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Strange Metals

» Several two-dimensional or layered materials
with strongly correlated electrons display a
ubiquitous and unusual metallic phase at

°§ intermediate values of carrier density.

Q’@o% y » Unlike Landau Fermi liquids, which have a DC

% electrical resistivity that scales as 72, these

strange metals have a resistivity that scales
linearly with temperature.

» This often occurs near a quantum critical
point.

Strange Metal

Temperature
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Strange Metals

« While, at high temperatures, T-linear resistivity might putatively be explained by
phonons, at low temperatures one expects #(T) = p(0) + aT” for Landau Fermi liquids, with
the temperature dependence arising from the parts of the quasiparticle decay process
that involve momentum and current relaxing Umklapp scattering.

» This T-linear behavior is often accompanied by other signs of strong interactions - such as
a large, T-dependent quasiparticle effective mass that shows up in specific heat

measurements.
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Landau Fermi Liquid Metal
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non-Fermi Liquid Metal
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non-Fermi Liquid Metal

Lo=vl (g o)) v+ Lo= 3 [@:0) + (V6P + (A~ A)#]

“Yukawa” coupling: g/dQTdT wT(T,TW(T, T)P(r, 7)

Eliashberg solution for electron (G) and boson (D) Green’s functions at small w:

2k, iw) ~ —isgn(@)wl”?, Glhiw) = : Dig,i1) : e
,iw) ~ —isgn(w)|w , , W , )1
s iw—e(k k:zw Q2+q +7122/q
(in two spatial dimensions)
(Boson is massless
but damped at QCP)
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non-Fermi Liquid Metal

Because of the conserved total momentum due to translational invariance, and a
finite charge density that prevents excitation of currents without excitation of
momentum, such a metal has an infinite DC conductivity (up to some weak Umklapp
processes on a lattice), as a finite DC conductivity requires current, and therefore
momentum, to relax.

Presence of impurities (red bumpers) is required to
degrade momentum and therefore current,
irrespective of whether quasiparticles are well-
defined or not.

All these 2D or quasi-2D materials with low-temperature strange metal N~ FLATIRON
behavior have plenty of disorder (dopants, twist angle mismatch etc). S



Disorder vs. no Disorder in Experiment
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non-Fermi Liquid Metal with Disorder
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“Yukawa” coupling: g/d27“d7' wT(T, T)Y(r, 7)p(r, T)

Random potential /dzrdT o(r) YT (r, ) (r, 7)

Spatially random potential v(r) with v(r) = 0, v(r)v(r’) = v?§(r — ')

e
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Boson self ener II~—=|Q D(q,iQ)) = ———
w ‘ : (7%) a2 + 7|9
’ 1 . e
Fermion self energy: Y(iw) ~ —iv?sgn(w) — @g—zwln(l/\wb; — ~ |¢| (in two spatial dimensions)
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non-Fermi Liquid Metal with Disorder

2
g . 1
Boson self energy: Il ~ —=(|, D(q,i)) = ———

2
1

Fermion self energy: ¥ (iw) ~ —iv?sgn(w) — ig—len(l/\w\); —— ~ |¢

v

7(e)

Marginal Fermi liquid self energy and T In(1/T") specific heat

However, because the fermion-boson interactions
largely represent forward scattering (boson propagator
is peaked at g = 0), the marginal Fermi liquid
contribution does not contribute to the resistivity
(which remains a constant at low T).
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Spatially random interactions!

Puddle formation, persistent gaps, and
non-mean-field breakdown of
superconductivity in overdoped
(Pb,Bi),Sr,CuOg,s

Willem O. Tromp, Tjerk Benschop, Jian-Feng Ge,

Irene Battisti, Koen M. Bastiaans, Damianos Chatzopoulos, Amber
Vervloet, Steef Smit, Erik van Heumen,

Mark S. Golden, Yinkai Huang, Takeshi Kondo, Yi Yin, Jennifer E.

Hoffman, Miguel Antonio Sulangi, Jan Zaanen, Milan P. Allan

Our scanning tunneling spectroscopy measurements in the
overdoped regime of the (Pb,Bi),Sr,CuOg,s high- temperature

superconductor show the emergence of puddled superconductivity,
featuring nanoscale superconducting islands in a metallic matrix

arXiv:2205.09740
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Spatially random interactions!

