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Metal near a quantum critical point (QCP)

In many strongly correlated materials, superconductivity emerges
in the vicinity of a QCP!
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Measurements show anomalous behaviors that contradict with Fermi liquid

Normal state: linear-in-T resistivity, breakdown of Landau quasi-particle, etc.

Superconducting state: the underlying mechanism goes beyond BCS theory!

Driven force: Enhanced quantum fluctuation in proximity to a QCP
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Fermion-boson model

In the low-energy spectrum, there are two basic interredients
% Fermions with a Fermi surface (FS)

%k softened bosons (i.e., collective modes of electrons near a QCP)

Incomplete list of authors in this front

Abanov, Chubukov, Schmalian, 2003; Metlitski, Sachdev, 2010; Patel, Strack, Sachdev,
2015; Schatter, Lederer, Kivelson, Berg, 2016; Xu, Sun, Schattner, Berg, Meng, 2017, ...

Strong-coupling problem = require advanced many-body techniques

We focus on a subset of this model, where the typical enerqy scale of bosons is
much smaller than the Fermi enerqy

% Momentum integration is factorized along and transverse to Fermi surface (FS)

%k Average over FS leads to a singular frequency-dependent interaction

V(Qn)=(9/%)"  (dubbed as the “y model”)

In BCS superconductor, V(Q)=const. at small frequency. It corresponds to y=0.
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Relevance to microscopic models

Ising-nematic QCP in 2D (collective modes with Landau damping): y=1/3

P-A Lee, Bonesteel, MacDonald, Nayak, Millis, Altshuler, loffe, Metlitski, Mross, Sachdeyv,

Senthil, Berg, Kivelson, Fradkin, Oagnesyan, Lederer, Trebst, Metzner, Pepin, Efetov,
Maslov, Klein, Raghu, ...

Spin density wave QCP in 2D (over-damped paramagnon): y=1/2

Millis, Sachdev, Varma, Finkelstein, Schmalen, Metlitski, Y. Wang, Efetov, Pepin, Zaanen,
Tremblay, Berg, Fernandes, Tsvelik, S-S Lee, Di Castro, Castellani, Grilli, Gaprara, ...

SYK models: 0<y<1 (depends on ratio between number of fermions &
bosons) Esterlis, Schmalian, Y. Wang, Classen, ...

l[ron based SC: y~1.2 Kotliar, Miao, Lee, ...

Phonon mediated SC (strong coupling regime): y=2

Carbotte, Marsiglio, Combescot, Scalapino, Ranninger, Maksimov, Dolgov, Kivelson,
Esterlis, Mazin, Yuzbashyan, Altshuler, ...

In this talk, we take y as a tunable parameter

Universal theory (all microscopic details are encoded into a single parameter)
6
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Competition between non-Fermi liquid and
superconductivity (SC)

Two effects of the interaction
1. Singular self-energy in the normal state % (wy,) = wjw,, ?

(No Landau quasi-particle; non-Fermi liquid)
2. It provides attraction in certain pairing channel
The two effects compete with each other!
Absence of Landau quasi-particle = Cooper logarithm doesn’t exist

Pairing of electrons -> Gaps out the spectrum and restores FL

The competition is captured by the Eliashberg-like equation

V(wp, = wm) pairing vertex

V(wp, — wm) self-energy




Onset temperature of pairing

Normal state

T,/g
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Pairing occurs even if the normal state is a non-Fermi liquid!

Ground state develops superconductivity.
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Ground state phase diagram

SC-I SC-lI

®
0 2

Topological phase transition

It is characterized by dynamical quantities
instead of band topology!
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Why y=2 is special?

