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RHIC beam energy scan

Can we experimentally locate the QCD phase transition, either by detecting

a critical point, or by identifying a first order transition?

Baryon Doping - 

RHIC



Basic discovery idea: Study fluctuation observables. Expect non-monotonic

variation of 4th order cumulant near Ising critical point.

Real world may well be more complicated:

� Finite size and finite expansion rate effects.

� Non-equilibrium effects (memory, critical slowing).

� Freezeout, resonances, global charge conservation, etc.

Motivates dynamical studies.

Figure from Bzdak et al. [1906.00936]



RHIC beam energy scan, BESI

BESII data have been taken, and are being analyzed.



Dynamical Theory

What is the dynamical theory near the critical point?

The basic logic of fluid dynamics still applies. Important modifications:

� Critical equation of state.

� Stochastic fluxes, fluctuation-dissipation relations.

� Possible Goldstone modes (chiral field in QCD?)



Outline:

1. Stochastic field theories: Diffusion of a conserved

charge.

2. What if fluctuations are large? Functional methods,

the nPI action.

3. Large fluctuations: Numerical approaches to stochastic

diffusion.



1. Stochastic diffusion

Consider diffusion of a conserved charge

∂0ψ + ~∇ · ~ = 0 ~ = −D∇ψ + . . .

Introduce noise and non-linear interactions

∂0ψ = κ∇2 δF
δψ

+ ξ

F =

∫
ddx

[
γ

2
(~∇ψ)2 +

m2

2
ψ2 +

λ

3
ψ3 +

u

4
ψ4

]

〈ξ(x, t)ξ(x′, t′)〉 = κT∇2δ(x− x′)δ(t− t′) D = κm2

Equilibrium distribution

P [ψ] ∼ exp

(
−F [ψ]

kBT

)



Stochastic Field Theory

Stochastic effective lagrangian

L = ψ̃
(
∂0 −D∇2

)
ψ + ψ̃DT∇2ψ̃ + ψ̃Dλ∇2ψ2 + . . .

Diffusion Noise Interactions

Matrix propagator

 〈ψ̃ψ̃〉 〈ψ̃ψ〉
〈ψψ̃〉 〈ψψ〉

 =

 0 GR

GA GS

 =

 

Analytic structure of the Schwinger-Keldysh propagator

Interaction vertex

Dλk2
k What are the rules for constructing

more general vertices?



Time reversal invariance

Stochastic theory must describe detailed balance

P (ψ1 → ψ2)

P (ψ2 → ψ1)
= exp

(
− ∆F
kBT

)
Related to T-reversal symmetry

ψ(t) → ψ(−t)

ψ̃(t) → −
[
ψ̃(−t) +

δF
δψ

]
L → L+

dF
dt

Ward identities: Fluctuation-Dissipation relations

2κ Im
{
k2〈ψ(ω, k)ψ̃(−ω,−k)〉

}
= ω〈ψ(ω, k)ψ(−ω,−k)〉



New and non-classical interactions

At this order (Ψ3,∇2) there is one more interaction

Multiplicative noise : L ∼ DλDψ(~∇ψ̃)2

DλDk1 · k2
k1

k2

Non-linear noise vertex

Retarded self energy

noise non−linear noise



Contribute to (non-critical) order parameter relaxation

Σ(ω, k) =
λ′

32π

(
iλ′ωk2 + λD

[
iω −Dk2

]
k2
)√

k2 − 2iω

D

Analytical structure

Diffusive cut dominates over (split)

diffusive pole.

Even higher order: Non-linear noise with no contribution to constitutive

equations.

Chao, T.S. [2008.01269], see also Chen-Lin et al. [1811.12540] and Jain & Kovtun [2009.01356]



2. 1PI effective action

Consider 1PI effective action

Γ[Ψ, Ψ̃] = W [J, J̃ ]−
∫
dt d3x

(
JΨ + J̃Ψ̃

) δW

δJ
= 〈ψ〉 = Ψ ,

Loop expansion

“Classical” equation of motion

(∂t −D∇2)Ψ− Dλ2

2
∇2Ψ2 +

∫
d3x dtΨ(x′, t′)Σ(x, t;x′, t′) = 0



2PI effective action

Consider 2PI effective action

Γ[Ψa, Gab] = W [Ja,Kab]− JAΨA −
1

2
KAB [ΨAΨB +GAB ]

Matrix propagator Gab, Bilocal source Kab

Equation of motion for Ψa unchanged, but Σab satifies Dyson-Schwinger

equation


Σ11 Σ12

Σ21 Σ22

 =







Gap equation (mixed representation)

Consider mixed representation Σ(t, k2). Free propagator G0
R = Θ(t)e−tDk

2

Σ(t, k2) ∼ λ2

∫
d3k′G(t, k − k′)G(t, k′)

Have to determine G from Dyson equation (matrix structure suppressed)

G(t, k2) = G0(t, k2)−
∫
dt1 dt2G0(t1, k

2)Σ(t2 − t1, k2)G(t− t2, k2)

Short time singularities regulated by Pauli-Vilars “Diffuson”

Example: GR(t, k2) for fixed k in

weak coupling regime

λ,m ∼ O(1)
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3. Stochastic diffusion

Stochastic relaxation equation (“model A”)

∂tψ = −Γ
δF
δψ

+ ζ 〈ζ(x, t)ζ(x′, t′)〉 = ΓTδ(x− x′)δ(t− t′)

Naive discretization

ψ(t+ ∆t) = ψ(t) + (∆t)

[
−Γ

δF
δψ

+

√
ΓT

(∆t)a3
θ

]
〈θ2〉 = 1

Noise dominates as ∆t→ 0, leads to discretization ambiguities in the

equilibrium distribution.

Idea: Use Metropolis update

ψ(t+ ∆t) = ψ(t) +
√

2Γ(∆t)θ p = min(1, e−β∆F )



Dynamic scaling (model A)

Correlation functions at Tc, V = L3, L = 8, 16, 24, 32

G1(t) = 〈M(0)M(t)〉 M(t) =

∫
d3xψ(x)

Dynamic critical exponent z = 2.026(56).



Correlation functions of higher moments

Correlation functions at Tc

Inset: Dynamic scaling of

G3(t) with

z = 2.026(56).

Gn(t) = 〈Mn(0)Mn(t)〉 M(t) =

∫
d3xψ(x)

Dynamic scaling holds for all n, but deacy constant depends on n.



Relaxation after a quench

Thermalize at T > Tc. Study evolution at Tc

Cn(t) = 〈〈Mn(t)〉〉M(0)(n = 2, 4) M(t) =

∫
d3xψ(x)

Observe separate early (“slip”) and late (“dynamical”) exponents.



Summary

Dynamical evolution of fluctuations is important.

Old and new ideas about effective actions on the Keldysh contour. In

principle allows systematic derivation of hydro equations for n-point

functions.

Alternative approach: Direct simulation of stochastic fluid dynamics.

New idea: Ignore backreaction, and use Metropolis (or heat bath?)

algorithm.

Not discussed: From conserved charges to particles.


