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FQH topology

Fractional quantum Hall states are the canonical example of
topological order 1n strongly interacting quantum matter.

2d electron gas in out-of-plane magnetic field (clean samples low T)
fractional Hall conductance

incompressible liquid with no local order parameter

robust chiral edge states

anyonic quasiparticle excitations

Laughlin’s 1/3 state 1s the simplest FQH state, well described by
the Laughlin’s continuous 2d wave function.



FQH geometry

week ending
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The fundamental collective degree of freedom of fractional quantum Hall states is identified as a
unimodular two-dimensional spatial metric that characterizes the local shape of the correlations of the
incompressible fluid. Its quantum fluctuations are controlled by a topologically quantized **guiding-center
spin.” Charge fluctuations are proportional to its Gaussian curvature.

Rotational symmetry 1s not necessary for FQH
A metric characterizes the shape of the electron-flux composite droplets

Galilean mass tensor (band structure property of 2d quantum well)
Coulomb tensor (dielectric tensor of 3d background)

Important consequences like Hall viscosity



FQH graviton

The geometric description also sheds light on collective neutral modes

Girvin-MacDonald-Platzmann mode (1985)

Quadrupole
(2 qh+2 qp)

L=2 Angular
momentum

Metric fluctuations

Similar to graviton

Haldane 2011

Collective density mode (magnetoroton)
Similar to Feynman’s theory of superfluid He

At long-wavelength described by SMA
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Z. Liu, A. Gromov, and Z. Papic, Phys. Rev. B 98, 155140 (2018).

Experimental detection of magnetoroton mode are through
inelastic light scattering [Kang et al, 2001] and surface
acoustic waves [Kukushkin et al, 2009]. However k=0
cannot be probed easily because the mode enters the
continuum.



NISQ devices

In the meantime, there has been significant progress in synthetic analog and digital platforms

Superconducting qubits
Trapped 10ns
Cold atoms

Still imperfect, relatively small number of high-quality qubits, high levels of error and noise

NISQ: Noisy Intermediate-Scale Quantum devices

While we’re waiting for large-scale error-corrected universal quantum computers, are there
problems that benefit from the NISQ devices?

The holy grail is quantum simulation of important and classically intractable theoretical
problems, using these novel experimental platforms for theoretical discovery.

A more accessible objective is experimental observation of phenomena that
are challenging to probe in nonsynthetic platforms.

Detection of the FQH graviton



Thin-cylinder FQH

One-dimensional models of FQH are suitable for NISQ implementation

Let qubits represent orbitals in the lowest Landau levels
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do LyL,

Focus on lowest Landau level, assign a fermonic creation operator
to each of the degenerate orbitals 1n the level
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Thin-cylinder FQH
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General form of the electron-electron interaction Hamiltonian in
this basis
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E. J. Bergholtz and A. Karlhede, Phys. Rev. Lett. 94, 026802 (2005).
A. Seidel, H. Fu, D.-H. Lee, M. Leinaas, J. Moore, Phys. Rev. Lett. 95, 266405 (2005).

The structure of the potentials determines the state.
For the potential below, the Laughlin state is the solution
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Thin-cylinder FQH

Squeezing operator
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Potentials decay as Gaussians

We can truncate the interactions, the approximation improves for
thinner cylinders.



Thin-cylinder FQH

H = Z Vlonj+1nj+2 + Vgonjnj+2 -+ Vgonjnj+3 + \/V10V30 (C}C}+3Cj_|_20j_|_1 + HC)
J

Local squeezing

1001 < 0110
The ground state of the above Hamiltonian 1s given by the expression

T T
Si = Cir1C;42Ci4+3C;

1
V30

L= V_ One parameter in 1D model, encoding the aspect ratio of 2D electron gas
10

M. Nakamura, Z.-Y. Wang, and E. J. Bergholtz, Phys. Rev. Lett. 109, 016401 (2012).
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Quantum algorithm for ground state

Fibonacci constraint from truncation

100 100 100 100 100
100 100 011 000 100

We cannot squeeze two neighboring blocks

Let F (M) be the number of states with M blocks

F(M)

F(M-1) | 100

F(M-2) 1 011] 000




Quantum algorithm for ground state

The operator acting on the direct product CDW 1is not unitary. How can
we construct an algorithm for making the state with standard gates?

