

Bulk-Boundary Correspondence for Interacting Floquet Topological Phases in 2D

Carolyn Zhang and Michael Levin

University of Chicago

Sept 13, 2022

CZ & ML, arXiv:2209.03975 CZ, in prep

Setup: interacting Floquet systems

Consider a 2D system of d-state spins on a lattice, evolving under

$$H(t) = \sum_{r} H_{r}(t)$$
$$H(t) = H(t+T)$$

The system is described by a circuit $\{U(t)\}$, where

$$U(t) = \mathcal{T}e^{-i\int_0^t dt' H(t')} \qquad t \in [0,T)$$

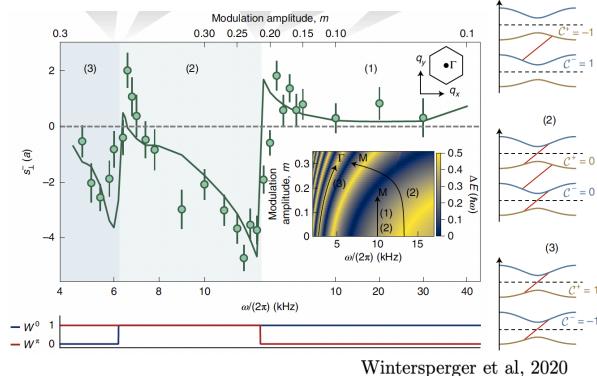
•	•	•	•	•
٠	•	•	•	•
•				•
● <i>d</i> -sta	• te spin	7•		٠

Why are Floquet phases interesting?

- We can use some familiar tools from stationary topological phases.
- There are new phases that cannot be realized in stationary systems.
- We can study them in the lab.

Why are Floquet phases interesting?

- We can use some familiar tools from stationary topological phases.
- There are new phases that cannot be realized in stationary systems.
- We can study them in the lab.

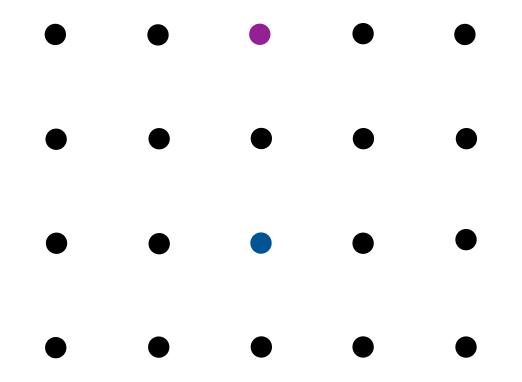


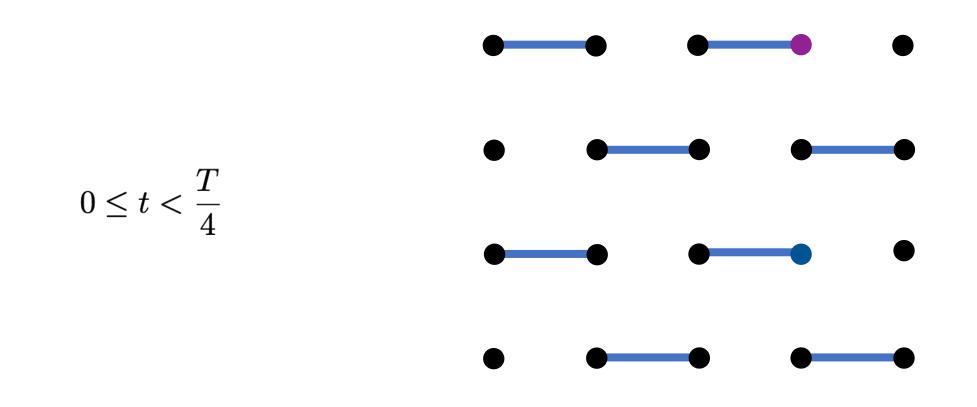
(1)

