Combining data-driven and Hamiltonian-driven training for learning Quantum Ground States

Schuyler Moss September 12th, 2022

Combining data-driven and Hamiltonian-driven training for learning Quantum Ground States

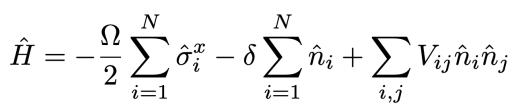
Schuyler Moss September 12th, 2022

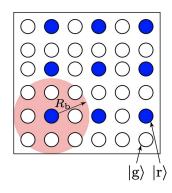
> Stefanie Czischek, **M. Schuyler Moss**, et al. Phys. Rev. B **105**, 205108 – Published 9 May 2022

https://arxiv.org/abs/2203.04988

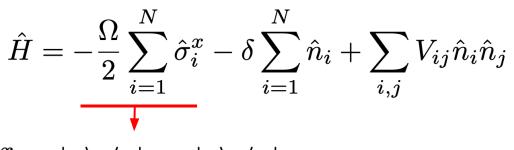
Ejaaz Merali (Not Pictured)

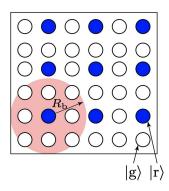
Of what?





Of what?

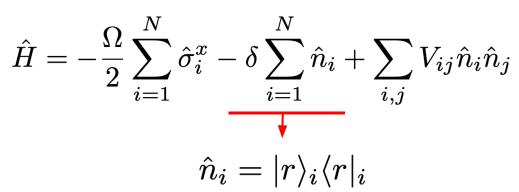




$$\hat{\sigma}_i^x = |g\rangle_i \langle r|_i + |r\rangle_i \langle g|_i$$

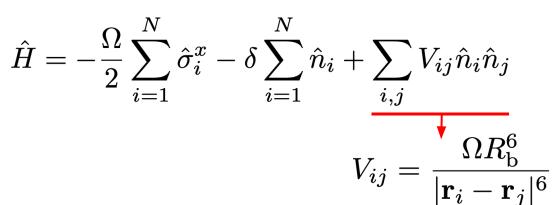
"spin flip" (off diagonal)

Of what?



occupation operator (diagonal)

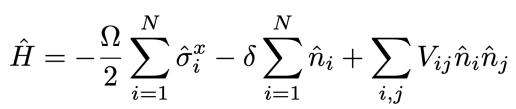
Of what?

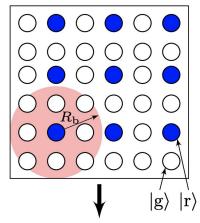


 $\begin{array}{c|c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & &$

Van der Waals potential

Of what?



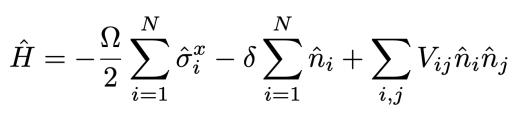


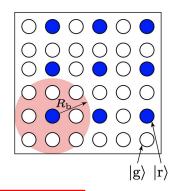
 $\begin{array}{l} \mbox{Projective measurement} \\ |\boldsymbol{\sigma}\rangle = | \mbox{g r g} \dots \mbox{g g} \rangle \end{array}$

International Conference on Recent Progress in Many-Body Theories XXI

1

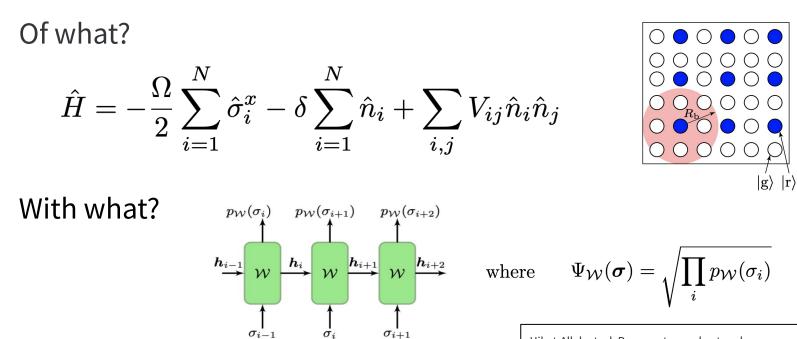
Of what?