Let's look at the interaction vertex

Along Matsubara-frequency axis

V(Qm) — (g/ﬂm)v

%k Real and attractive for all y. Nothing is special at y=2

Along real-frequency axis

V'(Q) = (ﬁ)vcosw—; V'(Q) = (ﬁ)vsin %sgn(ﬂ)

Real part: attractive (0<y<1); repulsive (1<y<3)
Imaginary part changes sign at y=2
%k BCS limit (y=0): purely real function and attractive

%k y=2 is special: purely real function and repulsive
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Gap function along Matsubara axis
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Gap function evolves continuously as a function of y
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Gap function along real-frequency axis

Before solving the gap equation, we notice that

%k Gap function is generally complex  A(w)=|4(w)|explin(w)]

%k Boundary behavior A(w=0) is real, A(w—) ~ exp(izy/2)/wr

n(0) =0 n(oco) = 7y/2 mod 2z

Between the two limits, phase # may wind up by integer times (W).

To determine W, we need to solve the gap equation.

Indeed, it is non-zero for some parameter regime of y
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Gap function along real-frequency axis

We solved the gap eqn along real axis
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Dynamical vortices on upper frequency plane
Upper plane: z=w'+ i ", A(z) = |4A(z)| exp(in(z))
Dynamical vortex: around which, phase » changes by 2«

Cauchy inteqgral A

-2xy from big semi-circle

> >
—R _ R @
47W+27xy along real axis

Phase change along boundary = 2z * number of vortices (2m)

> m=W
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Dynamic vortices
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Dynamic vortices

The dynamic vortex is a topological defect and appears in the frequency
dependence in A(w)

-> It is not detectable by order parameter of pairing defined as equal-time
correlator A(r1,72) ~ {cp, (£)cp, (1))

This is similar as odd-freq. pairing (4(w)=-A(-w))—dynamical order
Linder, Balatsky, RMP, 2019
-> Necessary condition: strongly retarded interaction!

Retarded effect is not specific to QCP, e.g., dynamic vortex also exists in electron-
phonon superconductor.

100 140 : 5.2

Christensen, Chubukov, 2021
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Measurable effects of dynamic vortex?

Single-electron density of states (DoS)!

In the absence of dynamic vortex:
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When a vortex crosses the real axis = 4=0 at vortex core, N(w)=Nr = a bump in DoS
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Other possible effects: Josephson ac currents 18



There are also poles!

Pade approximation gives
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SSZ, Wu, Abanov, Chubukov, 2021
At y</=2, gap function is analytic on upper plane! = physically allowed!

This line of poles align with real axis at y=2 = Again, y=2 is special!

What happened at y>27
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What happened at y>27?

Pade approximation shows, this line of poles rotate to upper half plane
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This is unphysical solution, because it violets the causality principle!

e.g., single-particle density of states is negative

To resolve this issue;:

The gap function has to switch to another Riemann surface at y>2!
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Switch to different Riemann surface (y>2)

More precisely, look at the gap function near the spectral gap wo (lower-

edge of the density of states)

D(w) —1xd6",0 =wy —w—i0"

D(w)= A(w)/w

Exponent v is universally determined as a function of y

Key point: v=2 at y=2 but takes fractional exponent nearby.

=> branch-cut singularity!

Above the spectral gap, 6=wo-w<0, there are multiple ways to write down the

gap function

5Y — |5|1/6i(2p—|—1)1/7r

p: integer (indicates different Riemann surfaces)
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Switch to different Riemann surface (y>2)

Which Riemann surface does the physical gap function reside on?

Requirement: density of states must be positive!

N(w) = NOIm\/D2(wl) T

Conclusion;
p=-1 for y<2
-> |Different Riemann surface
p=0 for y>2
SC-I SC-ll
@ >
0 2 y

(Special type) topological phase transition!
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Measurable effects of the transition?

Look at the single-electron density of state
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Summary

We discussed (dynamic) topological aspect of a quantum critical
superconductor

% Dynamic vortices, special topological transition at y=2

%k These features appear away from Matsubara axis

%k Measurable effects of the dynamic vortex

There are additional features, e.g. linearized gap equation has
solution at T=0, condensation energy spectrum, unconventional
low-energy excitations, etc..

Artem, Chubukov, 2020
SSZ, Wu, Abanov, Chubukov, arXiv: 2208.13888
SSZ, Chubukov, to appear
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