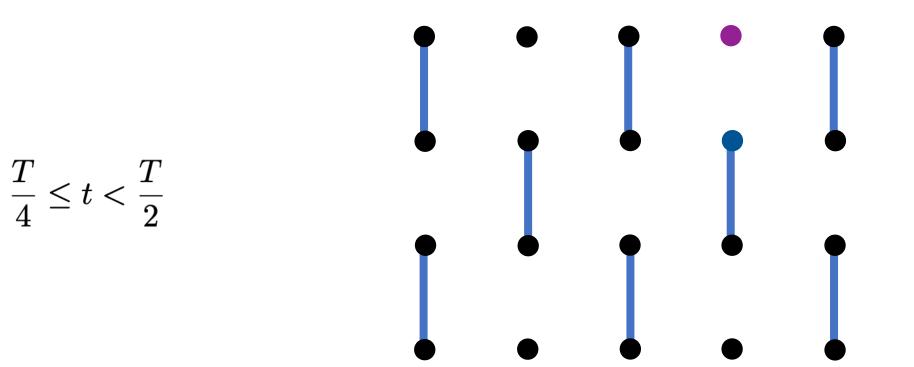
Preliminaries

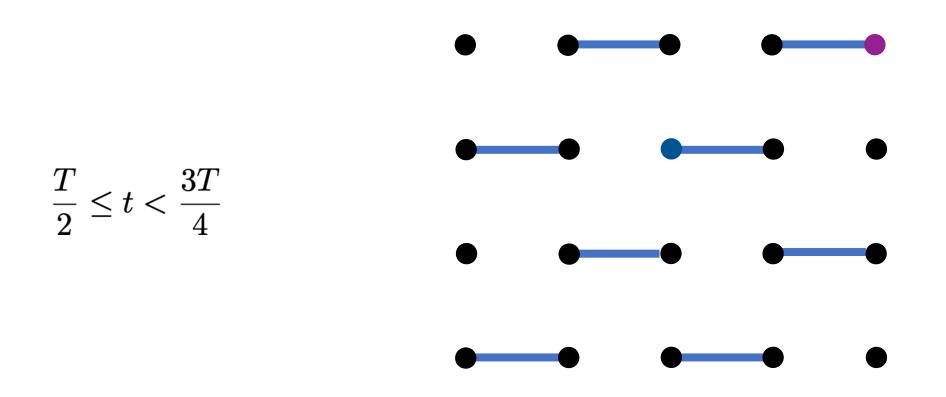
- Example of a Floquet topological phase in non-interacting systems \rightarrow Example of bulk-boundary correspondence
- Definition of interacting Floquet phase
- Review of classification of interacting Floquet phases
- Main question: general interacting bulk-boundary correspondence

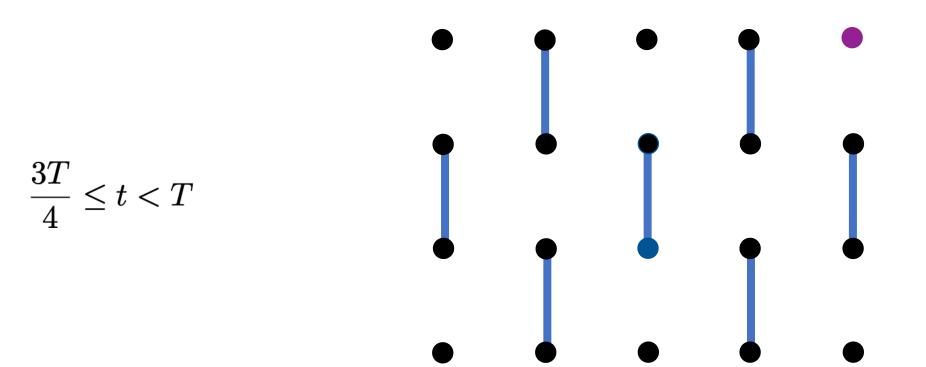
Example of nontrivial circuit: 4-step hopping circuit Rudner et al, 2013



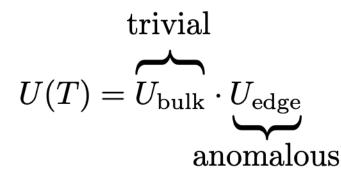


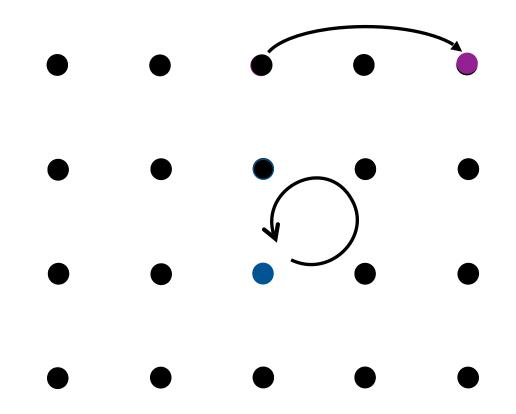






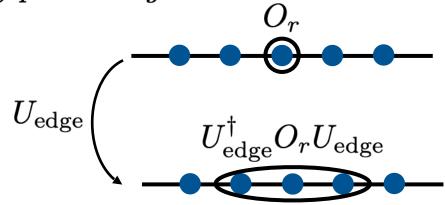
Bulk states have *trivial* stroboscopic dynamics. Edge states are *translated*.





