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Nuclear energy density functional
• Spin & isospin degrees of freedom
• Nuclear superfluidity 
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Deformation effects for photoabsorption cross section

SkM* functional

Intrinsic Q moment
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FIG. 2: (Color online) Energies of �-vibrational states from a) experiment [43], b) SkM⇤, c) SLy4, and d) Delaroche et al. [54].

FIG. 3: (Color online) B(E2; 0+gs ! 2+� ) corresponding to Fig. 2. The value for 162Dy in c) is 0.562 e2b2. This figure has no
panel d) because the results from the calculation of Delaroche et al. [54] are not published. We include only those experimental
data that are labeled �-vibrations in Ref. [43]. The symbols for particular isotopic chains are the same in each panel.

where Ecal and Eexp are the calculated and experimen-
tal energies of the �-vibrational state. The results are
in Tab. I. SLy4 actually does better than SkM⇤ in the
averages, but gives much larger dispersions.

Table II shows the statistical measures for the spherical

nuclei treated in Ref. [53] and for the subset of those
nuclei that exhibit “low softness.” (Some of the other
nuclei in Ref. [53] are transitional.) There are far more
nuclei in the spherical data set than in the deformed rare-
earth set, so it is hard to make a precise comparison of

Low-energy states
• Low-energy collective states

• Linear response cal.
• Not as good as GR

Terasaki, Engel, Phys. Rev. C 84, 014332 (2011)

gamma vib.
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Large amplitude collective motion

• Decay modes
• Spontaneous fission
• Alpha decay

• Low-energy reaction
• Sub-barrier fusion reaction
• Alpha capture reaction (element synthesis in the stars)



Problems in nuclear (TD)DFT

• Problems
• Low-energy collective motion
• Many-body tunneling (spontaneous fission, sub-barrier fusion, astrophysical reaction)

• Main origin of missing correlations
– Quantum fluctuation associated with “slow” collective motion



Strategy

• Purpose
– Recover quantum fluctuation effect associated with “slow” 

collective motion
• Difficulty

– Non-trivial collective variables

• Procedure
1. Identify the collective subspace of such slow motion, with 

canonical variables (", $)
2. Quantize on the subspace    ", $ = 'ℏ



• Collective canonical variables (", $)
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One-to-one correspondence
• One-to-one correspondence between the self-consistent 

collective subspace and a given collective space
• ') ↔ Ξ)

=
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(q1, q2)
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Figure 3: Illustration of the mapping of (q1, q2) defined on the collective submanifold
onto the (�, �) deformation plane of the Bohr-Mottelson collective model. The collective
submanifold is illustrated as a hypersurface in the huge-dimensional TDHFB phase space.

protons and neutrons (⌧ =p,n), respectively. The quadrupole-deformation variables

(�, �) are defined through the expectation values of D̂(+)

2m with respect to |�(q)i:

� cos � = ⌘D(+)

20
(q) = ⌘ h�(q)| D̂(+)

20
|�(q)i , (42)

1
p
2
� sin � = ⌘D(+)

22
(q) = ⌘ h�(q)| D̂(+)

22
|�(q)i , (43)

where ⌘ is a scaling factor with the dimension of L�2.
Through the above definitions of (�, �) we can make a one-to-one correspon-

dence between (q1, q2) and (�, �). As illustrated in Fig. 3, this correspondence may
be viewed as a mapping of the collective coordinates (q1, q2) onto the (�, �) plane
of the Bohr-Mottelson collective model. For our purpose, it is su�cient to assume
that this correspondence is one-to-one in the neighborhood of an arbitrary point
(q1, q2), because the collective inertial masses represent the inertia of the LACM for
infinitesimal variation in time of the collective coordinates. Thus, the moving-frame
HFB state |�(q)i may also be written as |�(�, �)i. The solutions of Eq. (40) for
every point on the (q1, q2) plane provide the moving-frame HFB states |�(�, �)i o↵
the HFB ground state |�(�0, �0)i at the local minimum (�0, �0) on the potential
energy surface V (�, �).

Next, we consider the TDHFB states of the form, Eq. (38), with f = 2. Assum-
ing that the collective motion is slow, we expand it in powers of p and consider up
to the second-order in p. Then, under certain approximations explained in Sec. 8,

22
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Macroscopic reaction model at low energy
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Macroscopic reaction model at low energy
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• Necessary steps for construction
– Determination of reaction path
– Calculation of the potential 5 =

– Calculation of the mass E = & M.o.I F =



3D real space representation

X [ fm ]

y 
[ f

m
]

Wen, T.N., PRC 94, 054618 (2016); PRC 96, 014610 (2017); 
PRC 105, 034603 (2022) 

• 3D space discretized in lattice
• BKN functional
• Moving mean-field eq.: Imaginary-time method
• Moving RPA eq.： Finite amplitude method (PRC 76, 024318 (2007) )

No pairing

1-dimensional reaction path extracted from 
the space of dimension of 104 ~105.



16O + α scattering

• Important reaction to synthesize heavy elements in giant stars
• Alpha reaction

16O 4He

20Ne



16O + α to/from 20Ne

Reaction path

20Ne
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Energy density functional

MICROSCOPIC COLLECTIVE INERTIAL MASSES FOR … PHYSICAL REVIEW C 105, 034603 (2022)

This violation should be corrected by the residual fields that
depend on the velocity of the translational motion [29]. In-
deed, the ASCC mass reproduces the exact total mass even
when the mean-field potential violates the Galilean invariance,
which will be shown in Sec. III.

III. APPLICATION

In the following numerical calculations, in order to ex-
press the orbital wave functions, the grid representation
is employed, discretizing the rectangular box into three-
dimensional (3D) Cartesian mesh [4]. The model space is
set to be 12 × 12 × 18 fm3 for the systems α + α → 8Be
and 16O +α → 20Ne. It is 12 × 12 × 24 fm3 for 16O + 16O →
32S. The mesh size is set to be 1.0 fm for the system α + α →
8Be and 1.1 fm for the other two systems.

For numerical calculations of the ASCC method, we use
the finite amplitude method (FAM) [38–41]. The FAM pro-
vides us with high numerical efficiency with simple computer
programs, because only the calculations of the mean-field
(single-particle) Hamiltonian constructed with independent
bra and ket states are required [38]. The matrix FAM (m-
FAM) prescription [41] is adopted to solve the moving RPA
Eqs. (7) and (8). On the other hand, the iterative FAM (i-
FAM) [38–40] is adopted to calculate the response functions
for the NG modes. The moving mean-field Eq. (6) is solved
by using the imaginary-time method [42].

