Thermal properties of frustrated quantum magnets

F. Mila Ecole Polytechnique Fédérale de Lausanne Switzerland

Theorists

Stefan Wessel (Aachen)
Andreas Honecker (Cergy)
Bruce Normand (PSI)
Philippe Corboz (Amsterdam)
Olivier Gauthé (Lausanne)

Experimentalists

Henrik Ronnow (Lausanne) Christian Rüegg (Villigen)

and many more...

Scope

- Thermal properties: quantum Monte Carlo and minus sign
- Fully frustrated bilayer
 - → Minus sign free QMC in dimer basis
 - → Ising critical point
- Shastry-Sutherland model
 - → From QMC to iPEPS (tensor network)
 - → SrCu₂(BO₃)₂ under pressure: Critical point
- J₁-J₂ model:
 - → Ising transition revealed by iPEPS
- Conclusions

AF Heisenberg model

$$\mathcal{H} = \sum_{(i,j)} J_{ij} \; \vec{S}_i \cdot \vec{S}_j$$

- Odd loops with AF exchange integrals (J_{ij}>0)
 - → Frustration (minimal definition)
 - → Examples: triangular lattice, kagome,...
 - → Minus sign for Quantum Monte Carlo

Quantum Monte Carlo

$$Z = \sum_{\alpha} \langle \alpha | \prod_{l=1}^{L} e^{-\Delta \tau \mathcal{H}} | \alpha \rangle, \ \Delta \tau = \frac{\beta}{L}$$

$$Z = \sum_{\alpha_1, \dots, \alpha_L} \langle \alpha_1 | e^{-\Delta \tau \mathcal{H}} | \alpha_2 \rangle \langle \alpha_2 | e^{-\Delta \tau \mathcal{H}} | \alpha_3 \rangle \dots \langle \alpha_L | e^{-\Delta \tau \mathcal{H}} | \alpha_1 \rangle$$

$$Z \simeq \sum_{\alpha_1, \dots, \alpha_L} \langle \alpha_1 | 1 - \Delta \tau \mathcal{H} | \alpha_2 \rangle \langle \alpha_2 | 1 - \Delta \tau \mathcal{H} | \alpha_3 \rangle \dots \langle \alpha_L | 1 - \Delta \tau \mathcal{H} | \alpha_1 \rangle$$

$$|\langle \alpha_i | 1 - \Delta \tau \mathcal{H} | \alpha_{i+1} \rangle > 0 \text{ iff } \langle \alpha_i | \mathcal{H} | \alpha_{i+1} \rangle < 0 \text{ when } \langle \alpha_i | \alpha_{i+1} \rangle = 0$$

Hamiltonian in configuration basis

- For the AF Heisenberg model, all offdiagonal matrix elements are positive!
- \rightarrow Bipartite lattice: rotation by π on one sublattice to change the signs of all off-diagonal matrix elements
- → Non-bipartite lattice: no way out in configuration basis

Fully frustrated dimer models

$$J_{ imes}=J_{\parallel}$$

$$H = J_{\parallel} \sum_{i=1}^{L} \vec{T}_{i} \cdot \vec{T}_{i+1} + J_{\perp} \sum_{i=1}^{L} \left(\frac{1}{2} \vec{T}_{i}^{2} - S(S+1) \right)$$

$$\vec{T}_i = \vec{S}_i^1 + \vec{S}_i^2$$

Hamiltonian in dimer basis

- In general, involves both the sum and the difference of spins on a dimer
- Full frustration: all exchange integrals between the spins of coupled dimers are equal
- → the Hamiltonian can be written in terms of the sum only
 - → QMC possible if bipartite lattice of dimers

Thermal Critical Points and Quantum Critical End Point in the Frustrated Bilayer Heisenberg Antiferromagnet

J. Stapmanns, P. Corboz, F. Mila, A. Honecker, B. Normand, and S. Wessel

Fully frustrated bilayer

Ising critical point

Ising 2D: $\alpha = 0$ C α In L

- As for Mott transition (DMFT)
- Physical realization in quantum magnets?

$SrCu_2(BO_3)_2$

Smith and Keszler, JSSC 1991

$$J_D \approx 85 \text{ K}$$

$$J/J_D \approx 0.63$$

Famous for its magnetization plateaus

From orthogonal dimer to Shastry-Sutherland model

Shastry and Sutherland, 1981

Tensor network study of the Shastry-Sutherland model in zero magnetic field

Philippe Corboz¹ and Frédéric Mila²

¹Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland

²Institut de théorie des phénomènes physiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland (Received 13 December 2012; revised manuscript received 27 February 2013; published 27 March 2013)

iPEPS with various setups and bond dimension up to 10

SrCu₂(BO₃)₂ under pressure

- Pressure: expected to change J/J_D and found to increase it
- NMR (Waki et al 2007): intermediate phase around 24 kbar
- Intermediate phase confirmed by neutron scattering (Zayed et al, 2017), ESR (Sakurai et al, 2018), and specific heat (Guo et al, 2020)

Quantum Phases of SrCu₂(BO₃)₂ from High-Pressure Thermodynamics

Jing Guo[®], Guangyu Sun[®], James Bowen Zhao[®], Ling Wang[®], Wenshan Hong, Vladimir A. Sidorov, Nvsen Ma, Qi Wu, Shiliang Li, Zi Yang Meng[®], Anders W. Sandvik[®], And Liling Sun[®], Sandvik[®], And Liling Sun[®], And