Anomalous edge unitaries

 U_{edge} must be *locality preserving*:



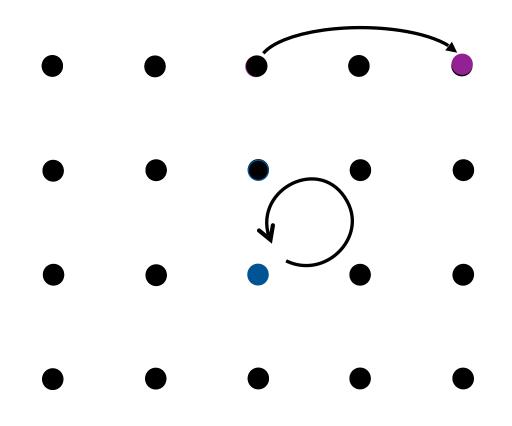
However, U_{edge} is not *locally generated*:

Translation \neq 1D finite-depth local unitary (FDLU) Gross et al, 2012 = $\mathcal{T}e^{-i\int_0^T dt H_{1D}(t)}$

 $\rightarrow U_{\rm edge}$ can only occur at the boundary of a 2D system

How do we detect the anomaly in the bulk?

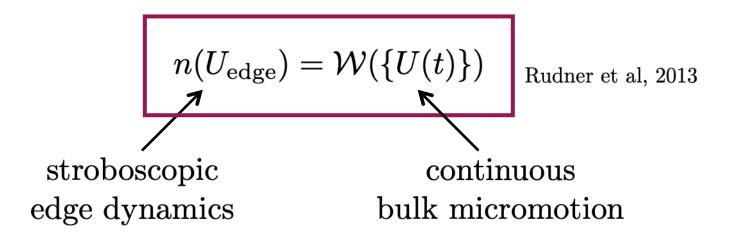
The full path of unitaries $\{U(t)\}$ describes bulk *micromotion*.



Bulk Boundary Correspondence

Edge invariant: $n(U_{edge})$

Bulk invariant: $\mathcal{W}(\{U(t)\})$



Many-body localized (MBL) Floquet circuits

Generic $\{U(t)\} \rightarrow$ thermalization.

To avoid this, we specialize to many-body localized Floquet systems

Many-body localized (MBL) Floquet circuits

Generic $\{U(t)\} \rightarrow$ thermalization.

To avoid this, we specialize to $many-body \ localized$ Floquet systems

On a *closed* geometry:

$$U(T) = \prod_{r} U_r \qquad [U_r, U_{r'}] = 0$$

 U_r are (quasi)-local unitaries

Many-body localized (MBL) Floquet circuits

Generic $\{U(t)\} \rightarrow$ thermalization.

To avoid this, we specialize to many-body localized Floquet systems

On a *closed* geometry:

$$U(T) = \prod_{r} U_r \qquad [U_r, U_{r'}] = 0$$

 U_r are (quasi)-local unitaries

For classification purposes, we can restrict to $\{U(t)\}$ satisfying

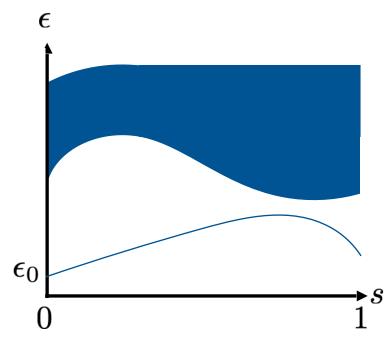
$$U(T) = \mathbf{1}$$

MBL Floquet phase

 $\{U(t)\} \sim \{U'(t)\}$: there exists $\{U_s(t) : s \in [0, 1]\}$ such that $U_0(t) = U(t)$ $U_1(t) = U'(t)$ While maintaining the MBL condition for all s: $U_s(T) = \mathbf{1}$ ϵ

Similar to stationary definition of equivalence:

 $H \sim H'$ if there exists an interpolation that does not close the gap

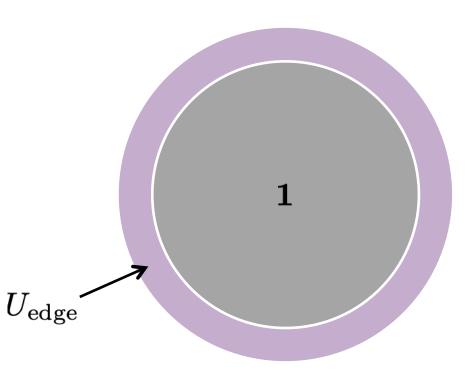


Floquet edge unitaries

If U(T) = 1 for a closed geometry, then in a geometry with an edge,

$$U(T) = \mathcal{T}e^{-i\int_0^T dt H_R(t)} = U_{\text{edge}}$$

 $U_{\rm edge}$ is a 1D locality preserving unitary localized near the edge of R.