A. Modified Bonche, Koonin, and Negele energy
density functional

To investigate the effect of this time-odd mean-field po-
tential on the collective inertial masses, we adopt an energy
density functional of the simplest choice, namely, the Bonche,
Koonin, and Negele (BKN) energy density functional [43]
with the minimum extension.

The original BKN functional assumes the spin-isospin
symmetry without the spin-orbit interaction, which is a func-
tional of the isoscalar kinetic and local densities, τ (r) and
ρ(r), only. The mean-field potential is local and has no veloc-
ity dependence. Thus, the nucleon’s effective mass is identical
to the bare nucleon mass. However, in most of realistic energy
density functionals, the effective mass is smaller than the
bare mass, typically m∗/m ≈ 0.7. To introduce the effective
mass, we extend the energy density by adding terms ρτ − j2

where j(r) is the isoscalar current density. The appearance
of the current density is necessary to preserve the Galilean
invariance.

The modified BKN energy density functional reads

E [ρ] =
∫

1
2m

τ (r)dr +
∫

dr
{

3
8

t0ρ2(r) + 1
16

t3ρ3(r)
}

+
∫∫

drdr′ρ(r)v(r − r′)ρ(r′)

+ B3

∫
dr{ρ(r)τ (r) − j2(r)}, (27)

where ρ(r), τ (r), and j(r) are calculated as

ρ(r) = 4
A/4∑

j=1

|ψ j (r)|2, τ (r) = 4
A/4∑

j=1

|∇ψ j (r)|2,

j(r) = 4
2i

A/4∑

j=1

{ψ∗
j (r)∇ψ j (r) − ψ j (r)∇ψ∗

j (r)}.

In Eq. (27), v(r) is the sum of the Yukawa and the Coulomb
potentials [43],

v(r) ≡ V0a
e−r/a

r
+

(e/2)2

r
.

The new parameter B3 controls the effective mass and the
velocity dependence of the mean-field potential.

The variation of the total energy with respect to the density
(or equivalently single-particle wave functions) defines the
mean-field (Hartree-Fock) Hamiltonian,

ĥHF(r) = −∇ 1
2m∗(r)

∇ + 3
4

t0ρ(r) + 3
16

t3ρ2(r)

+
∫

dr′v(r − r′)ρ(r′) + B3[τ (r) + i∇ · j(r)]

+ 2iB3j(r) · ∇, (28)

where the effective mass is now deviated from bare nucleon
mass,

1
2m∗(r)

= 1
2m

+ B3ρ(r). (29)

For B3 (= 0, Eq. (28) indicates the velocity (momentum) de-
pendence of the mean-field potential and the presence of the
time-odd mean fields, iB3(∇ · j + 2j · ∇). For the time-even
states, such as the ground state of even-even nuclei, the current
density disappears, j(r) = 0. Nevertheless, as will be shown
later, the terms associated with j(r) play an important role in
the collective inertial mass.

The parameters t0, t3, V0, and a are adopted from Ref. [43],
and we vary B3 to change the effective mass and the time-odd
mean fields.

B. Inertial masses for translational motion: Alpha particle

First, we demonstrate the importance of the time-odd mean
fields, taking the translational total mass as a trivial example.
We adopt the simplest case, namely, the single alpha particle.
In Fig. 1, we show the translational mass of a single alpha
particle as a function of B3. Increasing B3, the effective mass
m∗ decreases, as we see in Eq. (29). In the present case, we
use the center-of-mass coordinate Rc.m. as the collective coor-
dinate R in Sec. II A and II B. Since the system is isotropic, we
use its z component Zc.m. in the numerical calculation. In the
present model, neutrons and protons have the identical mass
m. Therefore, the total inertial mass of an alpha particle should
be equal to 4m.

It is clearly demonstrated that the ASCC always reproduces
the correct total mass Am, irrespective of values of the param-
eter B3. The nonperturbative cranking mass reproduces the
total mass, Mnp

cr = 4m, at B3 = 0, which agrees with Eq. (26).

034603-5
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This violation should be corrected by the residual fields that
depend on the velocity of the translational motion [29]. In-
deed, the ASCC mass reproduces the exact total mass even
when the mean-field potential violates the Galilean invariance,
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For numerical calculations of the ASCC method, we use
the finite amplitude method (FAM) [38–41]. The FAM pro-
vides us with high numerical efficiency with simple computer
programs, because only the calculations of the mean-field
(single-particle) Hamiltonian constructed with independent
bra and ket states are required [38]. The matrix FAM (m-
FAM) prescription [41] is adopted to solve the moving RPA
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FAM) [38–40] is adopted to calculate the response functions
for the NG modes. The moving mean-field Eq. (6) is solved
by using the imaginary-time method [42].

A. Modified Bonche, Koonin, and Negele energy
density functional

To investigate the effect of this time-odd mean-field po-
tential on the collective inertial masses, we adopt an energy
density functional of the simplest choice, namely, the Bonche,
Koonin, and Negele (BKN) energy density functional [43]
with the minimum extension.

The original BKN functional assumes the spin-isospin
symmetry without the spin-orbit interaction, which is a func-
tional of the isoscalar kinetic and local densities, τ (r) and
ρ(r), only. The mean-field potential is local and has no veloc-
ity dependence. Thus, the nucleon’s effective mass is identical
to the bare nucleon mass. However, in most of realistic energy
density functionals, the effective mass is smaller than the
bare mass, typically m∗/m ≈ 0.7. To introduce the effective
mass, we extend the energy density by adding terms ρτ − j2

where j(r) is the isoscalar current density. The appearance
of the current density is necessary to preserve the Galilean
invariance.