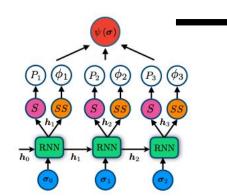
Rydberg Basis:

- Hamiltonian is Stoquastic
- Measurements in this basis are informationally complete

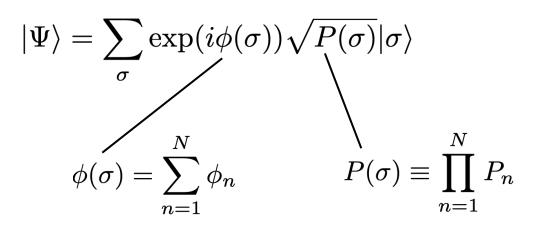


Hibat-Allah et. al. Recurrent neural network wave functions. *Physical Review Research*, *2*(2), p.023358.

Aside #1 on RNN Wavefunctions



Hibat-Allah et. al. Recurrent neural network wave functions. *Physical Review Research*, 2(2), p.023358.

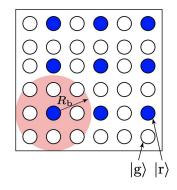


Not limited to Stoquastic Hamiltonians!!!!

Aside #2 on RNN Wavefunctions

The many nice properties:

- Autoregressive Neural Network
 - Chain rule of probabilities: $P(x_1, x_2, ..., x_N) = \prod p(x_i | x_{j < i})$
 - Efficient sampling
 - Encodes a *normalized* probability distribution
- Natural interpretation for lattice systems



Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-body problem with artificial neural networks." *Science* 355.6325 (2017): 602-606.

$$\hat{H} = -\frac{\Omega}{2} \sum_{i=1}^{N} \hat{\sigma}_i^x - \delta \sum_{i=1}^{N} \hat{n}_i + \sum_{i,j} V_{ij} \hat{n}_i \hat{n}_j$$

Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-body problem with artificial neural networks." *Science* 355.6325 (2017): 602-606.

$$\hat{H} = -\frac{\Omega}{2} \sum_{i=1}^{N} \hat{\sigma}_{i}^{x} - \delta \sum_{i=1}^{N} \hat{n}_{i} + \sum_{i,j} V_{ij} \hat{n}_{i} \hat{n}_{j}$$
$$H_{\rm RNN} = \frac{\langle \Psi_{\mathcal{W}} | \hat{H} | \Psi_{\mathcal{W}} \rangle}{\langle \Psi_{\mathcal{W}} | \Psi_{\mathcal{W}} \rangle}$$

Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-body problem with artificial neural networks." *Science* 355.6325 (2017): 602-606.

$$\hat{H} = -\frac{\Omega}{2} \sum_{i=1}^{N} \hat{\sigma}_{i}^{x} - \delta \sum_{i=1}^{N} \hat{n}_{i} + \sum_{i,j} V_{ij} \hat{n}_{i} \hat{n}_{j}$$

$$H_{RNN} = \frac{\sum_{\sigma} |\langle \Psi_{\mathcal{W}} | \sigma \rangle|^{2} \frac{\langle \sigma | \hat{H} | \Psi_{\mathcal{W}} \rangle}{\langle \sigma | \Psi_{\mathcal{W}} \rangle}}{\sum_{\sigma'} |\langle \Psi_{\mathcal{W}} | \sigma' \rangle|^{2}}$$

Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-body problem with artificial neural networks." *Science* 355.6325 (2017): 602-606.

$$\hat{H} = -\frac{\Omega}{2} \sum_{i=1}^{N} \hat{\sigma}_{i}^{x} - \delta \sum_{i=1}^{N} \hat{n}_{i} + \sum_{i,j} V_{ij} \hat{n}_{i} \hat{n}_{j}$$

$$H_{\text{RNN}} = \frac{\sum_{\sigma} |\langle \Psi_{\mathcal{W}} | \sigma \rangle|^{2} \frac{\langle \sigma | \hat{H} | \Psi_{\mathcal{W}} \rangle}{\langle \sigma | \Psi_{\mathcal{W}} \rangle}}{\sum_{\sigma'} |\langle \Psi_{\mathcal{W}} | \sigma' \rangle|^{2}}$$

$$P(\sigma)$$

Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-body problem with artificial neural networks." *Science* 355.6325 (2017): 602-606.

