism theorem
(Gir2/Gi) [(Gin1/Gi) = Giga/Giga.
Write
Gi+1/Gz’ = 97”1'+1(g-), Gi+2/Gz’+1 = 97’1'+2(g-)> Gi+2/Gi = QT’i+1(Ho)

where Hoe = G \ {Gi11} is the flag of length s — 1 obtained by re-
moving the group G;1, then the short exact sequence will give us the
homomorphisms

A7 Mo n(grivi(He)) — M (griva(Ge)) @ M (griva(Ge))
V7 M (griva(Ge)) @ Mo (griva(Ge)) = Moy n(grivi(Ha)).

where if n’ +n” = 1 then we have the trivial map. This fits into the
complex via

@ My (griva(Ge) @ Mo (griv2(Ge)) @ -+ € C°7H7(Gon), Oy (Gon)

@M (grisi(He)) @ - € C727(G,n), Oy, (G, n),
where C*~(G,n),C; (G, n) is the s-th term in the diagram of homo-
morphism above.

Now we give a simplicial complex structure to the whole diagram.
Consider each flag of subgroups G, of length r as an oriented r-simplex

(Go,Gy,...,G,)
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we can get the boundary map to oriented (r — 1)-simplexes, i.e. flags
of length r — 1,

(Go,Gl, R ,GT) — X_:(—l)l(GQ, Ce ,G\;\, ce ,GT).

Using the maps V™ as discussed above, with H, being each flag of
length » — 1 on the right, this boundary map generates the left arrows
in the diagram, which we denote by the differential dy-. It satisfies the
condition 0,_10, = 0 for dy- due to the simplicial complex structure,
so we obtain a chain complex

C, (G,n).

We can also get the corresponding boundary map to oriented (r+1)-
simplexes, i.e. flags of length r + 1,

(Go,Gr,-. ., Gy) = Y (=1)(Go,- .., Gi, Gi, Gy, .., Gy).

where the sum is over all possible ways G, can be extended into a flag
of length r + 1 by adding a subgroup G; € Gy € G;41. Again we can
use the maps A~ as above, to generate the right arrows in the diagram,
which we denote by the differential da-. It satisfies 970" ~! = 0 for da-
since each term

(G()u s 7Gi7 Gk7 Gi-‘rlu S Gj7Gl7Gj+1a SRS GT)

in the image of 9"0"~! occurs twice, once with sign (—1)**7 and once
with sign (—1)"*1. So we again obtain a chain complex

C*~(G,n).

Theorem 10. |2, Theorem 12| Let G be a finite cyclic group. Then
the cohomology of both complezes

C* (G,n), C,(G,n)
after tensoring by Q, is concentrated in degree 0.

Proof. We will not need to use the assumption that G is a finite cyclic
group until the last step of the proof, since all constructions prior does
not reply on this assumption.
First we define
MZ(G)

to be S,,(G) ® Q with the additional condition that a; # 0 for all 7, i.e.
the Q-vector space generated by symbols of the form

(ay,...,an)"~
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which satisfy the symmetry condition (S) and the generation condition
(G) with a; # 0 for all j. We get a natural linear map between Q-vector
spaces

M(G) = M, (G) 2 Q,

defined on generators by

(a1, .. an)" = (a1,...,an)" .
We can define the co-multiplication
A My (G) = M(G) © MG (G
defined similarly to A~ by

<a1,...,an>N — Z<(l]/ mod AH>N® <CL[//>N

where I’, I C I are nonempty subsets such that I' U " = {1,...,n},
and [" satisfy a; € A” for all i € I" and ) ,_;, Za; = A”. This map is
well defined due to the same reason as A~.

We can also define the multiplication

V™ MG @ My (G = My 0 (G).
defined similarly to V— by

{(a},....a)®{a],... al,) — Z(al,...,an/,a’l’,...,a;;,/>

where the sum runs over all lifts a; € A of a; € A’ from the short exact
sequence, and the elements a] € A via A” — A. Again this map is
well defined due to the same reason as V™.