The modified BKN energy density functional reads

E [ρ] =
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τ (r)dr +
∫

dr
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3
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}

+
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∫
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where ρ(r), τ (r), and j(r) are calculated as
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velocity dependence of the mean-field potential.
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ĥHF(r) = −∇ 1
2m∗(r)

∇ + 3
4

t0ρ(r) + 3
16

t3ρ2(r)

+
∫

dr′v(r − r′)ρ(r′) + B3[τ (r) + i∇ · j(r)]

+ 2iB3j(r) · ∇, (28)
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2m∗(r)

= 1
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+ B3ρ(r). (29)

For B3 (= 0, Eq. (28) indicates the velocity (momentum) de-
pendence of the mean-field potential and the presence of the
time-odd mean fields, iB3(∇ · j + 2j · ∇). For the time-even
states, such as the ground state of even-even nuclei, the current
density disappears, j(r) = 0. Nevertheless, as will be shown
later, the terms associated with j(r) play an important role in
the collective inertial mass.

The parameters t0, t3, V0, and a are adopted from Ref. [43],
and we vary B3 to change the effective mass and the time-odd
mean fields.

B. Inertial masses for translational motion: Alpha particle

First, we demonstrate the importance of the time-odd mean
fields, taking the translational total mass as a trivial example.
We adopt the simplest case, namely, the single alpha particle.
In Fig. 1, we show the translational mass of a single alpha
particle as a function of B3. Increasing B3, the effective mass
m∗ decreases, as we see in Eq. (29). In the present case, we
use the center-of-mass coordinate Rc.m. as the collective coor-
dinate R in Sec. II A and II B. Since the system is isotropic, we
use its z component Zc.m. in the numerical calculation. In the
present model, neutrons and protons have the identical mass
m. Therefore, the total inertial mass of an alpha particle should
be equal to 4m.

It is clearly demonstrated that the ASCC always reproduces
the correct total mass Am, irrespective of values of the param-
eter B3. The nonperturbative cranking mass reproduces the
total mass, Mnp

cr = 4m, at B3 = 0, which agrees with Eq. (26).
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Effect of “effective mass”

• Velocity-dependent potential
• Nucleonic effective mass
–
3∗

3
~0.7 − 0.8

• Does this affect the inertial mass of 
nuclear reaction?
– E = , F = → A/ , A/=

& ×
3∗

3
?, at = → ∞
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FIG. 4. (Color online) Inertial mass MR for the reaction path
α+16O in the presence of time-odd mean-field potential as a
function of R, in the unit of nucleon mass. The upper panel
shows the results of ASCC inertial masses, where the thicker
(red), medium thick (green) and thinner (blue) curves show
the results calculated with B3 = 0, 25, 75 MeV fm5 respec-
tively. The lower panel shows the results of nonperturbative
and perturbative cranking inertial masses, where the solid,
dashed and dotted curves show the results calculated with
B3 = 0, 25, 75 MeV fm5 respectively, the thicker (red) and
thinner (blue) curves indicate the results of nonperturbative
and perturbative cranking inertial masses.

For both the systems in Fig. 4 and Fig. 5, as the
two nuclei get closer, the ASCC inertial masses show a
drastic increase, that is due to the increase of value dq/dR
in Eq. (6). For the reaction α+16O →20Ne, the non-
perturbative cranking mass shows similar pattern to that
of ASCC. The perturbative cranking mass for α+16O
→20Ne and both the cranking masses for 16O+16O →32S
are significantly different from that of ASCC except in
the asymptotic region. At the same time the perturbative
and non-perturbative cranking masses turn out to give
different values. The ambiguity of cranking masses has
been discussed in our previous work[31].

At large R, The reduced mass, µred = 3.2m for α+16O
→20Ne and µred = 8m for 16O+16O →32S are well repro-
duced by the ASCC method regardless of the existence
or the strength of the time-odd mean-field potential. A-
gain the two cranking formulae don’t show this proper-
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FIG. 5. (Color online) Inertial mass MR for the reaction path
16O+16O in the presence of time-odd mean-field potential as
a function of R, in the unit of nucleon mass. The upper panel
shows the results of ASCC inertia masses, where the thick-
er (red) and thinner (blue) curves show the results calculated
with B3 = 0, 30 MeV fm5 respectively. The lower panel shows
the results of nonperturbative and perturbative cranking in-
ertial masses, where the solid and dashed curves show the
results calculated with B3 = 0, 30 MeV fm5 respectively, the
thicker (red) and thinner (blue) curves indicate the results of
nonperturbative and perturbative cranking inertial masses.

ty, both the perturbative and non-perturbative cranking
masses can only reproduce the asymptotic inertial mass-
es if the time-odd mean-field is absent, once the B3 get
a finite value, the result start to decrease and deviate
from the correct results. The inclusion of time-odd po-
tential enlarges the size of the nuclei, the touching points
between the two nuclei occurs at larger R, thus as B3

increases, the steep increase of ASCC results as well as
the oscillating patterns both shift towards the right.

B. Rotational inertia

Next we shift to another indispensable inertial mass in
the collective Hamiltonian, the rotational inertia. Unlike
the relative motion, rotational motion is a Nambu Gold-
stone mode. As mentioned in Sec. II A, the rotational
inertia is obtained by calculating the response strength at

α + 16O

KAI WEN AND TAKASHI NAKATSUKASA PHYSICAL REVIEW C 96, 014610 (2017)
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FIG. 1. Density distribution on the x-z plane at four points on
the ASCC fusion reaction path of 16O + α → 20Ne: (a) R = 7.6 fm,
(b) R = 5.2 fm, (c) R = 4.2 fm, and (d) R = 3.8 fm corresponding
to the ground state of 20Ne.

without the spin-orbit interaction. To express the orbital wave
functions, the grid representation is employed, discretizing
the rectangular box into the three-dimensional (3D) Cartesian
mesh. The model space is set to be 12 × 12 × 18 fm3 for the
reaction 16O + α → 20Ne, 12 × 12 × 24 fm3 for the system
16O + 16O → 32S, and the mesh size is set to be 1.1 fm.