$$\hat{H} = -\frac{\Omega}{2} \sum_{i=1}^{N} \hat{\sigma}_{i}^{x} - \delta \sum_{i=1}^{N} \hat{n}_{i} + \sum_{i,j} V_{ij} \hat{n}_{i} \hat{n}_{j}$$

$$H_{\text{RNN}} = \frac{\sum_{\sigma} |\langle \Psi_{\mathcal{W}} | \sigma \rangle|^{2} \frac{\langle \sigma | \hat{H} | \Psi_{\mathcal{W}} \rangle}{\langle \sigma | \Psi_{\mathcal{W}} \rangle}}{\sum_{\sigma'} |\langle \Psi_{\mathcal{W}} | \sigma' \rangle|^{2}}$$

$$H_{\text{loc}}(\sigma)$$

Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-body problem with artificial neural networks." *Science* 355.6325 (2017): 602-606.

$$\hat{H} = -\frac{\Omega}{2} \sum_{i=1}^{N} \hat{\sigma}_{i}^{x} - \delta \sum_{i=1}^{N} \hat{n}_{i} + \sum_{i,j} V_{ij} \hat{n}_{i} \hat{n}_{j}$$
$$H_{\text{RNN}} = \sum_{\sigma} P(\sigma) H_{\text{loc}}(\sigma)$$

Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-body problem with artificial neural networks." *Science* 355.6325 (2017): 602-606.

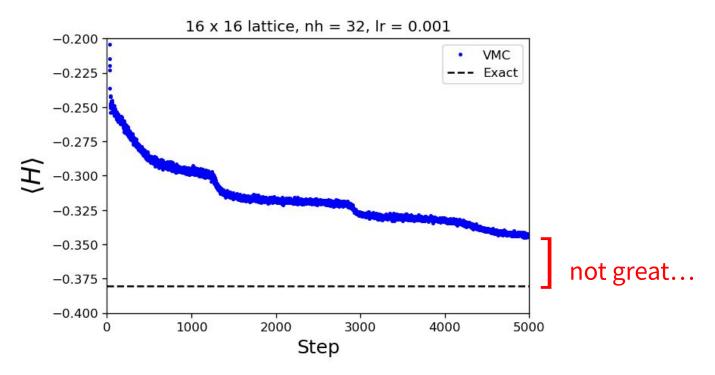
$$\hat{H} = -\frac{\Omega}{2} \sum_{i=1}^{N} \hat{\sigma}_{i}^{x} - \delta \sum_{i=1}^{N} \hat{n}_{i} + \sum_{i,j} V_{ij} \hat{n}_{i} \hat{n}_{j}$$
$$H_{RNN} = \sum_{\sigma} P(\sigma) H_{loc}(\sigma)$$
$$H_{RNN} \approx \frac{1}{N_{s}} \sum_{\sigma \sim p_{RNN}(\sigma; \mathcal{W})} H_{loc}(\sigma)$$

 \hat{H}

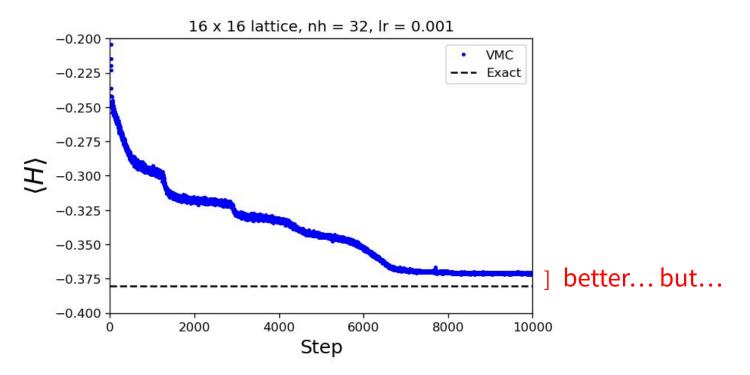
Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-body problem with artificial neural networks." *Science* 355.6325 (2017): 602-606.