Using the same construction as above, we get the following diagram
of homomorphisms

MG = P M;(gri(G) @ My, (gra(Ga))

ni1+no=n
Ge of lengths 2

= P M;(gri(G) ® M, (gra(G.) @ M, (grs(Ge)) = ...

ni+n2+n3z=n
Ge of lengths 3

which gives us two chain complexes
C*~(G,n), CJ(G,n)

with differentials da~ and dy~ respectively. There are natural linear
maps

g*:C*(Gyn) » C¥ (G,n)®Q, ¢e:CJ(G,n) —»C, (G,n)®Q
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induced by

(a1,...,0p,)" — {(a1,...,ap,)

which is surjective since nothing in M (G) contains 0, and (ay, ..., a,,)” =

0 if at least one a; = 0 for some j, since then it is a torsion element of
order 2 in M, (G). This also tells us that these maps are compatible
with their differentials, so that the following diagrams commutes

Co~(Gn) —25 5 C5+1(G,n)

| |

Co(G,n) ® Q —275 ¢t (G, n) © Q

C(G,n) +—==— ¢, (G,n)

C:(G,n) ®Q <X €5,,(G,n) ® Q.

Lemma 11. There is a series of implications
1)=(2)=0B) =1
where
(1) H>(C*~(G,n)) =0,
(2) The operator
A~ = da~ 0 dVN + dVN o da~
in tnvertible in degree > 0,
(3) The operator
AT = dA— e} dv— -+ dv— o} dA—
in tnwvertible in degree > 0,
(4) H>°(C*(G,n)) =0, H-,(C; (G,n)) = 0.

Proof. (1) < (2) : We can verify that the differentials dy~ and da~ are
adjoint with respect to inner products defined on each C?~(G,n), in-
duced from the identity matrix. Letting (-, -) denote the inner products,
and

AJN — 8j0j + (9j_10j_1
we have the following facts:
e im(0’"1)Nim(0;) is trivial: Suppose z € im(4’~)Nim(9;), then
(2,2) = ("' (y), 2) = (¥, 0j-1(2)) = (¥, 0;-10;(2)) = (y,0) = 0

which means that z = 0.
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(2,0;(y)) = (&(2),y) = (0,y) = 0.
e ker(9;_;) = (im(91))*: Same argument as above.
o ker(A™) = ker(9;07)Nker(9?19;_1) = ker(8?)Nker(9;_1): First

we show

e ker(97) = (im(9;))*: Since z € ker(9”) implies for any y
m

ker(o¥) = ker(ﬁj@j).
Obviously ker(97) C ker(9;07), so suppose z € ker(9;07), then
we have
= (0,0 (2),2) = (0(2), & (2))
which implies 97(z) = 0 and so ker(9’) D ker(9;07). We can
repeat this argument to also get
ker((?j,l) = ker(ajflaj,l)

as required.
Now we just need to show the first equality, which is equiva-
lent to showing

ker(A™) C ker(9;07) Nker(87~'9;_4)

since the other inclusion is trivial. Let z € ker(A"), then we
have, for any y

0= (A72,0;0°(y)) = (9,0’ (2) + " 10;-1(2), 0,0 (y))

0;0°(2),0;0 (y)) + (0" 0j-1(2), 00" (y))

0,0 (2),0;0" () + (9j-1(2), 0;-10;0" (y))
(2),0;0' (y)) + 0

which implies z € ker(9;07), and so ker(A™) C ker(9;07). We
can repeat this argument with 9719,_1(y) to also get ker(A™) C
ker(@j_lﬁj_l).

This means that there is an orthogonal decomposition
C?™(G,n) =im(&" ') @ ker(A™) @ im(9;)

(
=
=
= (9;0

where
ker(9”) = im(#’ 1) @ ker(A™).
S0 we have
H(C*™(G,n)) = ker(&”) /im(0" ') = ker(A™)

and therefore these two statements are equivalent.
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(2) = (3) : Since A" is invertible, for any 8 € C>~(G,n),C; (G, n)
there exists an « such that
A¥(a) =4
i.e.
(A™)7H(B) = o

Since ¢ is compatible with respective differentials, we have
9(B) =goA™(a)

(B)
g(B) = goda~ ody~(a) + g o dyg~ o da~ ()
9(B) = da- o gody~(a) + dy- 0 g o da~ ()
g(B) = da- ody- o g(a) + dy- o da- o g(a)

9(8) = A™(g9(a))
which means for all 3
gla) =go (A™)7(B)
A~ (g(@)) = A" ogo (A™)7H(B) = g(B)
AT ogo(A¥)Tog T og(B) = g(B).
Using the fact that g is surjective, we must have
A ogo(A™) togt=1d

and therefore A~ is invertible.