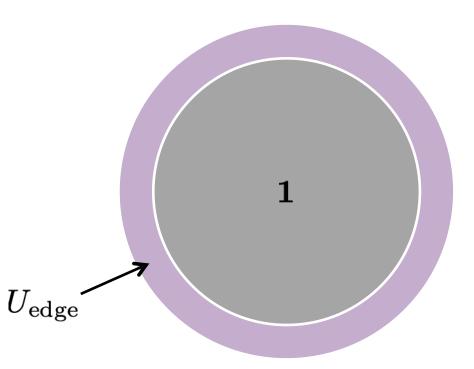
Floquet edge unitaries

If U(T) = 1 for a closed geometry, then in a geometry with an edge,

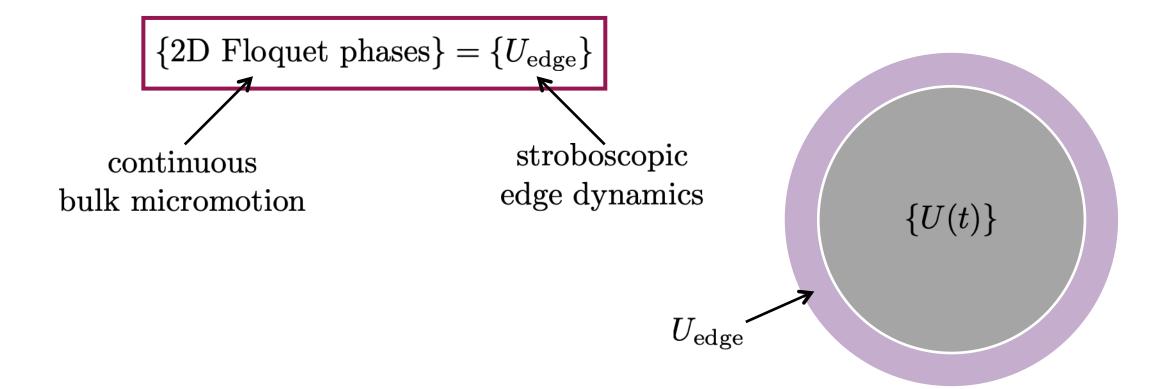
$$U(T) = \mathcal{T}e^{-i\int_0^T dt H_R(t)} = U_{\text{edge}}$$

 $U_{\rm edge}$ is a 1D locality preserving unitary localized near the edge of R.

$$U_{\rm edge} \sim U_{\rm edge}' : U_{\rm edge} = W \cdot U_{\rm edge}'$$
$$W = 1{\rm D}~{\rm FDLU}$$



Interacting bulk-boundary correspondence



What phases can be realized in these systems?

Floquet phases with no symmetry

 \rightarrow transports quantum information along the edge Gross et al, 2012Po et al, 2016

Floquet phases with discrete unitary symmetries

 \rightarrow toggles the edge between different 1D SPTs

Else & Nayak, 2016 Gong et al, 2020

Floquet phases with U(1) symmetry

 \rightarrow transports charge along the edge CZ & ML, 2020

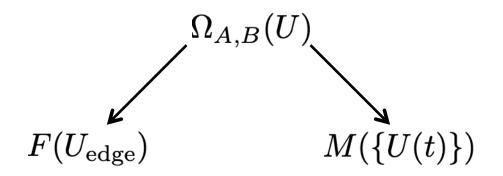
Main question

How do we diagnose these phases using: • Edge topological invariants $F(U_{edge})$ • Bulk topological invariants $M(\{U(t)\})$

Also, is there a general relation between edge and bulk invariants?

Answer

We can obtain edge and bulk invariants from flows $\Omega_{A,B}(U)$.



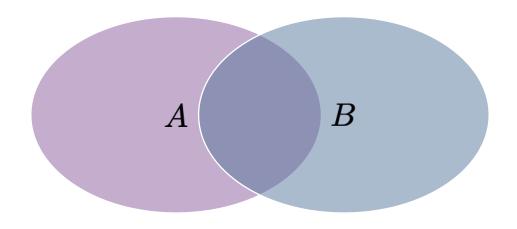
Plan for the rest of the talk

- Introduce our main tool: *flow*
- Examples of flows
- Recipe for obtaining edge and bulk invariants from flow
- Application of this recipe to various kinds of systems

Definition of flow

A flow $\Omega_{A,B}(U)$ is a real-valued function of:

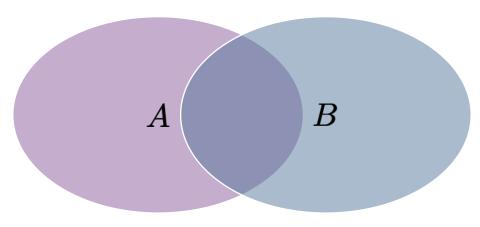
- Two sets $A, B \subset \Lambda$, where Λ is the lattice
- A unitary U



Definition of flow

- - Ω_{A,B}(V_AU) = Ω_{A,B}(U) if supp(V_A) ⊂ A or Ā.
 Ω_{A,B}(UV_B) = Ω_{A,B}(U) if supp(V_B) ⊂ B or B.
 Ω_{A,B}(U) is additive under stacking.
 Ω_{A,B}(1) = 0.

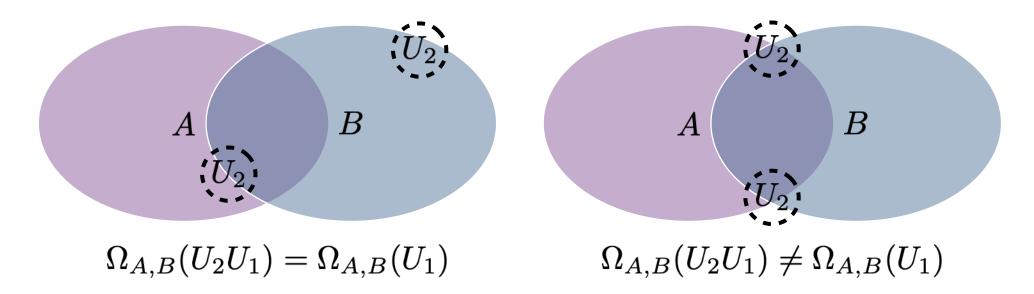
 $\Omega_{A,B}(U)$ measures transport between A and B due to the action of U



*

Definition of flow

According to Properties 1 and 2,



 $\Omega_{A,B}(U)$ depends only on unitaries with support near the intersection of the boundaries of A and B

Example

Single-particle systems:

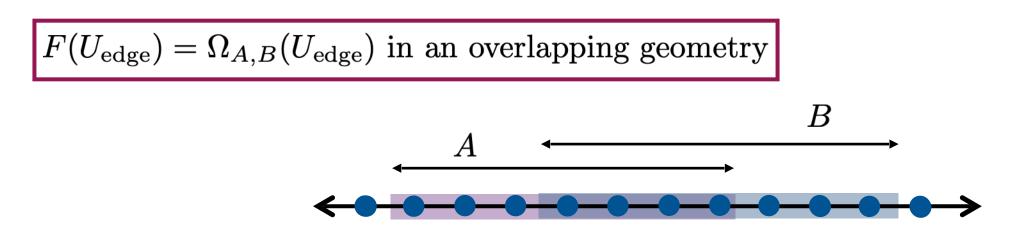
$$\Omega_{A,B}(U) = \sum_{a \in A} \sum_{b \in B} |U_{ab}|^2 - \delta_{a,b}$$

Can check that:

*
1.
$$\Omega_{A,B}(V_A U) = \Omega_{A,B}(U)$$
 if $\operatorname{supp}(V_A) \subset A$ or \overline{A} .
2. $\Omega_{A,B}(UV_B) = \Omega_{A,B}(U)$ if $\operatorname{supp}(V_B) \subset B$ or \overline{B} .
3. $\Omega_{A,B}(U)$ is additive under stacking.
4. $\Omega_{A,B}(\mathbf{1}) = 0$.

*

Edge invariant from flow



Note that the boundaries of A and B have zero intersection in this geometry.

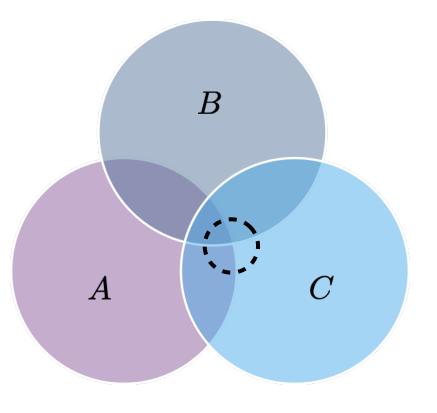
→ all local gates are deep in A, \overline{A}, B , or \overline{B} . → $F(U_{edge}) = F(W \cdot U_{edge})$ if W is a FDLU

Bulk invariant from flow

 $M(\{U(t)\}) = \Omega^{C}_{A,B}(\{U(t)\})$

 $A, B, C \in \Lambda$: three overlapping sets $\{U(t)\}, t \in [0, T)$: full path of unitaries The boundaries of A and B intersect at two points: one in C, one not in C.