$$= -\frac{\Omega}{2} \sum_{i=1}^{N} \hat{\sigma}_{i}^{x} - \delta \sum_{i=1}^{N} \hat{n}_{i} + \sum_{i,j} V_{ij} \hat{n}_{i} \hat{n}_{j}$$
$$H_{RNN} = \sum_{\sigma} P(\sigma) H_{loc}(\sigma)$$
$$H_{RNN} \approx \boxed{\frac{1}{N_{s}} \sum_{\sigma \sim p_{RNN}(\sigma; \mathcal{W})} H_{loc}(\sigma)} = \mathcal{L}_{H}(\mathcal{W})$$

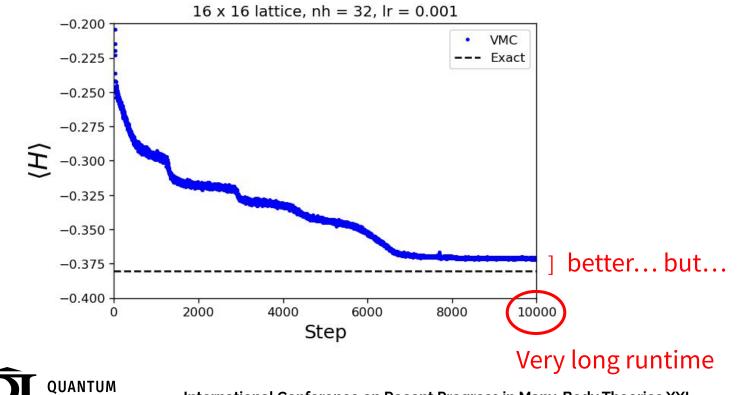
Optimization Challenges (variational training)



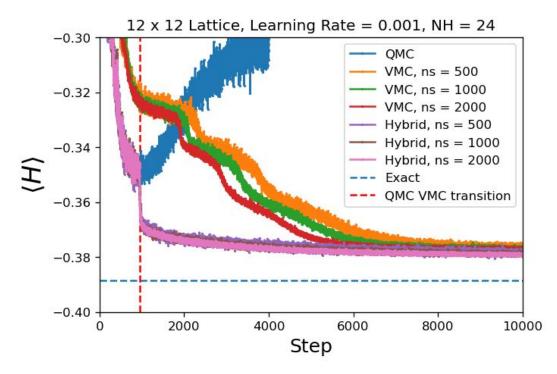
Optimization Challenges (variational training)



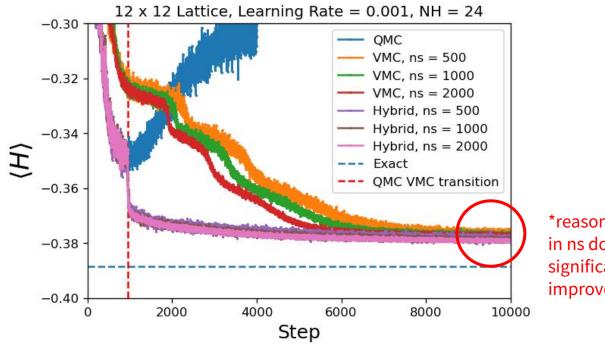
Optimization Challenges (variational training)



Aside on Energy Estimation



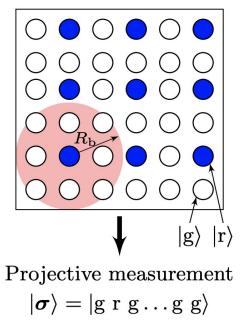
Aside on Energy Estimation



reasonable increases in ns don't result in significant improvements

Torlai *et al.* Neural-network quantum state tomography. *Nature Phys* 14, 447–450 (2018).

Merali, Ejaaz *et al.* "Stochastic series expansion quantum monte carlo for rydberg arrays." *arXiv preprint arXiv:2107.00766* (2021).



Torlai *et al.* Neural-network quantum state tomography. *Nature Phys* 14, 447–450 (2018).