(3) = (4) : Abusing notation, we can consider A~ to be two chain
maps
A" :C* (G,n) = C* (G,n)
A_:C, (G,n)—C,(G,n)
which are both homotopic to zero. Now suppose z € Z;(C* (G, n))
represents © € H;(C*~(G,n)), then
A7 (2) = 0;(2) = " 710;(2) € B;(C™ (G, n)).

We can repeat this same reasoning with A_ to get that they both
induce the same trivial homomorphisms

(A7), =0, : H(C* (G,n)) — HI(C*(G,n))
(A_). = 0.: H;(C[ (G, n)) = H;(C, (G, n)).



30 XIANGJIA KONG

Now A~ is invertible in degree > 0, which implies that (A7), and

(A_), are also invertible (and trivial), which means that
H>°(C*(G,n)) =0, Hso(C, (G,n))=0.

as required. O

This means that we just need to prove statement (1). We will do
this by constructing a homotopy

h:C7(G,n) = C(G,n)
such that

A} :=hoda~+da~oh
is invertible, in degrees > 0. This would imply (A}). = 0, is invertible,
as above, and hence

H>°(C*™(G,n)) = 0.
If we have a flags of subgroups
0=Gx0CGa &G =G,

which give the terms in C)7(G,n), we can obtain a chain of surjective
homomorphisms

0=Ap Al LA, =4

by pullbacks of the inclusion maps G<; < G<; 1, and the surjectivity is
from the fact that every element of A<; has an induced representation
in A<;11. This allows us to define the homotopy h as below

h:=M; (A<)) @ M, (Ker(A<g — A<)) @ --- = My L (A) @ - -
where on the first two terms we have
(a1, ... an)~ @ (b, ..., b))~ = (W(ar), ..., 0(an, ) b1,y bny)™,
and the identity on the rest. Here
YAy = Ao

is a section of the natural surjective homomorphism, which we will
defined below.

Now we will use the assumption that G is cyclic, which also implies
all As,, are also cyclic. This means we have

G=Z/NL=|]Z/v}Z

and we can identify as follows
Z/phz ={0,... p;—1}",
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by considering each element as a string of digits in the base p;. Then
we can have a natural map

w : Agl — ASQ

by adding zeroes to the corresponding strings of digits, for all p;, such
that the size of the cyclic group fits.

The generation condition (G) is satisfied on the RHS because ay, . . ., ay,
generate A<y and by, ..., b,, generate Ker(A<y — A<;), and the map
1 is essentially lifts from A<; to A< and

Agl = ASQ/Ker(ASQ — A§1>

due to the isomorphism theorem.
The differential da~ is given by removing digits in this presentation,
since the co-multiplication map is defined by

(ay,...,a,)~ — Z(CL]/ mod A"Y~ ® (a)™;

the (ar»)™ part is obviously obtained by removing digits, and subgroups
of Z,/p¥7Z are of the form

Z/pﬁiZ ={0,...,p; — 1}”

for some I; < k;, so we can represent (ap mod A”)™~ by removing [;
digits for each p;.
Now consider the operator

A; —1d

acting on CV~(G,n), for j > 1. Since the digit 0 is invariant under
A} —1Id, and a non-trivial part is invariant under A}’ from the defini-
tion of h and da~, this implies that the number of zeros in the string
of digits is strictly increased by the operator. Therefore it is nilpotent.
So suppose (A} —Id)™ = 0 for some m, then

Id = 14" — (Id — Ay)™
= (14— (- A7) (1 + (1 - A7)
(= AR o+ (1d - A7)
— (A7) (1 + (14 = A7) + (14 = A7)+ -+ + (1d = A7) )

Which means we can conclude that A} is invertible in degrees > 1. [



32 XIANGJIA KONG

Now we will go through each step of the proof with a specific example.
Consider the case of

G=7/30Z=(g]|g" =1), n=3
which has the following subgroups

<915> = Cy, <910> = Cs, <96> = Cs,
(6°) = Cs, (9°) =Cro, (¢*) = Chs.

