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Of what?
N

S ¢ Jeid
H=-2) 67-06) fi+) Vi

W|th What? Pw(fff) PW(Uf'+1) pr(Ji+2)

S ow s w w — where Uy (o

ceceoe
000000
oe0ede
000000
o)X zofl Xo
ooooo&
2) )

)= [Tl

Hibat-Allah et. al. Recurrent neural network wave
functions. Physical Review Research, 2(2), p.023358.
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Aside #1 on RNN Wavefunctions
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Hibat-Allah et. al. Recurrent neural network wave L . . .
functions. Physical Review Research, 2(2), p.023358. Not limited to Stoq uastic Hamiltonians!!!!
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Aside #2 on RNN Wavefunctions
The many nice properties:

e Autoregressive Neural Network N
o Chainrule of probabilities:  P(zy,2,,...,zx) = [[ p(zilz;<i)
o Efficient sampling i
o Encodes a normalized probability distribution
e Natural interpretation for lattice systems 8 8 8 8 8 8
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Aside on Energy Estimation

12 x 12 Lattice, Learning Rate = 0.001, NH = 24

—0.30 7=
) — QMC
— VMC, ns = 500
—0.32 A — VMC, ns = 1000
— VMC, ns = 2000
- Hybrid, ns = 500
—0.34 — Hybrid, ns = 1000
— ~ Hybrid, ns = 2000
I -== Exact
0364 == QMC VMC transition
I v
1
—0.38 A 1
I
b o e e o - ———————
I
1
_0.40 - T T T T
0 2000 4000 6000 8000 10000
Step
UNIVERSITY OF e
WATERLOO QUANTUM . : ;
EUR] INTELLIGENCE International Conference on Recent Progress in Many-Body Theories XXI 5
2, LAB



Aside on Energy Estimation

12 x 12 Lattice, Learning Rate = 0.001, NH = 24

—0.30 7=
' - QMC
- VMC, ns = 500
—0.32 - - VMC, ns = 1000
= VMC, ns = 2000
- Hybrid, ns = 500
—0.34 — Hybrid, ns = 1000
— ~ Hybrid, ns = 2000
I -== Fxact
0364 -=- QMC VMC transition
I *reasonable* increases
1 . .
-0.38 - ! innsdon’tresultin
T s R s e b significant
—_— : improvements
0 2000 4000 6000 8000 10000
Step
UNIVERSITY OF —
WATERLOO QUANTUM . : ;
%}9’% INTELLIGENCE International Conference on Recent Progress in Many-Body Theories XXI 5
@ LAB



D t D = T - : Torlai et al. Neural-network quantum state Merali, Ejaaz et al. "Stochastic series
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arrays." arXiv preprint arXiv:2107.00766 (2021).
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= - - Torlai et al. Neural-network quantum state
Data - D r I Ve n Tra I n I n g tomography. Nature Phys 14, 447-450 (2018).
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Data-Driven Training
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Torlai et al. Neural-network quantum state

tomography. Nature Phys 14, 447-450 (2018).
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= - - Torlai et al. Neural-network quantum state
Data - D r I Ve n Tra I n I n g tomography. Nature Phys 14, 447-450 (2018).
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Optimization Challenges (training with data)
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Optimization Challenges (training with data)
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Optimization Challenges (training with data)
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Aside on Overfitting

o 16 x 16 Lattice, Learning Rate = 0.001
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Aside on Overfitting

16 x 16 Lattice, Learning Rate = 0.001
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Aside on Expressiveness

16 x 16 Lattice, Learning Rate = 0.0001
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Proposed Solution
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Proposed Solution

pw(o:)  pw(oiv1)  pw(oit2)

R U T B 1 R 2 train variationally

Hibat-Allah et. al. Recurrent neural network wave

T T T functions. Physical Review Research, 2(2), p.023358.
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Proposed Solution
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Combining Training Methods
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Combining Training Methods
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Results

o Hamiltonian-driven
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Conclusions & Open Questions

Conclusions:

1. Cantrain the same network with data AND variationally with a simple
change in the loss function.
2. Resultsin a speedup in the time to convergence.

UNIVERSITY OF ——

WATERLOO QUANTUM . . ,
W INTELLIGENCE International Conference on Recent Progress in Many-Body Theories XXI 14
@ LAB



Conclusions & Open Questions

Conclusions:

1. Cantrain the same network with data AND variationally with a simple
change in the loss function. AND can be viewed as
2. Resultsin aspeedup in the time to convergence. _error mitigation!

Bennewitz, Elizabeth R., et al. "Neural error
mitigation of near-term quantum simulations."
Nature Machine Intelligence 4.7 (2022): 618-624.
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Conclusions & Open Questions

Conclusions:

1. Cantrain the same network with data AND variationally with a simple
change in the loss function. AND can be viewed as
2. Resultsin aspeedup in the time to convergence. _error mitigation!

Bennewitz, Elizabeth R., et al. "Neural error

O pe n Q u eStI ons: mitigation of near-term quantum simulations.”

Nature Machine Intelligence 4.7 (2022): 618-624.

1. Istherea “loss schedule” that would result in accuracy improvements in
addition to the improved convergence time? (hybrid accuracy better than VMC only)

2. What does it mean that using both loss functions results in comparable
final accuracies?
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