 $\mathcal{L}_{KL}(\mathcal{W}) = \sum_{\{\boldsymbol{\sigma}\}} p_{\mathcal{D}}(\boldsymbol{\sigma}) \log \frac{p_{\mathcal{D}}(\boldsymbol{\sigma})}{p_{RNN}(\boldsymbol{\sigma};\mathcal{W})}$

Torlai *et al.* Neural-network quantum state tomography. *Nature Phys* 14, 447–450 (2018).

$$\mathcal{L}_{KL}(\mathcal{W}) = \sum_{\{\sigma\}} p_{\mathcal{D}}(\sigma) \log \frac{p_{\mathcal{D}}(\sigma)}{p_{RNN}(\sigma; \mathcal{W})}$$
$$\approx -S_{\mathcal{D}} - \sum_{\sigma \in \mathcal{D}} p_{\mathcal{D}}(\sigma) \log p_{RNN}(\sigma)$$

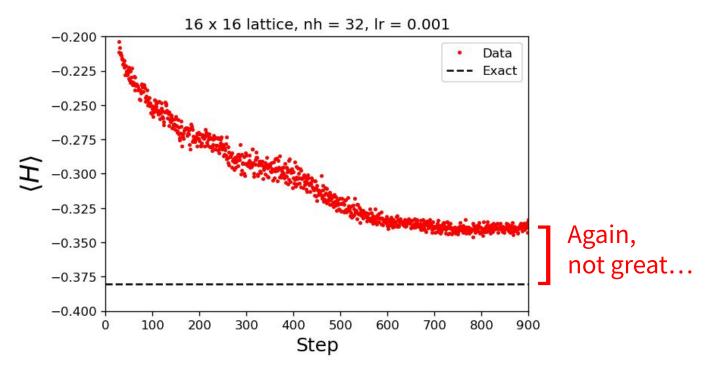
Torlai *et al.* Neural-network quantum state tomography. *Nature Phys* 14, 447–450 (2018).

$$\begin{aligned} \mathcal{L}_{KL}(\mathcal{W}) &= \sum_{\{\sigma\}} p_{\mathcal{D}}(\sigma) \log \frac{p_{\mathcal{D}}(\sigma)}{p_{RNN}(\sigma; \mathcal{W})} \\ &\approx -S_{\mathcal{D}} - \sum_{\sigma \in \mathcal{D}} p_{\mathcal{D}}(\sigma) \log p_{RNN}(\sigma) \\ &\approx -S_{\mathcal{D}} - \frac{1}{|\mathcal{D}|} \sum_{\sigma \in \mathcal{D}} \log p_{RNN}(\sigma; \mathcal{W}) \end{aligned}$$

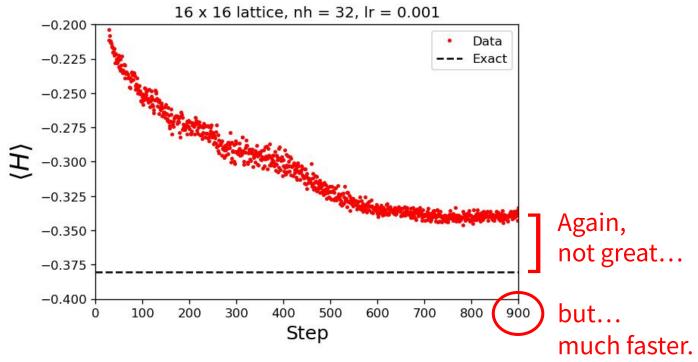
Torlai *et al.* Neural-network quantum state tomography. *Nature Phys* 14, 447–450 (2018).

$$\mathcal{L}_{KL}(\mathcal{W}) = \sum_{\{\sigma\}} p_{\mathcal{D}}(\sigma) \log \frac{p_{\mathcal{D}}(\sigma)}{p_{RNN}(\sigma; \mathcal{W})}$$
$$\approx -S_{\mathcal{D}} - \sum_{\sigma \in \mathcal{D}} p_{\mathcal{D}}(\sigma) \log p_{RNN}(\sigma)$$
$$\approx -S_{\mathcal{D}} \left| -\frac{1}{|\mathcal{D}|} \sum_{\sigma \in \mathcal{D}} \log p_{RNN}(\sigma; \mathcal{W}) \right|$$