Using the C),, notation from now on, this gives the following flags of
subgroups of length 2

0CC,CGE, 0CCCG, 0CCCG
OQCGQGJ OQCHOQG’ OnggG
and the following flags of subgroups of length 3
0CC,CCCG, 0CCCCHEG
0CCG;CCG GG, 0CCGC 05 GG
0CC;CC TG, 0CC5C 05 CQG.

So we have the chain complexes

M3 (Z/30Z) = My (02) ® My (C15) & My (Cy) @ My (Chs)
® M7 (C3) @ M35 (Chp) & M3 (C3) @ M7 (Cro) & M7 (Cs) @ M5 (Co)
B M; (C5) @ My (Cg) & M7 (Cs) @ My (C )@M2(06)®M (Cs)
® My (Cro) ® My (Cs) & M3 (Cho) @ My (C3) @ My (C15) @ My (Ch)
S M, (C15) @ My (C2)
= M (C2) @ My (Cs) @ M (Cs) @Mf(02) M (C5) ® My (Cs)
S My (Cs) @ My (C2) @ My (C5) & My (Cs) @ My (C3) @ My (Ca)
S My (C5) @ My (C2) ® My (Cs) @ My (C5) ® My (Cs) @ My (Ca)
with corresponding differentials dy- and da- respectively. Note that

we used the notation C(3p/r) to denote the cyclic group obtained by
G/Cy. We now verify the condition 9'9° = 0 for the element

(X305 24x30, 14X30)~ € M3 (Z/30Z)

where x3¢ is the generator of the character group of Z/30Z as in sections
before. We will use similar notations for subgroups and quotients of

Ch
Ch
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Z/30Z below. The image of this element under 9° is

=0
A\

- ~N

((x2)™ @ (12x15, Tx15) ") @ ((0, x2)” @ (Tx15) ) @0 B 0B 05 0@ 0
®((x6,2x6)” @ (4x5)") ®0B0B0BO
and the image of the above element under 9" is
(1) x2)" ® (x3)” ® (4x5) ) ®0B 0D 0D 0D 0
H((—1)(x2)” ® (x3)” ® (dx5) ) B 0B 0B 0S0® 0
=0

which is what is expected. Here we can see that the flag of subgroup
associated with the non-trivial element

0CC S0 G
occurs twice, once from each flag
OQCQQG, OQCGQG

with opposite signs, which cancels out.
The Q-vector space

M3 (Z/307Z)
has similar complexes as above

C*™~(Z/30Z,3), C3(Z/30Z,3)

with differentials compatible with the surjective natural linear maps
9%, ge. Consider the homotopy constructed above

h:C7(Z/30Z,3) — C;(Z/30Z, 3)
and
A} :=hoda~~+da~oh.
We will look at the image of
a = ((x2)~ ® (12x15, Tx15)~) ® 0D 0@ - - € CV(Z/30Z,3)
under both of these maps. The element has the flag of subgroups
0CC,CGE

and induces the surjective homomorphisms

ol 4, &4
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where A, is the character group of Cs. The maps f and g can by
explicitly given as

J=x2—0
g =X30 = X2

so we have
Ker(A — Ay) = (x3,) = Z/157Z

which we will denote by A;5 generated by xi5. This means the map h
is only relevant on

Now we need find the map
@D . AQ — A

explicitly. To do this we just need to find the image of the element s,
converting this into strings of digits we get

x2 = {1} € Z/2Z.
Now we can write
7)3072 =7.)27 x Z]3Z x 7./5Z
so by adding zeroes we get
¥(x2) = {100} = 15x30 € Z/307Z
so we have

WP x2 = 15x30.

Therefore we have

h(c) = (15x30, 24X30, 14X30)~
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and
Ay (a) = hoda~(a) + da~ o h(«)
= h((=(x2)” ® (x3)” ® (4x5)")
+ da~({15x30, 24x30, 14x30)")
= ®0® (—(3x6,2x6)” @ (4x5)") @ 0@ - -
+ ((x2)™ ® (12x15, Tx15)) © 0D ((2x3)™ @ (5X10, 8X10)™)
Q00D 0D 0D ((3x6,2x6)" ® (4x5)") 0D 0ODO
@ ((9x15, 14x15)~ @ (x2)7)
= ({(x2)” ® (12x15, Tx15)™) © 0 @ ({2x3)™ @ (5x10,8X10) ")
0606006000606 040
@ ((9x15, 14x15)” @ (x2)7)
which gives
(AL = Id)(a) =080 ((2x3)~ @ (5x10,8X10) ")
0000000000040
© ((Ix1s5, 14x15)~ @ (x2)7)-
Now the string of digits for « is

({1}~ @ ({02}, {12})") 0806 ...
and for (A} —Id)(«a) is
0@ 0a (({21)” @ ({10},{03})7)

0000002002002 000®0

@ (({04}, {241)~ @ ({11)").
so we can see that the number of zeroes in the presentation has been
strictly increased from 1 to 3, which implies that A} —1Id is nilpotent.
Therefore A} is invertible as expected.