$$\Omega_{A,B}^{C}(\{U(t)\}) = \int_{0}^{T} dt \frac{\partial}{\partial t_{C}} \Omega_{A,B}(U(t))$$

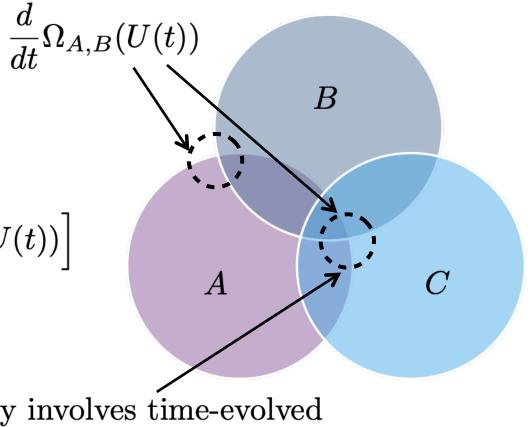


Bulk invariant from flow

 $\frac{\partial}{\partial t_C}$: counts only flow from gates in C.

$$\frac{\partial}{\partial t_C} \Omega_{A,B}(U(t))$$

= $\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[\Omega_{A,B} \left(e^{-i\epsilon H_C(t)} U(t) \right) - \Omega_{A,B} \left(U(t) \right) \right]$



 $M({U(t)})$ only involves time-evolved operators localized in here

Definition of flow:

$$\Omega_{A,B}(U) = \sum_{a \in A} \sum_{b \in B} |U_{ab}|^2 - \delta_{a,b} \quad \text{projector into } A \subset \Lambda$$
$$= \operatorname{Tr}(U^{\dagger}P_A U P_B) - \operatorname{Tr}(P_A P_B)$$

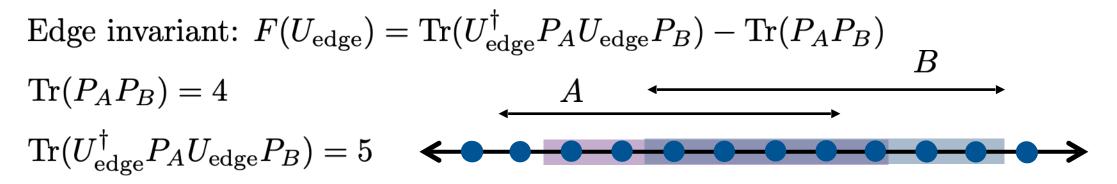
Definition of flow:

$$\Omega_{A,B}(U) = \sum_{a \in A} \sum_{b \in B} |U_{ab}|^2 - \delta_{a,b} \quad \text{projector into } A \subset \Lambda$$
$$= \operatorname{Tr}(U^{\dagger} P_A U P_B) - \operatorname{Tr}(P_A P_B)$$

Edge invariant: $F(U_{edge}) = \operatorname{Tr}(U_{edge}^{\dagger}P_A U_{edge}P_B) - \operatorname{Tr}(P_A P_B)$ $\operatorname{Tr}(P_A P_B) = 4$ $A \longleftarrow A$

Definition of flow:

$$\Omega_{A,B}(U) = \sum_{a \in A} \sum_{b \in B} |U_{ab}|^2 - \delta_{a,b} \quad \text{projector into } A \subset \Lambda$$
$$= \operatorname{Tr}(U^{\dagger} P_A U P_B) - \operatorname{Tr}(P_A P_B)$$



Definition of flow:

$$\Omega_{A,B}(U) = \sum_{a \in A} \sum_{b \in B} |U_{ab}|^2 - \delta_{a,b} \quad \text{projector into } A \subset \Lambda$$
$$= \operatorname{Tr}(U^{\dagger} P_A U P_B) - \operatorname{Tr}(P_A P_B)$$

Edge invariant: $F(U_{edge}) = \operatorname{Tr}(U_{edge}^{\dagger}P_{A}U_{edge}P_{B}) - \operatorname{Tr}(P_{A}P_{B}) \xrightarrow{B}$ $\operatorname{Tr}(P_{A}P_{B}) = 4 \xrightarrow{A} \xrightarrow{A}$ $\operatorname{Tr}(U_{edge}^{\dagger}P_{A}U_{edge}P_{B}) = 5 \xrightarrow{\bullet}$ unit translation: $F(U_{edge}) = 1$