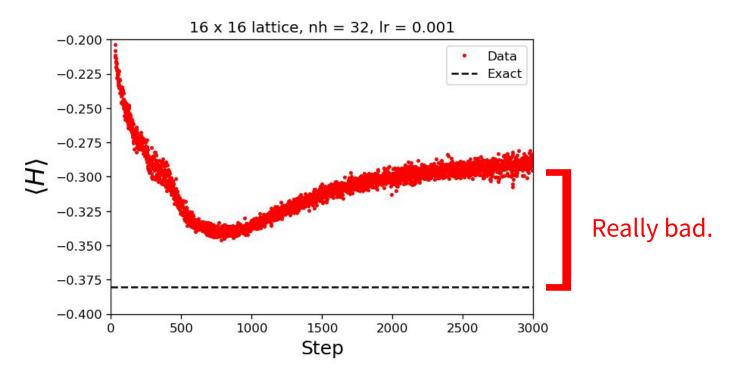
Optimization Challenges (training with data)



Optimization Challenges (training with data)

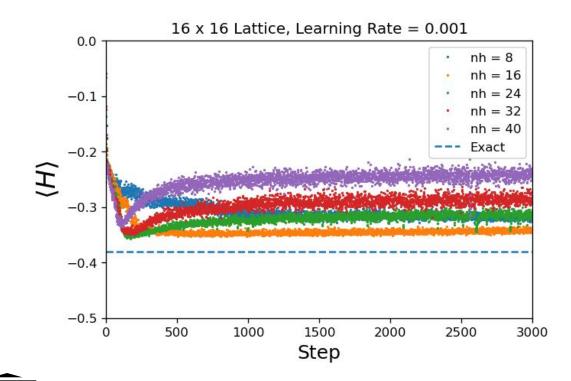


Optimization Challenges (training with data)