Now we will verify that the differentials dy~ and da~ are adjoint

with respect to inner products induced from the identity matrix on the
elements o and

Bi=2((x2)" ® (x3)~ @ (4x5)") ® 0@ - - - € C*~(Z/30Z, 3).
We have

(B,da~(@)) = (B, (—(x2)” @ (x3)” ® (4x5)") 0D ---)
— 9

BOD®--)
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and
(dy~(B), ) = (20 Y {ixe,2x6)™ @ (4xs)™) B0 @ -
i=1,3,5
®2((-1)' Z (Xx2)™ @ (ix15,12x15)7) 0D -+, )
i=1,4,7,10,13
— 9

which is as expected.

Now we will look at a new diagram of homomorphisms

M@= P Ma(gri(G.) ® My, (gr2(G.))

ni+n2=n
Ge of lengths 2

= P M (gn(G.) @ M, (gr2(Ga)) @ M, (g73(Ga)) = ..

ni+n2+nz=n
Ge of lengths 3

where G, is a flag of subgroups as follows
0:G§0§G§1§~~§G§T:G, 7’21

where every inclusion is strict except the G<o € G<; part; and the
leftmost part of the tensor product is not the quotient M, (G) but the
full group M,,(G).

There is both maps A and A~ in the differential. This is a complex
with the same construction as above but we only use the map A when
we map the leftmost terms

Mo, (gr1(He)) @ - - = M, (g71(Ge)) @ M, (972(Ge)) @ . ..

where Ho, = G, \ {G1} is the flag obtained by removing the group Gj.
This complex is denoted by

C*'(G,n).

Theorem 12. [2, Theorem 14| Let G be a finite cyclic group. Then
the cohomology of the complex

C*(G,n)
after tensoring by Q, is concentrated in degree 0.

Proof. The proof is similar to the one given above. Here we show that
for finite cyclic groups, the projection

po Ma(G) = M (G)
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has a section
v: M (G) = M,(G)

defined on generators by

77777

where ¢; € {+1, —1}, and the sum is over all possibilities.
For n = 1, we have

(@)™ = > er{aim) = (@) + —(—ar)

which is trivially compatible. Now we just need to check the case n = 2,
where for
a,b€ Z/NZ, ged(a,b,N)=1,
the equation above gives
<CL, b>_ = <a7 b> + <_a7 _b> o <—CL, b> - <a7 _b>
We just need to verify that both sides of the relation
{(a,b)” = (a,b—a)” + (a—b,b)~

is mapped to the same thing. This means we need show the following
equation holds

(a,b) + (—a,—b) — (—a,b) — (a, —D)
L (a,b—a)+ (—a,a —b) — (—a,b—a) — (a,a —b)
+ (a—b,b) + (b —a,—b) — (b —a,b) — (a — b, —b).
The first terms and the second terms on each line are
(a,b) = {a,b—a) + {(a — b, b)
(—a,—b) = (—a,a —b) + (b — a, —b)
which are relations in My(Z/NZ). So it is sufficient to check
— (—a, by — (a, —b)
L _(—a,b—a)—{a,a—b) — (b—a,b) — {(a—b,—b).