Intermediate phase with critical temperature around 2K

A quantum magnetic analogue to the critical point of water

Nature | Vol 592 | 15 April 2021

https://doi.org/10.1038/s41586-021-03411-8

Received: 30 September 2020

Accepted: 26 February 2021

J. Larrea Jiménez^{1,2}, S. P. G. Crone^{3,4}, E. Fogh², M. E. Zayed⁵, R. Lortz⁶, E. Pomjakushina³, K. Conder³, A. M. Läuchli⁶, L. Weber⁶, S. Wessel⁶, A. Honecker¹o, B. Normand².¹¹, Ch. Rüegg².¹¹¹,¹².¹³, P. Corboz³,⁴, H. M. Rønnow² & F. Mila²

Thermal properties of Shastry-Sutherland model

Hamiltonian: cannot be written in terms of sum of spins of dimers → minus sign problem

$$\langle A \rangle = \frac{\sum_{c} W_{c} A_{c}}{\sum_{c} W_{c}} = \frac{\sum_{c} \operatorname{sign}(W_{c}) |W_{c}| A_{c}}{\sum_{c} \operatorname{sign}(W_{c}) |W_{c}|} = \frac{\langle \operatorname{sign} A \rangle'}{\langle \operatorname{sign} \rangle'}$$

- Up to $J/J_D = 0.526...$
- → The model with all off-diagonal matrix elements put arbitrarily negative has the same GS
 - \rightarrow <sign>' \rightarrow 1 as T \rightarrow 0
 - → QMC possible!

Thermodynamic properties of the Shastry-Sutherland model from quantum Monte Carlo simulations

Stefan Wessel, Ido Niesen, Jonas Stapmanns, B. Normand, Frédéric Mila, Philippe Corboz, and Andreas Honecker

And above $J/J_D = 0.526$?

Tensor networks

$$|\psi\rangle = \sum_{i_1...i_N} c_{i_1...i_N} |i_1\rangle \otimes \cdots \otimes |i_N\rangle$$

 $c_{i_1...i_N} \simeq \text{trace over a product of tensors}$

Example: Matrix product state in 1D (DMRG)

$$c_{i_1 i_2 i_3 \dots} \simeq \sum_{j_1 j_2 \dots} A_{i_1}^{j_1} B_{i_2}^{j_1 j_2} C_{i_3}^{j_2 j_3} \cdots$$

Generalization to 2D

PEPS = product of entangled pair states

Verstraete and Cirac, 2004

$$A_i^{j_1j_2j_3j_4} = \text{rank-5 tensor}$$

$$j_1, j_2, j_3, j_4 = 1, ..., D$$

Variational approach

- PEPS: minimize the energy w.r.t. tensor elements
- Advantage: dim=pol(D,N), not exp(N)
- Why can it work?
 - → reproduces the 'area law' for the entanglement entropy in the GS of a local Hamiltonian

$$S = -\operatorname{tr}\left(\rho_A \log \rho_A\right) \sim \partial A$$

How large should D be? It depends...

Tensor network for T>0

- Purified state: density matrix can be written as the partial trace of a quantum state in an enlarged Hilbert space (with extra "ancilla" degrees of freedom)
- T infinite: Singlets between physical and ancilla degrees of freedom
- Finite T: imaginary-time evolution from T infinite

F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac, PRL 2004

PHYSICAL REVIEW B 86, 245101 (2012)

Projected entangled pair states at finite temperature: Imaginary time evolution with ancillas

Piotr Czarnik, Lukasz Cincio, and Jacek Dziarmaga

PHYSICAL REVIEW B 92, 035120 (2015)

Projected entangled pair states at finite temperature: Iterative self-consistent bond renormalization for exact imaginary time evolution

Piotr Czarnik and Jacek Dziarmaga

PHYSICAL REVIEW B 99, 245107 (2019)

Finite correlation length scaling with infinite projected entangled pair states at finite temperature

Piotr Czarnik¹ and Philippe Corboz²

PHYSICAL REVIEW B 103, 075113 (2021)

Tensor network study of the $m = \frac{1}{2}$ magnetization plateau in the Shastry-Sutherland model at finite temperature

Thermodynamic properties of the Shastry-Sutherland model throughout the dimer-product phase

Alexander Wietek, 1,2,* Philippe Corboz, Stefan Wessel, B. Normand, Frédéric Mila, and Andreas Honecker

iPEPS for Shastry-Sutherland

Critical point

Critical point in various models...

Ising in a field

FFB

Shastry-Sutherland

... and in water

 $T_c=374^{\circ}$ C $P_c=218$ bar

1822: Cagniard de la Tour

J₁-J₂ model on square lattice

$$\mathcal{H} = J_1 \sum_{NN} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{NNN} \mathbf{S}_i \cdot \mathbf{S}_j$$

Chandra and Douçot, PRB 1988

$$\alpha = J_2/J_1$$

iPEPS for J₁-J₂ model

- Two helical states in collinear phase at large J₂
 - → Ising transition at finite temperature
 Chandra, Coleman and Larkin, PRL 1990
- Numerical confirmation?
 - → QMC: very severe minus sign problem
- → iPEPS: Yes if SU(2) symmetry strictly enforced during imaginary time evolution

PHYSICAL REVIEW LETTERS 128, 227202 (2022)

Thermal Ising Transition in the Spin-1/2 J_1 - J_2 Heisenberg Model

Olivier Gauthéo* and Frédéric Milao

 $J_2/J_1=0.85$

Ising transition for J_2/J_1 large enough from finite T iPEPS

Phase diagram of J₁-J₂ model

Conclusions

- Thermal properties of frustrated quantum magnets are no longer inaccessible
- QMC
- → No minus sign in dimer basis for fully frustrated models on bipartite lattices
- → Can even work at low T if there is a minus sign under certain conditions
- iPEPS
 - → Critical point in Shastry-Sutherland model
 - → Thermal Ising transition in J₁-J₂ model
 - **→** ...