Aside on Overfitting

WATERLOO

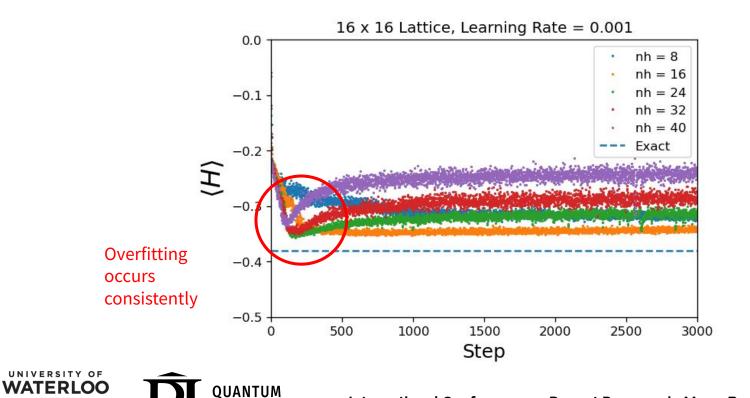


QUANTUM INTELLIGENCE LAB

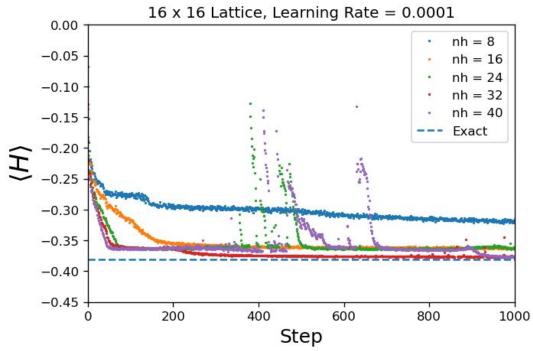
Aside on Overfitting

INTELLIGENCE

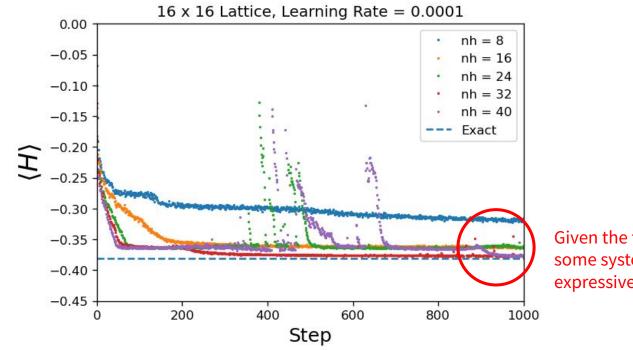
LAB



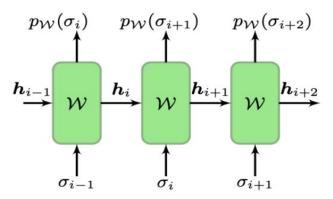
Aside on Expressiveness

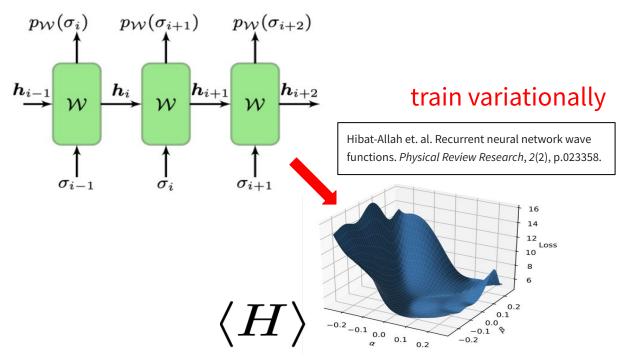


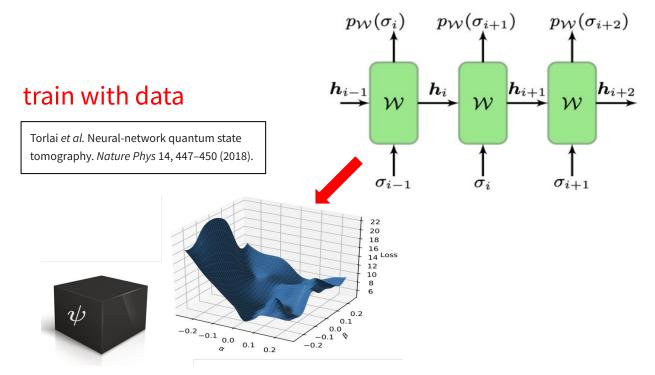
Aside on Expressiveness

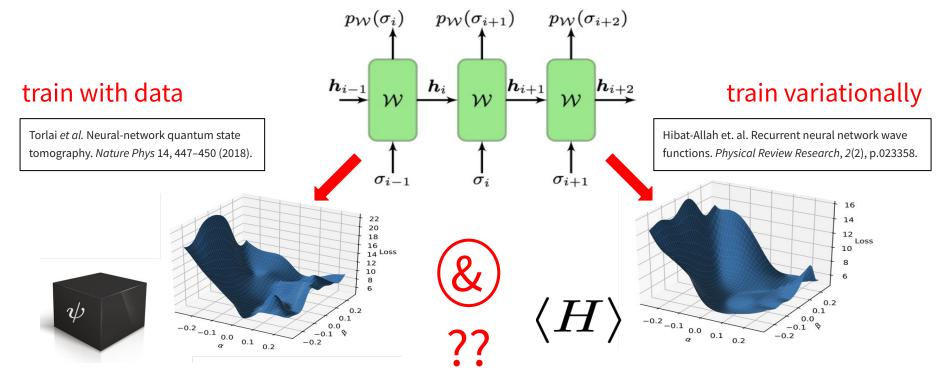


Given the full data set, some system sizes are expressive enough

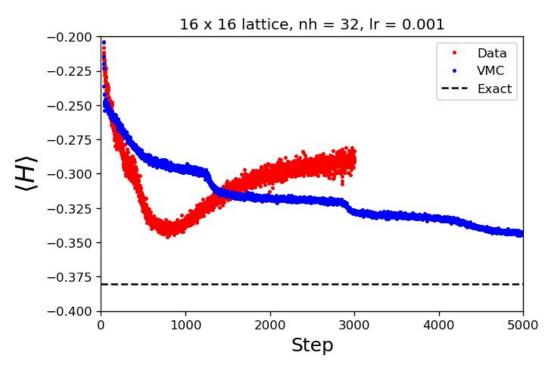




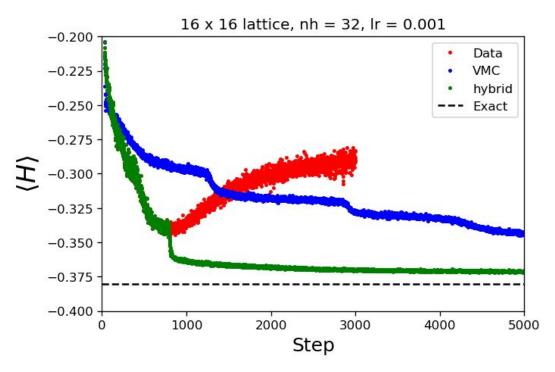




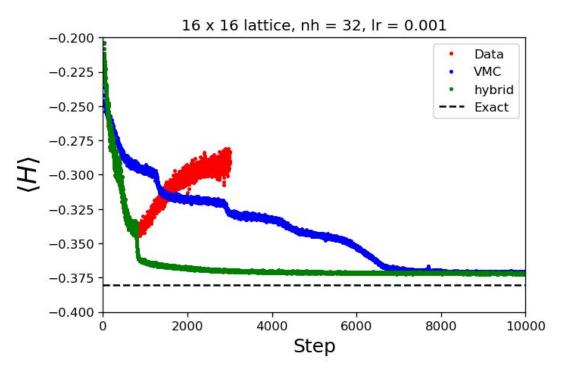
Combining Training Methods



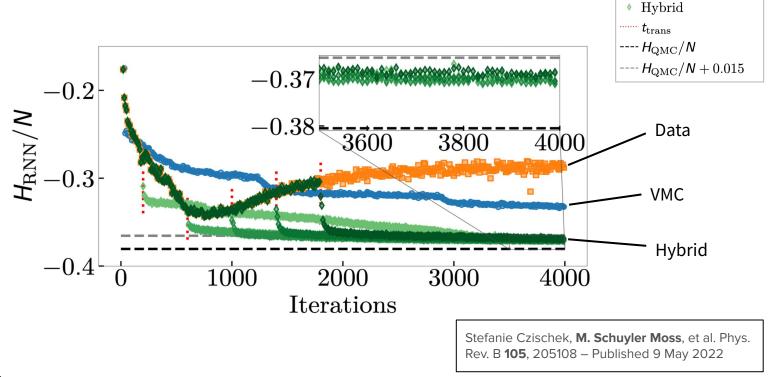
Combining Training Methods



Combining Training Methods



Results



International Conference on Recent Progress in Many-Body Theories XXI

• Hamiltonian-driven

Results



Conclusions:

- 1. Can train the same network with data AND variationally with a simple change in the loss function.
- 2. Results in a speedup in the time to convergence.

Conclusions:

- Can train the same network with data AND variationally with a simple 1. change in the loss function. AND can be viewed as
- 2. Results in a speedup in the time to convergence.

error mitigation!

Bennewitz, Elizabeth R., et al. "Neural error mitigation of near-term guantum simulations." Nature Machine Intelligence 4.7 (2022): 618-624.

Conclusions:

- 1. Can train the same network with data AND variationally with a simple change in the loss function. AND can be viewed as