We can replace a with —a to make the equation more symmetrical, this
then gives

<CL, b> + <_a7 _b>
= (a,b+a) + (—a, —a — b) + (b +a,b) + (—a — b, ~b).
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Plug in the relations
(a,b+a) = (a, by + (=b,b+a), (—a,—b—a)= (—a,—b)+ (b,—b—a)
we get
{a,b) + (—a, =)
= (a, b+ (=b,b+a)+(—a, —a—b) + (b+a,b) + (—a, —b) + (b, —b—a)
which is equivalent to
0= (—bb+a)+ (—a,—a—b) + (b+a,b) + (b, —b — a).
We will use
d(a+0b,b)

to denote the four terms on the right hand side. Here we can replace
a + b in the notation by a to simplify the above to

8(a,b) =0 € My(Z/NZ)
which is what we will need to show. Now we have
0(a+b,b)=4d0(a+b,a), d&(a,b)=20d(—a,b)=246(b,a),
we can verify the first relation by using the same relations as above
0(a+b,b)
=(a+0bb) +(—(a+0),b)+ (a+b,—b) + (—(a+0),—D)
= (a+b,b) + ((—a,—b—a) — (—a,—b))
+ ({a, b+ a) — {(a,b)) + (—(a + b), —b)
+ (—=a,b+a)) + ((—a,—b—a) — (—a, —b))
+ ({(a,b+a) — (a,b)) + ((—a,—b) + (a, —b — a))
=(a+0ba)+ (—(a+0b),a)+(a+b —a)+ (—(a+b),—a)
=d(a+0b,a)

and the latter relation is from the fact that they are all the same
equation

0(a,b) =0(—a,b) =6(b,a) = (a,b) + (—a,b) + (a,—b) + (—a, —b).
By replacing a + b with a in the first relation above we get
d(a,b) =6(a,a—b)=0d(a—b,a)

and so 4 is invariant under the matrices

L) (o)

= ({a,b)
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which generate SLy(Z), and thus SLo(Z/NZ), so that §(a,b) is con-
stant.

Now by applying the defining relation to each term in the sum S,
defined below, we obtain

+Z —a+ b, —b) +Z —a,—b+a) +Z (a+b,—b) +Za —b—a)
:8Z(a,b>
a,b

which gives S = 0 and thus d(a,b) = 0. So the section
v: M, (G) = M,(G)

is compatible with the defining relations.
To prove the statement of the theorem we just need to show that the
map

M (ZINZ) —» P Mu(Z/N'Z) @ M, (Z/N"Z),n=n'+n"
N N/N//
is surjective, where the sum is over all exact sequences
0—Z/N"%Z —7Z/NZ —7Z/N'Z -0, N=NN"N2>2,

of finite cyclic groups. Since the image is contained inside the kernel
of the next map in the complex, this map being surjective would mean
that the image is equal to the kernel in this part of the differential. This,
along with the previous results on the complexes of M (G) implies the
vanishing of the cohomology in degrees > 0.
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This can be shown by finding the inverse
V: My (Z/N'Z) @ M, (Z/N"Z) = M, (Z/NZ), n=n'+n"

which on generators is given by

<a/17 cee 7a;ﬂ> & <b1, e 7bn”>_ —>
Z (81...€n//><a1,...7an/781b1,...,€n//bnu>

all lifts
EL1y €t

where the sum is over all lifts a; € Z/NZ of a, € Z/N'Z and all
possibilities for ¢; € {41, —1} similar to definition the of v above. This
is compatible with defining equations since we are using the sections v
to get

M (Z/N'Z) @ M, (Z/N"Z) %%
M (Z/N'Z) @ M (Z)N"Z) 5 M,,(Z/NZ)

in other words we have V o (Id ® v) =V and both V and v are com-
patible. O

Now we will give an example for the above proof. Consider the same
group as above

G=17/30Z, n=S3

by similar construction we get the complex

M3(Z/30Z) = M (Cr) @ My (Ciz) & My(Co) @ My (Cys)
® M;1(C3) @ M5 (Cho) ® My(C3) @ M7 (Cro) & M;(Cs) @ M3 (Cp)
@ My (C5) @ M7 (Cs) & M1 (Cg) @ M35 (C5) & Mo(Cs) @ M7 (Cs)
® M;(Cro) @ M5 (C3) ® My(Cho) @ M7 (Cs) & M1 (Chs) @ My (Cs)
@ My (Ch5) @ My (Cs)
2 M (Cy) @ M7 (C3) @ M7 (Cs) & M;(Cy) @ M (Cs) @ My (Cs)
® M1(C3) @ My (C2) @ M7 (C5) & My (C3) @ My (Cs) @ M7 (Co)
D M1(C5) @ M7 (Cy) @ M7 (C3) & My(Cs) @ M7 (C3) @ M7 (Cs).