A. 16O + α → 20Ne

1. Collective path: 16O + α → ground state 20Ne

As a trivial solution of the ASCC equations, the well-
separated 16O and α both at the ground states can be the initial
state |ψ(q = 0)〉 to start the iterative procedure in Sec. II B.
Alternatively, the ground state of 20Ne can also be the initial
state for the iteration. Although it is not trivial, we find that
the same trajectory is produced starting from these two initial
states. The ASCC collective path smoothly connects the two
well-separated nuclei, 16O and α, to 20Ne at the ground state.
The ground state of 20Ne has a large quadrupole deformation.
The density profile is shown in Fig. 1(d). At the ground state,
the lowest physical RPA state is found to be the Kπ = 0−

octupole excitation, which has a sizable transition strength of
the operator Q̂30 defined in Eq. (11). Choosing this Kπ = 0−

octupole mode as the generators Q̂(q) and P̂ (q), a series of
states can be obtained by iteration, forming a collective fusion
path of 16O + α ↔ 20Ne. In the asymptotic region [Fig. 1(a)],
the generators smoothly change into those representing the
relative motion between 16O and α. Figure 1 shows density
distributions in the x-z plane (y = 0) at four different points
on the collective path. Figure 1(a) shows the well-separated
16O + α, Fig. 1(d) shows 20Ne at the ground state, and two
intermediate states are shown in Figs. 1(b) and 1(c).

Figure 2 shows the square of moving RPA eigenfrequency
ω2(q) of the generators with K = 0 as a function of relative
distance R. At the ground state of 20Ne (R = 3.8 fm), the parity
is a good quantum number and the RPA mode corresponds to
the negative parity π = −, leading to 〈ω|Q̂30|0〉 = 3017 fm3
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FIG. 2. Square of the moving RPA eigenfrequency ω2(q) on the
ASCC collective path of 16O + α → 20Ne, shown as a function of
relative distance R. At the ground state of 20Ne (R = 3.8 fm), this
mode corresponds to the Kπ = 0− octupole mode of excitation.

and 〈ω|Q̂20|0〉 = 0. At larger R, the octupole deformation
Q30 increases, then the parity is no longer conserved. The
transition strength 〈ω|Q̂20|0〉 becomes nonzero, then gradually
changes its character into the relative motion between 16O and
α. Since the curvature of the potential energy can be negative,
the value of ω2(q) can be negative, leading to imaginary ω(q).
Since the generators keep the K = 0 character all the way,
the states |ψ(q)〉 on the collective path are axially symmetric.
There appear five NG modes; namely, two rotational modes,
and the three translational modes. In an actual calculation,
these NG modes have finite energy due to the finite mesh
size in numerical calculation. At the ground state, we obtain
ω = 1.9 MeV for the rotational modes, ω = 3.5 MeV for the
translational modes along the x and y directions, and ω =
1.3 MeV for the translational mode along the z direction.

The next lowest K = 0 mode of excitation at the ground
state of 20Ne has the positive parity π = + and a transition
strength of operator of Q̂20, 〈ω|Q̂20|0〉 = 5.3 fm2. The RPA
frequency ω of this state is about 10 MeV, which is much higher
than the octupole mode and many other modes with K '= 0.
If we adopt this Kπ = 0+ mode as the starting generators,
we cannot construct the collective path connecting the ground
state and two separated nuclei. Generally speaking, the higher
the RPA eigenfrequency is, the more difficult it is to find a
solution of the moving mean-field equation (6).

Figure 3 shows the potential energy of the ASCC collective
path, Eq. (9), as a function of R. The dashed line shows the
asymptotic Coulomb energy on top of the summed ground-
state energies of α and 16O. The ground state of 20Ne is at
R = 3.8 fm, and the top of the Coulomb barrier is located
at R = 7.7 fm. To compare the ASCC collective path with
those obtained with conventional CHF calculations, we show
the octupole moment as a function of R in Fig. 4 for these
different collective paths. Two collective paths of the CHF
calculations are constructed with the constraining operators of
Q̂20 (dotted line) and Q̂30 (dashed line). From Fig. 4 we can
see all these three collective paths deviate from each other. In
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FIG. 1. Density distribution on the x-z plane at four points on
the ASCC fusion reaction path of 16O + α → 20Ne: (a) R = 7.6 fm,
(b) R = 5.2 fm, (c) R = 4.2 fm, and (d) R = 3.8 fm corresponding
to the ground state of 20Ne.

without the spin-orbit interaction. To express the orbital wave
functions, the grid representation is employed, discretizing
the rectangular box into the three-dimensional (3D) Cartesian
mesh. The model space is set to be 12 × 12 × 18 fm3 for the
reaction 16O + α → 20Ne, 12 × 12 × 24 fm3 for the system
16O + 16O → 32S, and the mesh size is set to be 1.1 fm.

A. 16O + α → 20Ne

1. Collective path: 16O + α → ground state 20Ne

As a trivial solution of the ASCC equations, the well-
separated 16O and α both at the ground states can be the initial
state |ψ(q = 0)〉 to start the iterative procedure in Sec. II B.
Alternatively, the ground state of 20Ne can also be the initial
state for the iteration. Although it is not trivial, we find that
the same trajectory is produced starting from these two initial
states. The ASCC collective path smoothly connects the two
well-separated nuclei, 16O and α, to 20Ne at the ground state.
The ground state of 20Ne has a large quadrupole deformation.
The density profile is shown in Fig. 1(d). At the ground state,
the lowest physical RPA state is found to be the Kπ = 0−

octupole excitation, which has a sizable transition strength of
the operator Q̂30 defined in Eq. (11). Choosing this Kπ = 0−

octupole mode as the generators Q̂(q) and P̂ (q), a series of
states can be obtained by iteration, forming a collective fusion
path of 16O + α ↔ 20Ne. In the asymptotic region [Fig. 1(a)],
the generators smoothly change into those representing the
relative motion between 16O and α. Figure 1 shows density
distributions in the x-z plane (y = 0) at four different points
on the collective path. Figure 1(a) shows the well-separated
16O + α, Fig. 1(d) shows 20Ne at the ground state, and two
intermediate states are shown in Figs. 1(b) and 1(c).

Figure 2 shows the square of moving RPA eigenfrequency
ω2(q) of the generators with K = 0 as a function of relative
distance R. At the ground state of 20Ne (R = 3.8 fm), the parity
is a good quantum number and the RPA mode corresponds to
the negative parity π = −, leading to 〈ω|Q̂30|0〉 = 3017 fm3
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FIG. 2. Square of the moving RPA eigenfrequency ω2(q) on the
ASCC collective path of 16O + α → 20Ne, shown as a function of
relative distance R. At the ground state of 20Ne (R = 3.8 fm), this
mode corresponds to the Kπ = 0− octupole mode of excitation.

and 〈ω|Q̂20|0〉 = 0. At larger R, the octupole deformation
Q30 increases, then the parity is no longer conserved. The
transition strength 〈ω|Q̂20|0〉 becomes nonzero, then gradually
changes its character into the relative motion between 16O and
α. Since the curvature of the potential energy can be negative,
the value of ω2(q) can be negative, leading to imaginary ω(q).
Since the generators keep the K = 0 character all the way,
the states |ψ(q)〉 on the collective path are axially symmetric.
There appear five NG modes; namely, two rotational modes,
and the three translational modes. In an actual calculation,
these NG modes have finite energy due to the finite mesh
size in numerical calculation. At the ground state, we obtain
ω = 1.9 MeV for the rotational modes, ω = 3.5 MeV for the
translational modes along the x and y directions, and ω =
1.3 MeV for the translational mode along the z direction.

