

Undergraduate Analysis and PDE Seminar

April 28, 2023 1:30 - 2:30 p.m. **Zoom**

An NLS case study: well-posedness beyond standard models

Alex D. Rodriguez, Iryna Petrenko (grad mentors, FIU) Gia Azcoitia, Beckett Sanchez, Troy Roberts

Abstract. We consider a nonlinear Schrödinger (NLS) equation

$$iu_t + \Delta u + \lambda \mathcal{N}(u) u = 0,$$

where the potential \mathcal{N} can be thought of as a combination of different non-linearities, for example, $\mathcal{N}(u) = \sum a_k |u|^{\gamma_k}$, $a_k \in \mathbb{C}$ and $\gamma_k > 0$. Typically, to show the existence and uniqueness of solutions, a contraction mapping argument with Strichartz estimates is applied on the Duhamel (integral) equation

$$u(t) = e^{it\Delta}u_0 + i\lambda \int_0^t e^{i(t-s)\Delta} (\mathcal{N}(u) u)(s) ds$$

on some space, for instance, a subset of a Sobolev space H^s with certain conditions on a_k, γ_k , initial data u_0 (and time). This approach works for a power-type nonlinearity $|u|^{\gamma}u$ with powers $\gamma \geq 1$.

In this talk, we will discuss another approach to obtain well-posedness in the NLS equation for nonlinearities that go beyond standard models, such as an infinite series of power nonlinearities. This would include an exponential, $e^{|u|^r}$, or sinusoidal, $\sin(|u|)$, potentials among various others nonlinearities. First, we discuss the NLS on the whole space and then shift the gears to consider the periodic setting. On T^N we show the local well-posedness of solutions to the NLS equation with nonlinearities that are not possible to consider on the whole space, for example, nonlinearities with negative powers: $\frac{u}{|u|}$ and $\frac{u}{e^{|u|}}$.

We also construct a class of initial data u_0 such that there exists a unique, local solution of the inhomogeneous NLS equation $iu_t + \Delta u + \lambda V(x)|u|^{\alpha}u = 0$ on \mathbb{R}^N , where V(x) has polynomial-like behavior. In addition, we consider the periodic setting of inhomogeneous NLS, in which we find local well-posedness for every $\alpha \in \mathbb{R}$. Finally, we show that this approach applies to the NLS with higher order of dispersion such as the bi-harmonic NLS.

This talk is based on research done by Gia Azcoitia, Hannah Wubben, Beckett Sanchez, Troy Roberts, Sam Kilgore, Alex D. Rodriguez, Iryna Petrenko, Oscar Riaño, and Svetlana Roudenko.