Consider the element

(X305 24x30, 14x30) € M3(Z/30Z)
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the image under 9° is

((x2) ® (12x15, Tx15) ") @ ((0, x2) @ (Tx15) ) 2020202080
B({x6,2x6) @ (dx5) ) BB 0B 0B 0

and the image of the above element under 9" is

(1) (x2) ® (x3)”™ ® (4x5) ) @0 0B 0®0S 0
F((=1)x2) ® (x3)” © (4x5) ) BOB0B0B0B0 =0

and so the condition 9'0° = 0 is satisfied similar to above.
Now we will look at the section

v: M3 (Z/30Z) — M3(Z/30Z).
Counsider the relation

(X305 2430, 14x30) " = (—23X30, 24X30, 14x30)~ + (X305 23x30, 14X30) ~

we have
v({x30, 24x30, 14x30) ")
= (X30, 2430, 14X30) — (—X30, 24x30, 14X30)
— (X30, —24x30, 14X30) — (X30, 24X30, —14X30)
+ <X30, —24x30, —14X30> + <—X30, 2430, —14X30>
+ (—x30, —24x30, 14Xx30) — (—X30, —24X30, —14X30)
and

v({—23x30, 24X30, 14X30) ")
= (—23x30, 2430, 14x30) — (23X30, 24X30, 14X30)
— (—23x30, —24x30, 14x30) — (—23x30, 24X30, —14X30)
+ (—23x30, —24Xx30, —14x30) + (23X30, 24X30, —14X30)
+ (23x30, —24x30, 14x30) — (23X30, —24X30, —14X30)
v({x30, 2330, 14x30) ")
= (X30, 23x30, 14X30) — (—X30, 23X30, 14X30)
— (X30, —23X30, 14X30) — (X30, 23X30, —14X30)
+ {x30, —23X30, —14X30) + (—X30, 23X30, —14X30)
+ (—x30, —23X30, 14X30) — (—X30, —23X30, —14X30)-
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If the first two elements in the symbol have the same sign, then the
relation trivially holds. So the relation reduces to

— (—X30, 24x30, 14x30) — (X30, —24X30, 14X30)

+ (X30, —24x30, —14X30) + (—X30, 24x30, —14X30)
= —(23x30, 2430, 14x30) — (—23X30, —24X30, 14X30)

+ (—23x30, —24X30, —14x30) + (23X30, 24X30, —14X30)
— (—X30, 23X30, 14X30) — (X30, —23X30, 14X30)

+ <X30, —23x30, —14X30> + <—X30, 2330, —14X30>

we just need to show
- <—X307 2430, 14X30> - <X30, —24x30, 14X:30>

?
= —(23x30, 24X30, 14x30) — (—23x30, —24X30, 14X30)
- <—X307 23x30, 14X30> - <X307 —23X30, 14X30>

since all the terms with —14y30 just have the opposite sign. Using the
relations

(—X30, 23x30, 14X30) = (—24X30, 23X30, 14x30) + (—X30, 24X30, 14x30)
<X30; —23X30, 14X30> = (24X307 —23X30, 14X30> + <X30; —24x30, 14X30>
it is further reduced to
0(23,24) := (23x30, 2430, 14x30) + (—23X30, —24X30, 14X30)
(—24x30, 23X30, 14x30) + (24X30, —23X30, 14X30)
)
=0

which holds by the proof given above. So the section v is compatible
with the defining relation (M).
Now we will look at the map

At Ms(Z2/302) = @ Mu(Z/N'L) @My (Z/N"Z), 3=n+n"
30=N'N"
and its inverse. The image of the element
<X307 24X307 14X30> S M3(Z/3OZ)
under this map is
({x2) ® (12x15, Tx15) ") @ ({0, x2) ® (Tx15) ) B 0B 0B 0B 0B 0
S({x6; 2x6) ® (4x5) ") 0D 0D 0D O
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and the image of this element under V="Vo (Id®v) is
Z e12((2¢ 4 1) x30, £124x30, €214X30)

i=0,...,14
e1,e2€{+1,—1}

+ Z €1((27 + 1)x30, (27)X30, €114X30)
i=0,..,14
€1€{+1,—1}

+ Z €1((6¢ + 1)x30, £124x30, (67 + 2)x30)-
= 0,..4
61J€{+1,—1}
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