1 —15,;
J
Apply the following unitary sequentially from the end of the chain

U, = 6¢j(sj—s;r)

We have showed that the above unitary operators provide the same
ground state 1f the angles follow from the recursion relation

tan(¢r_s3) = t cos(ox)

with boundary condition

ON N—1,N—2 = arctan(t)



Quantum algorithm for ground state

Squeezing 1s a controlled rotation for reduced registers!
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Verification of state preparation

N =24 N — o0

2 4 6 8 10 12 14 16 18
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Verification of state preparation

A string operator capturing topological order (off-diagonal long-range
order after a singular gauge transformation)
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S. Girvin and D. Arovas, Physica Scripta 27, 156 (1989).
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Probing the graviton

1) Endow the Hamiltonian with metric

2) Perform a geometric quench that couples to graviton
A
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Pq 18 the density projected onto the Landau level

L 1a.R.; o« 1o .
pq = ), €' ——guiding-center coordinate

For the v = 1/3 Laughlin state, we have

Va=(1—|qg*)elal/*
-« T

Interaction Landau-level form factor
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Probing the graviton

|q| 2 — 9aB9aqs3 Integrating out one momentum gives the 1D model
Ny—1
T T T
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Parameterization of general unimodular metric: rotation and stretch

~( cosh (@) 4 cos ¢sinh () sin ¢ sinh ()
I = sin ¢ sinh () cosh () — cos ¢ sinh ()



Probing the graviton

Geometric quantum quench

Z. Liu, A. Gromov, and Z. Papic, Phys. Rev. B 98, 155140 (2018).

1) Create a Hamiltonian with an extrinsic metric g

2) Start in the ground state for a trivial extrinsic metric g 1 0O QY ()

3) Suddenly change the extrinsic metric 0 1 — 0 1 /
@7

4) Unitary evolution gives rise to time-dependent
state similar to ground state with a time-dependent g’

5) Emergent intrinsic metric (wave function property)



Probing the graviton

PHYSICAL REVIEW X 7, 041032 (2017)

Bimetric Theory of Fractional Quantum Hall States

Andrey Gromov and Dam Thanh Son

Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA
(Received 24 May 2017; published 10 November 2017; corrected 8 February 2018)

We present a bimetric low-energy effective theory of fractional quantum Hall (FQH) states that describes
the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman
(GMP) mode. The theory consists of a topological Chern-Simons action, coupled to a symmetric rank-2
tensor, and an action a la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is
formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the
effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate
the projected static structure factor up to the k® order in the momentum expansion. To provide further
support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the
GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH) transformation of the theory takes
a very simple form, making the duality between FQH states and their PH conjugates manifest. We also
comment on the possible applications to fractional Chern insulators, where closely related structures arise.
It is shown that the familiar FQH observables acquire a curious geometric interpretation within the bimetric
formalism.

Simple predictions 1n the linear regime

E t ~ T Bt
= +2A5; —J — J

E, 1s the energy of the graviton mode



Probing the graviton

The model with metric 1s still solvable upon truncation! Q=0—0Q=0.18
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Spectral function for quadrupolar generalized pseudopotential [Bo Yang et al, PRL 118, 146403 (2017)]



Implementing the quench in quantum device

Mapping to reduced-register spin chain
100, 100,100, ...} — [0,0,0,...)

100,011,000,...) — |0,1,0,...)
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Implementing the quench in quantum device
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Implementing the quench in quantum device

Variational method

(a)

qo — Rl [ HE- (%) T

d1 Ro(a) (R (4) T

q2 Ry(e) (R (5) T

q3 Rofo) - (4)
q4




Implementing the quench in quantum device

Variational method
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Implementing the quench in quantum device

Quantum hardware results
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Deep trotterization circuits implemented with noise-aware error
mitigation and optimized quantum compiling



Summary

We introduced a 1D model capturing the physics of 1/3 FQH state endowed with a metric
The geometric quench of the model 1s governed by the biometric theory of a spin-2 graviton
We implemented a geometric quench on the IBM device using error-mitigated trotterization

We observed coherent oscillations in multiple quantities with a single graviton frequency,
providing a physical probe of the FQH graviton on a synthetic platform

We found a variational algorithm that generates the post-quench state in the thermodynamic limit
with only two parameters

Outlook

Probing topological charged excitations and their braiding using the 1D construction

Generalization to other fractional states