The next lowest K = 0 mode of excitation at the ground
state of 20Ne has the positive parity π = + and a transition
strength of operator of Q̂20, 〈ω|Q̂20|0〉 = 5.3 fm2. The RPA
frequency ω of this state is about 10 MeV, which is much higher
than the octupole mode and many other modes with K '= 0.
If we adopt this Kπ = 0+ mode as the starting generators,
we cannot construct the collective path connecting the ground
state and two separated nuclei. Generally speaking, the higher
the RPA eigenfrequency is, the more difficult it is to find a
solution of the moving mean-field equation (6).

Figure 3 shows the potential energy of the ASCC collective
path, Eq. (9), as a function of R. The dashed line shows the
asymptotic Coulomb energy on top of the summed ground-
state energies of α and 16O. The ground state of 20Ne is at
R = 3.8 fm, and the top of the Coulomb barrier is located
at R = 7.7 fm. To compare the ASCC collective path with
those obtained with conventional CHF calculations, we show
the octupole moment as a function of R in Fig. 4 for these
different collective paths. Two collective paths of the CHF
calculations are constructed with the constraining operators of
Q̂20 (dotted line) and Q̂30 (dashed line). From Fig. 4 we can
see all these three collective paths deviate from each other. In
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FIG. 1. Density distribution on the x-z plane at four points on
the ASCC fusion reaction path of 16O + α → 20Ne: (a) R = 7.6 fm,
(b) R = 5.2 fm, (c) R = 4.2 fm, and (d) R = 3.8 fm corresponding
to the ground state of 20Ne.

without the spin-orbit interaction. To express the orbital wave
functions, the grid representation is employed, discretizing
the rectangular box into the three-dimensional (3D) Cartesian
mesh. The model space is set to be 12 × 12 × 18 fm3 for the
reaction 16O + α → 20Ne, 12 × 12 × 24 fm3 for the system
16O + 16O → 32S, and the mesh size is set to be 1.1 fm.

A. 16O + α → 20Ne

1. Collective path: 16O + α → ground state 20Ne

As a trivial solution of the ASCC equations, the well-
separated 16O and α both at the ground states can be the initial
state |ψ(q = 0)〉 to start the iterative procedure in Sec. II B.
Alternatively, the ground state of 20Ne can also be the initial
state for the iteration. Although it is not trivial, we find that
the same trajectory is produced starting from these two initial
states. The ASCC collective path smoothly connects the two
well-separated nuclei, 16O and α, to 20Ne at the ground state.
The ground state of 20Ne has a large quadrupole deformation.
The density profile is shown in Fig. 1(d). At the ground state,
the lowest physical RPA state is found to be the Kπ = 0−

octupole excitation, which has a sizable transition strength of
the operator Q̂30 defined in Eq. (11). Choosing this Kπ = 0−

octupole mode as the generators Q̂(q) and P̂ (q), a series of
states can be obtained by iteration, forming a collective fusion
path of 16O + α ↔ 20Ne. In the asymptotic region [Fig. 1(a)],
the generators smoothly change into those representing the
relative motion between 16O and α. Figure 1 shows density
distributions in the x-z plane (y = 0) at four different points
on the collective path. Figure 1(a) shows the well-separated
16O + α, Fig. 1(d) shows 20Ne at the ground state, and two
intermediate states are shown in Figs. 1(b) and 1(c).

Figure 2 shows the square of moving RPA eigenfrequency
ω2(q) of the generators with K = 0 as a function of relative
distance R. At the ground state of 20Ne (R = 3.8 fm), the parity
is a good quantum number and the RPA mode corresponds to
the negative parity π = −, leading to 〈ω|Q̂30|0〉 = 3017 fm3
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FIG. 2. Square of the moving RPA eigenfrequency ω2(q) on the
ASCC collective path of 16O + α → 20Ne, shown as a function of
relative distance R. At the ground state of 20Ne (R = 3.8 fm), this
mode corresponds to the Kπ = 0− octupole mode of excitation.

and 〈ω|Q̂20|0〉 = 0. At larger R, the octupole deformation
Q30 increases, then the parity is no longer conserved. The
transition strength 〈ω|Q̂20|0〉 becomes nonzero, then gradually
changes its character into the relative motion between 16O and
α. Since the curvature of the potential energy can be negative,
the value of ω2(q) can be negative, leading to imaginary ω(q).
Since the generators keep the K = 0 character all the way,
the states |ψ(q)〉 on the collective path are axially symmetric.
There appear five NG modes; namely, two rotational modes,
and the three translational modes. In an actual calculation,
these NG modes have finite energy due to the finite mesh
size in numerical calculation. At the ground state, we obtain
ω = 1.9 MeV for the rotational modes, ω = 3.5 MeV for the
translational modes along the x and y directions, and ω =
1.3 MeV for the translational mode along the z direction.

The next lowest K = 0 mode of excitation at the ground
state of 20Ne has the positive parity π = + and a transition
strength of operator of Q̂20, 〈ω|Q̂20|0〉 = 5.3 fm2. The RPA
frequency ω of this state is about 10 MeV, which is much higher
than the octupole mode and many other modes with K '= 0.
If we adopt this Kπ = 0+ mode as the starting generators,
we cannot construct the collective path connecting the ground
state and two separated nuclei. Generally speaking, the higher
the RPA eigenfrequency is, the more difficult it is to find a
solution of the moving mean-field equation (6).

