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“spin flip”
(off diagonal)
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occupation operator
(diagonal)
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Van der Waals potential
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Learning Quantum Ground states
Of what?

1

Rydberg Basis:
● Hamiltonian is Stoquastic
● Measurements in this basis are informationally complete
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Learning Quantum Ground states
Of what?

With what?
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Hibat-Allah et. al. Recurrent neural network wave 
functions. Physical Review Research, 2(2), p.023358.
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Aside #1 on RNN Wavefunctions

Not limited to Stoquastic Hamiltonians!!!!
Hibat-Allah et. al. Recurrent neural network wave 
functions. Physical Review Research, 2(2), p.023358.
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Aside #2 on RNN Wavefunctions
The many nice properties:

● Autoregressive Neural Network
○ Chain rule of probabilities: 
○ Efficient sampling
○ Encodes a normalized probability distribution

● Natural interpretation for lattice systems
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Hamiltonian-Driven
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Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-body 
problem with artificial neural networks." Science 355.6325 (2017): 602-606.
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problem with artificial neural networks." Science 355.6325 (2017): 602-606.
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] not great…

Optimization Challenges  (variational training)
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] better… but…

Optimization Challenges  (variational training)
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] better… but…

Very long runtime

Optimization Challenges  (variational training)
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Aside on Energy Estimation
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Aside on Energy Estimation
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*reasonable* increases 
in ns donʼt result in 
significant 
improvements
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Data-Driven Training
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Torlai et al. Neural-network quantum state 
tomography. Nature Phys 14, 447–450 (2018).

Merali, Ejaaz et al. "Stochastic series 
expansion quantum monte carlo for rydberg 
arrays." arXiv preprint arXiv:2107.00766 (2021).
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not great…     

Optimization Challenges  (training with data)

Again,]     
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but… 
much faster.

not great…     
Again,

Optimization Challenges  (training with data)

]     
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Really bad.

Optimization Challenges  (training with data)

]     
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Aside on Overfitting
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Aside on Overfitting

Overfitting 
occurs 
consistently
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Aside on Expressiveness
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Aside on Expressiveness

Given the full data set, 
some system sizes are 
expressive enough
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train variationally
Hibat-Allah et. al. Recurrent neural network wave 
functions. Physical Review Research, 2(2), p.023358.

International Conference on Recent Progress in Many-Body Theories XXI



Proposed Solution
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train with data
Torlai et al. Neural-network quantum state 
tomography. Nature Phys 14, 447–450 (2018).
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Proposed Solution

&
??
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train variationally
Hibat-Allah et. al. Recurrent neural network wave 
functions. Physical Review Research, 2(2), p.023358.

train with data
Torlai et al. Neural-network quantum state 
tomography. Nature Phys 14, 447–450 (2018).
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Combining Training Methods 
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Results

Data

VMC

Hybrid
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Stefanie Czischek, M. Schuyler Moss, et al. Phys. 
Rev. B 105, 205108 – Published 9 May 2022
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Results
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Huge improvement
(even for non-optimal 
transition point)

Stefanie Czischek, M. Schuyler Moss, et al. Phys. 
Rev. B 105, 205108 – Published 9 May 2022
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Conclusions & Open Questions
Conclusions: 

1. Can train the same network with data AND variationally with a simple 
change in the loss function. 

2. Results in a speedup in the time to convergence.
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AND can be viewed as  
error mitigation!

Bennewitz, Elizabeth R., et al. "Neural error 
mitigation of near-term quantum simulations." 
Nature Machine Intelligence 4.7 (2022): 618-624.
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Conclusions & Open Questions
Conclusions: 

1. Can train the same network with data AND variationally with a simple 
change in the loss function. 

2. Results in a speedup in the time to convergence.

Open Questions:

1. Is there a “loss schedule” that would result in accuracy improvements in 
addition to the improved convergence time? 

2. What does it mean that using both loss functions results in comparable 
final accuracies?

(hybrid accuracy better than VMC only)

14

AND can be viewed as  
error mitigation!

Bennewitz, Elizabeth R., et al. "Neural error 
mitigation of near-term quantum simulations." 
Nature Machine Intelligence 4.7 (2022): 618-624.
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