Definition of flow:

$$\Omega_{A,B}(U) = \sum_{a \in A} \sum_{b \in B} |U_{ab}|^2 - \delta_{a,b} \quad \text{projector into } A \subset \Lambda$$
$$= \operatorname{Tr}(U^{\dagger} P_A U P_B) - \operatorname{Tr}(P_A P_B)$$
$$B$$
$$M(\{U(t)\}) = \int_0^T dt \frac{\partial}{\partial t_C} \Omega_{A,B}(U(t))$$

Definition of flow:

$$\begin{split} \Omega_{A,B}(U) &= \sum_{a \in A} \sum_{b \in B} |U_{ab}|^2 - \delta_{a,b} \quad \text{projector into } A \subset \Lambda \\ &= \operatorname{Tr}(U^{\dagger} P_A U P_B) - \operatorname{Tr}(P_A P_B) \\ M(\{U(t)\}) &= \int_0^T dt \frac{\partial}{\partial t_C} \Omega_{A,B}(U(t)) \\ &= i \int_0^T dt \operatorname{Tr} \left(U^{\dagger}(t) [H_C(t), P_A] U(t) P_B \right) \\ A \qquad C \end{split}$$

Definition of flow:

$$\begin{split} \Omega_{A,B}(U) &= \sum_{a \in A} \sum_{b \in B} |U_{ab}|^2 - \delta_{a,b} \quad \text{projector into } A \subset \Lambda \\ &= \operatorname{Tr}(U^{\dagger} P_A U P_B) - \operatorname{Tr}(P_A P_B) \\ M(\{U(t)\}) &= \int_0^T dt \frac{\partial}{\partial t_C} \Omega_{A,B}(U(t)) \\ &= i \int_0^T dt \operatorname{Tr} \left(U^{\dagger}(t) [H_C(t), P_A] U(t) P_B\right) \\ H_C(t) &= \frac{1}{2} \left(P_C H(t) + H(t) P_C\right) \end{split}$$

Relation to winding number

Choose A =left half plane, B =upper half plane, and C =whole plane.

$$M(\{U(t)\}) = \frac{1}{8\pi^2} \int dt dk_x dk_y \operatorname{Tr} \left(U^{\dagger} \frac{\partial}{\partial t} U \left[U^{\dagger} \frac{\partial}{\partial k_x} U, U^{\dagger} \frac{\partial}{\partial k_y} U \right] \right)$$

Rudner et al, 2013
$$-\frac{\pi}{T}$$

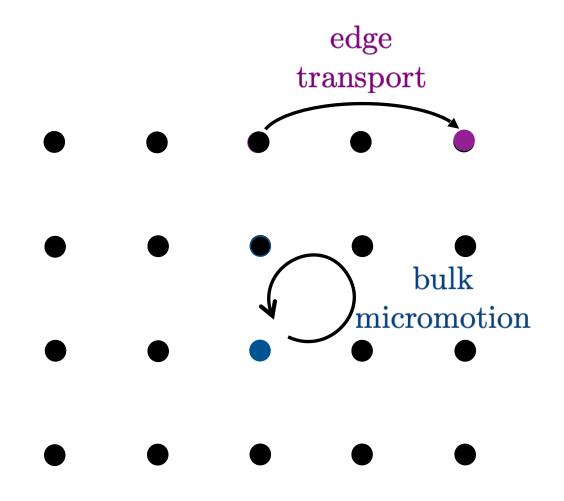
$$-\frac{\pi}{T}$$

$$k_x$$

Can show that:

 $F(U_{\text{edge}}) = n(U_{\text{edge}})$

 $M(\{U(t)\}) = \mathcal{W}(\{U(t)\})$



General recipe

*

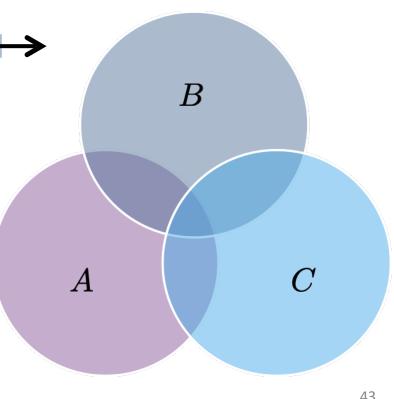
Flow: find a $\Omega_{A,B}(U)$ that satisfies *

*

General recipe

Flow: find a $\Omega_{A,B}(U)$ that satisfies * Edge invariant: $F(U_{edge}) = \Omega_{A,B}(U_{edge})$

Bulk invariant: $M(\{U(t)\}) = \int_0^T dt \frac{\partial}{\partial t_C} \Omega_{A,B}(U(t))$