Figure 3 shows the potential energy of the ASCC collective
path, Eq. (9), as a function of R. The dashed line shows the
asymptotic Coulomb energy on top of the summed ground-
state energies of α and 16O. The ground state of 20Ne is at
R = 3.8 fm, and the top of the Coulomb barrier is located
at R = 7.7 fm. To compare the ASCC collective path with
those obtained with conventional CHF calculations, we show
the octupole moment as a function of R in Fig. 4 for these
different collective paths. Two collective paths of the CHF
calculations are constructed with the constraining operators of
Q̂20 (dotted line) and Q̂30 (dashed line). From Fig. 4 we can
see all these three collective paths deviate from each other. In
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FIG. 1. Density distribution on the x-z plane at four points on
the ASCC fusion reaction path of 16O + α → 20Ne: (a) R = 7.6 fm,
(b) R = 5.2 fm, (c) R = 4.2 fm, and (d) R = 3.8 fm corresponding
to the ground state of 20Ne.

without the spin-orbit interaction. To express the orbital wave
functions, the grid representation is employed, discretizing
the rectangular box into the three-dimensional (3D) Cartesian
mesh. The model space is set to be 12 × 12 × 18 fm3 for the
reaction 16O + α → 20Ne, 12 × 12 × 24 fm3 for the system
16O + 16O → 32S, and the mesh size is set to be 1.1 fm.

A. 16O + α → 20Ne

1. Collective path: 16O + α → ground state 20Ne

As a trivial solution of the ASCC equations, the well-
separated 16O and α both at the ground states can be the initial
state |ψ(q = 0)〉 to start the iterative procedure in Sec. II B.
Alternatively, the ground state of 20Ne can also be the initial
state for the iteration. Although it is not trivial, we find that
the same trajectory is produced starting from these two initial
states. The ASCC collective path smoothly connects the two
well-separated nuclei, 16O and α, to 20Ne at the ground state.
The ground state of 20Ne has a large quadrupole deformation.
The density profile is shown in Fig. 1(d). At the ground state,
the lowest physical RPA state is found to be the Kπ = 0−

octupole excitation, which has a sizable transition strength of
the operator Q̂30 defined in Eq. (11). Choosing this Kπ = 0−

octupole mode as the generators Q̂(q) and P̂ (q), a series of
states can be obtained by iteration, forming a collective fusion
path of 16O + α ↔ 20Ne. In the asymptotic region [Fig. 1(a)],
the generators smoothly change into those representing the
relative motion between 16O and α. Figure 1 shows density
distributions in the x-z plane (y = 0) at four different points
on the collective path. Figure 1(a) shows the well-separated
16O + α, Fig. 1(d) shows 20Ne at the ground state, and two
intermediate states are shown in Figs. 1(b) and 1(c).

Figure 2 shows the square of moving RPA eigenfrequency
ω2(q) of the generators with K = 0 as a function of relative
distance R. At the ground state of 20Ne (R = 3.8 fm), the parity
is a good quantum number and the RPA mode corresponds to
the negative parity π = −, leading to 〈ω|Q̂30|0〉 = 3017 fm3
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FIG. 2. Square of the moving RPA eigenfrequency ω2(q) on the
ASCC collective path of 16O + α → 20Ne, shown as a function of
relative distance R. At the ground state of 20Ne (R = 3.8 fm), this
mode corresponds to the Kπ = 0− octupole mode of excitation.

and 〈ω|Q̂20|0〉 = 0. At larger R, the octupole deformation
Q30 increases, then the parity is no longer conserved. The
transition strength 〈ω|Q̂20|0〉 becomes nonzero, then gradually
changes its character into the relative motion between 16O and
α. Since the curvature of the potential energy can be negative,
the value of ω2(q) can be negative, leading to imaginary ω(q).
Since the generators keep the K = 0 character all the way,
the states |ψ(q)〉 on the collective path are axially symmetric.
There appear five NG modes; namely, two rotational modes,
and the three translational modes. In an actual calculation,
these NG modes have finite energy due to the finite mesh
size in numerical calculation. At the ground state, we obtain
ω = 1.9 MeV for the rotational modes, ω = 3.5 MeV for the
translational modes along the x and y directions, and ω =
1.3 MeV for the translational mode along the z direction.

The next lowest K = 0 mode of excitation at the ground
state of 20Ne has the positive parity π = + and a transition
strength of operator of Q̂20, 〈ω|Q̂20|0〉 = 5.3 fm2. The RPA
frequency ω of this state is about 10 MeV, which is much higher
than the octupole mode and many other modes with K '= 0.
If we adopt this Kπ = 0+ mode as the starting generators,
we cannot construct the collective path connecting the ground
state and two separated nuclei. Generally speaking, the higher
the RPA eigenfrequency is, the more difficult it is to find a
solution of the moving mean-field equation (6).

Figure 3 shows the potential energy of the ASCC collective
path, Eq. (9), as a function of R. The dashed line shows the
asymptotic Coulomb energy on top of the summed ground-
state energies of α and 16O. The ground state of 20Ne is at
R = 3.8 fm, and the top of the Coulomb barrier is located
at R = 7.7 fm. To compare the ASCC collective path with
those obtained with conventional CHF calculations, we show
the octupole moment as a function of R in Fig. 4 for these
different collective paths. Two collective paths of the CHF
calculations are constructed with the constraining operators of
Q̂20 (dotted line) and Q̂30 (dashed line). From Fig. 4 we can
see all these three collective paths deviate from each other. In
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FIG. 1. Density distribution on the x-z plane at four points on
the ASCC fusion reaction path of 16O + α → 20Ne: (a) R = 7.6 fm,
(b) R = 5.2 fm, (c) R = 4.2 fm, and (d) R = 3.8 fm corresponding
to the ground state of 20Ne.

without the spin-orbit interaction. To express the orbital wave
functions, the grid representation is employed, discretizing
the rectangular box into the three-dimensional (3D) Cartesian
mesh. The model space is set to be 12 × 12 × 18 fm3 for the
reaction 16O + α → 20Ne, 12 × 12 × 24 fm3 for the system
16O + 16O → 32S, and the mesh size is set to be 1.1 fm.