Randomness in hopping ¢;; leads to randomness in exchange interactions t%j /U. The interaction
associated with the ¢ collective mode has the schematic form

— / d?rdr J(r)p T

where we have omitted a local ‘form factor’ for the interaction, and the random strength of the
overall interaction is determined by the coupling J(r). Upon decoupling

[ i gy -]

This as a random ‘mass’ in the boson and is strongly relevant.



Spatially random interactions!

Randomness in hopping ¢;; leads to randomness in exchange interactions t?j /U. The interaction
associated with the ¢ collective mode has the schematic form

— / d?rdr J(r)p T

where we have omitted a local ‘form factor’ for the interaction, and the random strength of the
overall interaction is determined by the coupling J(r). Upon decoupling

[ i gy -]

This as a random ‘mass’ in the boson and is strongly relevant. A|key ideal|is that we should
account for the relevant disorder exactly by rescaling the field ¢ in a r-dependent manner so that

[ derar [%2 - Www]

The disorder is in the boson-fermion coupling, and can be accounted for systematically.




non-Fermi Liquid Metal with Disordered interactions

1

Ly =] (a% + e<k>) ve Tt Lo=75[(0:6)°+ (V)" + (A= A)o]

Random potential /d2rd7' v(r) @DT(T, T)Y(r, 7T)

“Yukawa” coupling: /dZTdT g+ ¢' ()] ¢T(7“, )Y (r, 7)p(r, T)

Spatially random Yukawa coupling ¢’ (r) with ¢’(r) = 0, ¢'(r)g' (") = ¢"*6(r—1")

Fermion self energy: ¥ = X, + X, + X

2
¥y (iw) ~ —iv?sgn(w), I, (iw) ~ —i‘Zlen(l/|w|), Yy (iw) ~ —ig?wln(1/|w|) (in two spatial dimensions)
Boson self energy: II = II, + II,
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non-Fermi Liquid Metal with Disordered interactions

Cancel for g (forward scattering) but not g’ (large angle and momentum non-conserving scattering).

O & O

(a) (b) (c)
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* “ + all rainbows/ladders/boxes)
(d) (e)

V\/V

Leading contributions cancel in the large kr limit; only sub-leading «w*/Er terms survive.
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non-Fermi Liquid Metal with Disordered interactions

Fermion self energy: ¥ = 3, + X, + Xy

2
Yy (iw) ~ —iv?sgn(w), 3, (iw) ~ —ig—zwln(1/|w\), Y (iw) ~ —ig”wln(1/|w|) (in two spatial dimensions)
v

Boson self energy: IT =11, + I,

2
| g . ) — L
HQ(ZQ) ~ —v—2|Q|, Hg/(/LQ) ~ _9/2|Q|a D(q7/LQ) - q2 +,Y|Q|

The g2 log term does not contribute to transport
but the ¢’ log term does!

Conductivity: o(w) ~ [1/Tirans(w) — iw m*(w)/m] "

m* (Cd) 29/2
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Other Order Parameters

 Finite-wavevector (e.g. antiferromagnetic) quantum criticality

Hin = (9 + 9/ ()90, 6, + Hec.)

g interactions are off shell for
the parts of the Fermi surface
away from the measure zero
“hot spots”, but ¢’ affects the
entire Fermi surface. The
transport scattering rate is
thus set by ¢ for almost all of
the fermions, giving rise to
strange metal behavior in 2D
at the QCP.




Other Order Parameters

« Two-band quantum criticality of hybridization
Hing = (g + ¢'(r))(c} b, + H.c)

g interactions are off shell as ¢
and f Fermi surfaces do not
match, but ¢’ affects the
entire Fermi surfaces. The
transport scattering rate is
again thus set by 9 for almost
all of the fermions, giving rise
to strange metal behavior in
2D at the QCP. N~ FLATIRON
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Other Order Parameters

« The 9'mechanism for strange metals in 2D also works for quantum critical
random pairing, pair density wave etc.

 This universal behavior independent of order parameter type simply occurs
because the disordered ¢' always couples the fermions to the local fluctuations
of 2D quantum critical bosons in a current and momentum-relaxing manner.
The local boson fluctuations have the “marginal” susceptibility

X(@) ~ (B0 () ~ [ T m(Az).

@+l T\l
« When combined with the constant density of states near the Fermi surface, this
gives T-linear resistivity. This universality is particularly appealing given the

diversity of quantum criticalities leading to 2D strange metals in experiment.
i- FLATIRON
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Why Does All This Work?