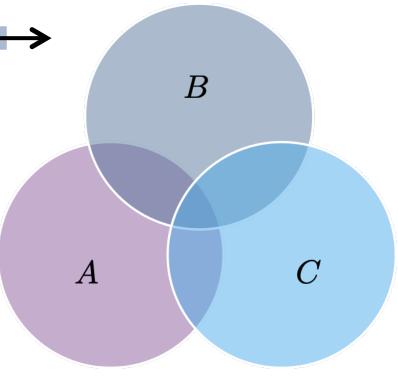
General recipe

Flow: find a $\Omega_{A,B}(U)$ that satisfies * Edge invariant: $F(U_{edge}) = \Omega_{A,B}(U_{edge})$

Bulk invariant:
$$M(\{U(t)\}) = \int_0^T dt \frac{\partial}{\partial t_C} \Omega_{A,B}(U(t))$$

$$U_{\text{edge}} = U(T)$$

 $\rightarrow F(U_{\text{edge}}) = M(\{U(t)\})$



Flows for interacting systems

No symmetry:

$$\Omega_{A,B}(U) = \log\left[\frac{\eta(\mathcal{A}, U^{\dagger}\mathcal{B}U)}{\eta(\mathcal{A}, \mathcal{B})}\right] \qquad \eta(\mathcal{A}, \mathcal{B}) = \sqrt{\sum_{O_A \in \mathcal{A}, O_B \in \mathcal{B}} |\overline{\mathrm{Tr}}(O_A^{\dagger}O_B)|^2}$$

With U(1) symmetry:

$$\Omega_{A,B}(U) = \langle Q_A U^{\dagger} Q_B U \rangle - \langle Q_A Q_B \rangle \qquad \rho = \frac{e^{\mu Q}}{\operatorname{Tr}(e^{\mu Q})}$$

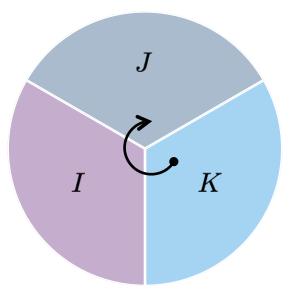
Edge and bulk invariants

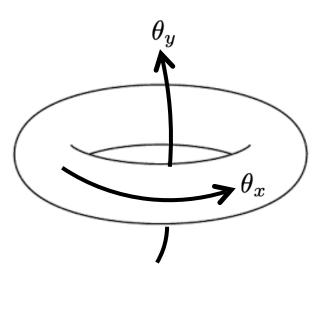
	Non-interacting	Interacting, no symmetry	Interacting, U(1) symmetry	Interacting, discrete symm
Edge	Rudner et al, 2013	Gross et al, 2012 Po et al, 2016		?
Bulk	Nathan et al, 2017	?	?	?

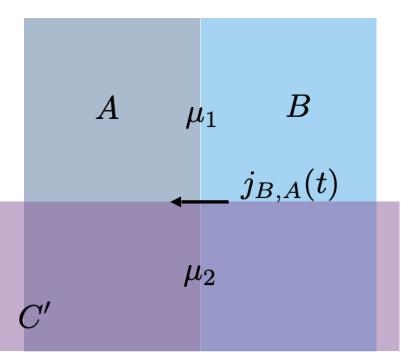
Edge and bulk invariants

	Non-interacting	Interacting, no symmetry	Interacting, U(1) symmetry	Interacting, discrete symm
Edge	Rudner et al, 2013	Gross et al, 2012 Po et al, 2016	CZ & ML, 2020 CZ & ML, 2022	CZ, in prep
Bulk	Nathan et al, 2017 CZ & ML, 2022	CZ & ML, 2022	CZ & ML, 2022	?

Additional results







Flows for non-interacting systems and interacting with U(1) symmetry using currents \rightarrow Physical measurable signatures

Bulk invariant for interacting systems with U(1) symmetry using flux insertion Physical observable: conserved current between regions of different chemical potential/filling

Outlook

- Bulk boundary correspondence for SPT pumping Floquet systems
- Topological invariants for beyond-cohomology SPT entanglers
- Application to fermionic systems
- Bulk boundary correspondence for Nth roots of MBL Floquet systems (i.e. dynamical honeycomb model)
- Bulk boundary correspondence in higher dimensions
- Stability to perturbations away from MBL Floquet

Edge and bulk invariants

	Non-interacting	Interacting, no symmetry	Interacting, U(1) symmetry	Interacting, discrete symm
Edge	Rudner et al, 2013	Gross et al, 2012 Po et al, 2016	CZ & ML, 2020 CZ & ML, 2022	CZ, in prep
Bulk	Nathan et al, 2017 CZ & ML, 2022	CZ & ML, 2022	CZ & ML, 2022	?