A. 16O + α → 20Ne

1. Collective path: 16O + α → ground state 20Ne

As a trivial solution of the ASCC equations, the well-
separated 16O and α both at the ground states can be the initial
state |ψ(q = 0)〉 to start the iterative procedure in Sec. II B.
Alternatively, the ground state of 20Ne can also be the initial
state for the iteration. Although it is not trivial, we find that
the same trajectory is produced starting from these two initial
states. The ASCC collective path smoothly connects the two
well-separated nuclei, 16O and α, to 20Ne at the ground state.
The ground state of 20Ne has a large quadrupole deformation.
The density profile is shown in Fig. 1(d). At the ground state,
the lowest physical RPA state is found to be the Kπ = 0−

octupole excitation, which has a sizable transition strength of
the operator Q̂30 defined in Eq. (11). Choosing this Kπ = 0−

octupole mode as the generators Q̂(q) and P̂ (q), a series of
states can be obtained by iteration, forming a collective fusion
path of 16O + α ↔ 20Ne. In the asymptotic region [Fig. 1(a)],
the generators smoothly change into those representing the
relative motion between 16O and α. Figure 1 shows density
distributions in the x-z plane (y = 0) at four different points
on the collective path. Figure 1(a) shows the well-separated
16O + α, Fig. 1(d) shows 20Ne at the ground state, and two
intermediate states are shown in Figs. 1(b) and 1(c).

Figure 2 shows the square of moving RPA eigenfrequency
ω2(q) of the generators with K = 0 as a function of relative
distance R. At the ground state of 20Ne (R = 3.8 fm), the parity
is a good quantum number and the RPA mode corresponds to
the negative parity π = −, leading to 〈ω|Q̂30|0〉 = 3017 fm3
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FIG. 2. Square of the moving RPA eigenfrequency ω2(q) on the
ASCC collective path of 16O + α → 20Ne, shown as a function of
relative distance R. At the ground state of 20Ne (R = 3.8 fm), this
mode corresponds to the Kπ = 0− octupole mode of excitation.

and 〈ω|Q̂20|0〉 = 0. At larger R, the octupole deformation
Q30 increases, then the parity is no longer conserved. The
transition strength 〈ω|Q̂20|0〉 becomes nonzero, then gradually
changes its character into the relative motion between 16O and
α. Since the curvature of the potential energy can be negative,
the value of ω2(q) can be negative, leading to imaginary ω(q).
Since the generators keep the K = 0 character all the way,
the states |ψ(q)〉 on the collective path are axially symmetric.
There appear five NG modes; namely, two rotational modes,
and the three translational modes. In an actual calculation,
these NG modes have finite energy due to the finite mesh
size in numerical calculation. At the ground state, we obtain
ω = 1.9 MeV for the rotational modes, ω = 3.5 MeV for the
translational modes along the x and y directions, and ω =
1.3 MeV for the translational mode along the z direction.

The next lowest K = 0 mode of excitation at the ground
state of 20Ne has the positive parity π = + and a transition
strength of operator of Q̂20, 〈ω|Q̂20|0〉 = 5.3 fm2. The RPA
frequency ω of this state is about 10 MeV, which is much higher
than the octupole mode and many other modes with K '= 0.
If we adopt this Kπ = 0+ mode as the starting generators,
we cannot construct the collective path connecting the ground
state and two separated nuclei. Generally speaking, the higher
the RPA eigenfrequency is, the more difficult it is to find a
solution of the moving mean-field equation (6).

Figure 3 shows the potential energy of the ASCC collective
path, Eq. (9), as a function of R. The dashed line shows the
asymptotic Coulomb energy on top of the summed ground-
state energies of α and 16O. The ground state of 20Ne is at
R = 3.8 fm, and the top of the Coulomb barrier is located
at R = 7.7 fm. To compare the ASCC collective path with
those obtained with conventional CHF calculations, we show
the octupole moment as a function of R in Fig. 4 for these
different collective paths. Two collective paths of the CHF
calculations are constructed with the constraining operators of
Q̂20 (dotted line) and Q̂30 (dashed line). From Fig. 4 we can
see all these three collective paths deviate from each other. In

014610-4
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Torus quantization

• EBK quantization on invariant torus

"#!$%! = 2(ℏ×+, +: integer

• Microscopic wave functions for eigenstates

!"! = $%& '! '! ("#(%!)/ℏ
YG : (Generalized) Slater det. on the torus
Z(YG) :	Action
A YG : invariant measure



Tow-level pairing model is integrable.
Conserved quantities: E and N

• TDHFB dynamics

⟨; < ;⟩ = ℋ @ A , B A

Pairing (Richardson) model

C

H = 0

; A =D
!

1
1 + |;! |A " #! H

$! % #!" 0L̇% =
Mℋ
MO%

̇̇P% = −
Mℋ
ML%

;! → @! , B!
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K

HK=K − %ILIM
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N s.p. level system
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Stationary phase approximation (SPA) 
for Integrable systems

2D Phase space

S

T

Contour line in k-th
excited energy U*

+
! " , $ "

Integration over a closed trajectory 
on invariant tori

JKV = LMN ,V ,V -)W(Y&)/ℏ

W: integer

• EBK quantization condition

X∘ = Y
-#
⟨[(\.)|^ℏ

M
M\.

|[(\.)⟩a\′ = Y
-#
c
%
d%ae% = 2gℏW

2gℏW

Kuratsuji, Suzuki, PLB 92, 19 (1980)
Kuratsuji, PTP 65, 224 (1981)
Suzuki, Mizobuchi PTP 79, 480 (1988)

Separable with invariant tori

OV

OV

Ni and TN, PRC 97, 044310 (2018)

No diagonalization (variation) involved



Two-level pairing model

]^

Ω＝8

Ω＝8 (16 particle)

System

The system is integrable with two sets of separable
canonical variables: h/2,Φ and  O, k

Φ =
+
" (@++@") : Gauge angle

` = @" − @+ : Relative angle

FANG NI AND TAKASHI NAKATSUKASA PHYSICAL REVIEW C 97, 044310 (2018)
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FIG. 1. Energy contour plot for !1 = !2 = 8 and N = 16. The lines indicate the TDHFB trajectories fulfilling the EBK quantization
condition of Eq. (3.7).