 This is not all just uncontrolled perturbation theory. The diagrams we sum
correspond to an exact large N saddle point of a certain type of model;

« Promote fermions and bosons to N flavors per site: ¥ = ¥5: @ = 95 j = {1..N}.

« Make the couplings ¢ and ¢' random in the flavors (in addition to ¢’ being
random in space). 9= gijk: Hu ~ Y gintlion  (gin) =0, {ginl?) = 6*/N?, gl = gjin-

ijk

 This is like the Sachdev-Ye-Kitaev (SYK) model, but with fermions and bosons
instead of only fermions. Now called the Yukawa-SYK model.

A. A.P.and S. Sachdev, PRB 98, 125134 (2018)
. Esterlis and J. Schmalian PRB 100, 115132 (2019)
Y. Wang, PRL 124, 017002 (2020) ]~ FLATIRON
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(Initial papers on Yukawa-SYK, construction but in 0+1 dimensions)



Why Does All This Work?

T — e The large N limit of the Yukawa-SYK construction
T leads to exact 1-loop self-consistent Eliashberg
equations, whose solution matches the perturbative

solutions discussed earlier.
Y — % e The series of diagrams summed for the current

correlation function also matches the series

O @ ’ discussed earlier.

b
(a) .;( ) a(:: ), (+ all rainbows/ladders/boxes)
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Why Does All This Work?

» The Green’s functions are defined as a saddle point of the large N theory like in
SYK.

« However, unlike SYK, 7/N fluctuations about this saddle point are much weaker
due to the absence of any soft modes... (see arXiv:2103.08615).

0S =N 5G1 9 ( 1_213 4= 1) 5G3 4 (No unit eigenvalue of K, therefore no soft
1.2:3.4 ’ e ; fluctuating mode unlike SYK)

e Therefore, corrections to the large-N saddle point, and therefore theory defined

by the diagrams mentioned in this talk are “weak”.
t- FLATIRON
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Quantum Monte Carlo

« Simulate sign-free two-band versions of the problem in 2D with random ¢’

interactions using QMC techniques. No large N limit.
» Using Hybrid Monte Carlo (HMC) allows for larger spatial system sizes which

aids in the self-averaging of disorder.
e Work in progress (with Peter Lunts and Michael Albergo), but very preliminary

results show encouraging signs of [<2|boson damping at low frequencies and
therefore the z = 2 quantum criticality predicted by theory...
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Dynamical Mean Field Theory

« Consider a situation with potential (v) disorder, and a purely disordered (¢’
but no 9) interaction. The large N theory predicts strange metal behavior.

1 1
iw + ilsgn(w) — vr(k — kr)  ilsgn(w)

Go(k, iw) = (’UF(IC — kF) < F)

(Smeared FS in a disordered system)

« The Green’s function near the FS is essentially local. The disordered ¢’
interactions also couple fermions to local boson fluctuations as mentioned
earlier. Almost all diagrams (including the large N saddle point diagrams)
involve only local propagators. N~ FLATIRON

Quantum Physics




Dynamical Mean Field Theory

» Because of the local propagators, this model is a good case for single-site
DMFT even though it’s a 2D system! An exact numerical solution can then be
performed without invoking any large N.

S = /d'rdT'cI,('r) [6(r =)0, — A(T — ') co(7') + q / drd™'D(t —7') O(7) - O(1');

A
()‘ - )‘c) - H(ZQ)

A (r—7)=T2G,(t—7'), D@EQ) =l [ ] , I(r —7") =(0(7) - O(7));

1) —nlr) S.(7] §(’r), etc.

(Can solve this using CTQMC methods such as CTSEG and obtain phase
diagram, self-energies etc. Work in progress.)
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Takeaways and future directions...

 Disorder in strongly correlated systems can manifest not just as potential
disorder for the electrons, but also disorder in electron-electron interactions!

 Disorder is important to relax momentum strongly enough to lead to sizable
resistivity at low temperatures below any phonon or Umklapp scales.

e The non-conserving inelastic scattering induced by interaction disorder leads
to the low temperature strange metal behavior seen in experiments in
essentially any 2D quantum critical itinerant electron system with a finite
density of electrons.

» A combination of analytical and numerical techniques will lead to a full
solution of all aspects of the disordered quantum critical problem, and allow
for close and hopefully predictive connections to microscopics.i_ CLATIRON
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Thank you for your attention!
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