- 2. Results in a speedup in the time to convergence.

Open Questions:

AND can be viewed as error mitigation!

Bennewitz, Elizabeth R., et al. "Neural error mitigation of near-term quantum simulations." *Nature Machine Intelligence* 4.7 (2022): 618-624.

1. Is there a "loss schedule" that would result in accuracy improvements in addition to the improved convergence time?

Conclusions:

- 1. Can train the same network with data AND variationally with a simple change in the loss function. AND can be viewed as
- 2. Results in a speedup in the time to convergence.

Open Questions:

AND can be viewed as error mitigation!

Bennewitz, Elizabeth R., et al. "Neural error mitigation of near-term quantum simulations." *Nature Machine Intelligence* 4.7 (2022): 618-624.

1. Is there a "loss schedule" that would result in accuracy improvements in addition to the improved convergence time? (hybrid accuracy better than VMC only)

Conclusions:

- Can train the same network with data AND variationally with a simple 1. change in the loss function. AND can be viewed as
- Results in a speedup in the time to convergence. 2.

Open Questions:

error mitigation!

Bennewitz, Elizabeth R., et al. "Neural error mitigation of near-term guantum simulations." Nature Machine Intelligence 4.7 (2022): 618-624.

- Is there a "loss schedule" that would result in accuracy improvements in 1. addition to the improved convergence time? (hybrid accuracy better than VMC only)
- 2. What does it mean that using both loss functions results in comparable final accuracies?