A. Stationary-phase approximation to the path integral

Starting an arbitrary state |ψ(0)〉 at time t = 0, the time-
dependent full quantum state can be written in the path integral
form,

|ψ(t)〉 =e−iH t |ψ(0)〉

=
∫

dµ(Z′′) |Z′′〉
∫

dµ(Z′)

×
∫ Z(t)=Z′′

Z(0)=Z′
Dµ[Z(τ )]eiS[Z(τ )]ψ(Z′), (3.1)

where ψ(Z) ≡ 〈Z|ψ(0)〉 and the invariant measure dµ(Z) is
defined by the unity condition,

∫
dµ(Z) |Z〉 〈Z| = 1. (3.2)

In Eq. (3.1),S[Z(τ )] is the action (2.7) along a given path Z(τ )
with the initial coherent state |Z(0)〉 = |Z′〉 and the final state
|Z(t)〉 = |Z′′〉, then, the integration

∫
Dµ[Z(τ )] is performed

over all possible paths |Z(τ )〉 between them. Among all
trajectories in the path integral, the lowest stationary-phase
approximation selects the TDHFB (classical) trajectories.1

|ψ(t)〉 ≈
∫

dµ(Z′) |Z′
cl(t)〉 eiScl(Z′

cl(t),Z
′)ψ(Z′), (3.3)

where the TDHFB trajectory starting from |Z′〉 ends at |Z′
cl(t)〉

at time t . The action Scl(Zf ,Zi) is calculated along this
classical trajectory connecting Zi = Z′

cl(0) = Z′ and Zf =
Z′

cl(t).

Scl(Z′
cl(t),Z

′) ≡
∫ t

0
〈Zcl(t)|i

∂

∂t
− H |Zcl(t)〉 dt

= T [Zcl] − H(Z′,Z′∗)t, (3.4)

1In this formulation, the stationary-phase approximation agrees with
the TDHF(B) trajectories, while that to the auxiliary-field path integral
of Refs. [28,29] leads to the TDH(B) without the Fock potentials.

with

T [Zcl] ≡
∫ t

0
〈Zcl(t)|i

∂

∂t
|Zcl(t)〉 dt

=
∫ Z′

cl(t)

Z′

i

2

∑

l

!l

1 + |Zl|2
(Z∗

l dZl − ZldZ∗
l ). (3.5)

In the last equation of Eq. (3.4), we used the fact that the
TDHFB trajectory conserves the energy, H(Zcl(t),Z∗

cl(t)) =
H(Z′,Z′∗).

The energy eigenstates correspond to stationary states,
〈Z|ψ(t)〉 ∝ 〈Z|ψ(0)〉 = ψ(Z), which can be constructed by
superposing the coherent states along a periodic TDHFB
trajectory Z

(k)
cl as [31,32,39]

|ψk〉 =
∮

dµ
(
Z

(k)
cl

) ∣∣Z(k)
cl

〉
eiT [Z(k)

cl ]. (3.6)

The single valuedness of the wave function leads to the
quantization condition (k, integer):

T◦
[
Z

(k)
cl

]
=

∮
i

2

∑

l

!l

1 +
∣∣Z(k)

l

∣∣2

×
(
Z

(k)∗
l dZ

(k)
l − Z

(k)
l dZ

(k)∗
l

)

=2kπ. (3.7)

The state evolves in time as |ψk(t)〉 = |ψk〉 e−iEkt , with the
energy of the kth periodic trajectory, Ek = H(Z(k)

cl ,Z
(k)∗
cl ).

Finding TDHFB trajectories satisfying the quantization
condition (3.7) is an extremely difficult task in general. It is
better founded and more practical if the classical system is
completely integrable. In integrable systems, M complex vari-
ables Z(t) can be transformed into the action-angle variables;

Z(t) = {Zl(t); l = 1, · · · ,M}
→ {E; v1, · · · ,vM−1; θ1(t), · · · ,θM (t)}, (3.8)

where the variables E and v define an invariant torus, while
θ (t) parametrize the coordinates on the torus. The integration
path of Eq. (3.7) is now taken as a topologically independent
closed path on the torus, namely the EBK quantization condi-
tion. There are M independent closed paths and M quantum

044310-4

in units of ∆m



Two-level pairing model
• Pair-additional transition
1 Pbc = ⟨R = 8, U IL R = 6, V⟩ ,

Dashed line: exact

Excellent agreement with exact cal.

Ni and TN, PRC 97, 044310 (2018)
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exc. (0+)

g.s. (0+)

exc. (0+)

N=6 N=8
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ASCC + SPA for non-integrable systems

Pair rotation d.o.f. X,
d

,
(NG modes)

Pair vibration d.o.f. (Z, P). 

qr/ =s
-$%(-#

aF [/ [/ t01(3#)/ℏ

NG mode

(Q,P)

EBK quantization and a wave function of a collective state

• A closed trajectory ]uv automatically leads to the number projection
• A closed trajectory ]G gives an energy DG and a wave function, ĈG

Find a 2D collective subspace

OV

Oef

h
2
gℏ + Y

-#
⟨[(\.)|^ℏ

M
M\.

|[(\.)⟩a\′ = 2gℏW



Neutron pairing vibrations in Pb isotopes

s.p. 
level

Energy 
(MeV)

p1/2 -7.45
f5/2 -8.16
p3/2 -8.44
i13/2 -8.74
f7/2 -10.69
h9/2 -10.94

Neutron pairing 
vibrations in N-deficient 
Pb isotopes
Input:

• o = 0.138 (MeV) is adopted so as to 
reproduce experimental pairing gap of 
789Pb in three-point formula

• Results: Excitation energy of |0,L⟩

82

126

Ne
ut

ro
n Exact ASCC+SPA

ghh]^ 2.44 2.31
gij]^ 2.34 2.21
gik]^ 2.25 2.12
gil]^ 2.2 2.04

Ni, Hinohara, TN, PRC 98, 064327 (2018) 

G =<
K

HK=K − %ILIM



• Two-neutron additional transition 
Ñ ÖUa = ⟨:(9Pb, Ü V( :Pb, á⟩

9

Pair transfer transition strengths

For |0,L⟩ → |0,
L⟩, 20% smaller than exact solution.

Ni, Hinohara, TN, PRC 98, 064327 (2018) 



Summary
• Missing correlations in nuclear density functional

• Correlations associated with low-energy collective motion

• Re-quantize a specific mode of collective motion
• Derive the slow collective motion
• Quantize the collective Hamiltonian

• Application to nuclear reaction
• Finding a reaction path & construct a collective Hamiltonian
• Quantum tunneling in many-body systems

• Application to nuclear pairing problems
• Torus quantization to produce wave functions of energy eigenstates
• An alternative to GCM, without Hamiltonian matrix diagonalization


