DMRG methods for dynamical properties of electron-phonon systems at finite temperatures

¹Institut für Theoretische Physik, Georg-August-Universität Göttingen¹ ²J. Stefan Institute, Ljubljana ³University of Ljubljana

> 12.09.2022 Recent Progress in Many-Body Theories XXI

David Jansen¹, Janez Bonča^{2,3}, and Fabian Heidrich-Meisner¹

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN IN PUBLICA COMMODA GÖTTINGEN SEIT 1737

Outline

Motivation: Electron-phonon coupling

- Results: Spectral functions and optical conductivity
 - DJ, Bonča and Heidrich-Meisner, arXiv:2206.00985 (2022) (accepted in PRB)
 - Summary and outlook

Motivation: Electron-phonon interaction

Electon causes lattice vibrations \rightarrow polaron

Motivation: Electron-phonon interaction

Experimentally accessible

Narrow bandwidth manganite $Pr_{1-x}Ca_xMnO_3$

Many results can be understood by small polaron theory

Mildner et al., Phys. Rev. B 92, 035145 (2015)

Holstein model

Electrons and local harmonic oscillators

Electron hopping

Phonon energy

Electron-phonon coupling

Total Hilbert space $\sim M^L$

$$H = -t_0 \sum_{i,\sigma} \left(c_{i,\sigma}^{\dagger} c_{i+1,\sigma} + h \cdot c \right) + \omega_0 \sum_i b_i^{\dagger} b_i + \gamma \sum_{i,\sigma} n_{i,\sigma} (b_i + b_i^{\dagger})$$

Summary of DMRG

Hilbert space $|\psi\rangle$ Relevant part $|\tilde{\psi} angle$ White, Phys. Rev. Lett. 69, 2863 (1992)

Schollwöck, Rev. Mod. Phys. 77, 259 (2005) Orús, Ann. Phys. 349, 117 (2014)

Here: 1 dimension!

Describe state in Hilbert space

$$|\psi\rangle = \sum_{\sigma_1,...,\sigma_L} c^{\sigma_1...\sigma_L} |\sigma_1,\ldots,\sigma_L\rangle$$

Truncate $|\psi\rangle$ by selecting the most important states

Flexible! Ground-state search Non-equilibrium dynamics Finite-temperature

Verstraete et al., Phys. Rev. Lett. 93, 207204 (2004) White, Phys. Rev. Lett. **102**, 190601 (2009) Paeckel et al., Ann. Phys., **411**, 167998 (2019)

Summary of DMRG

Hilbert space $|\psi\rangle$ Relevant part $|\tilde{\psi} angle$

White, Phys. Rev. Lett. 69, 2863 (1992) Schollwöck, Rev. Mod. Phys. 77, 259 (2005) Orús, Ann. Phys. 349, 117 (2014)

Here: 1 dimension!

Describe state in Hilbert space

$$|\psi\rangle = \sum_{\sigma_1,...,\sigma_L} c^{\sigma_1...\sigma_L} |\sigma_1,\ldots,\sigma_L\rangle$$

Truncate $|\psi\rangle$ by selecting the most important states

$$|\tilde{\psi}\rangle = \sum_{\sigma_1,...,\sigma_L} M^{\sigma_1} M^{\sigma_2} \dots M^{\sigma_L} | \sigma_1, \dots, \sigma_L \rangle =$$

Flexible! Ground-state search Non-equilibrium dynamics Finite-temperature IT IS FUN!

Verstraete et al., Phys. Rev. Lett. 93, 207204 (2004) White, Phys. Rev. Lett. **102**, 190601 (2009) Paeckel et al., Ann. Phys., **411**, 167998 (2019)

Challenges:

1: Large local Hilbert spaces: LBO

<u>3: Restrictions in time-evolution: pTDVP</u>

<u>2: Finite temperature: Purification</u>

Only pure states

Problem: Large phonon Hilbert space

 $_{\rm effort}^{\rm Computational} \sim d^3$

 $_{\rm effort}^{\rm Computational} \sim d^3$

 $\rho^{i} | \phi^{i}_{\alpha} \rangle = w^{i}_{\alpha} | \phi^{i}_{\alpha} \rangle$

Diagonalize reduced single-site density matrix: Truncate!

Zhang, Jeckelmann and White, Phys. Rev. Lett. 80, 2661 (1998)

Other clever methods exist:

Jeckelmann and White, Phys. Rev. B 57, 6376 (1998) Köhler at el., SciPost Phys. 10, 058 (2021) Mardazad et al., J. Chem. Phys. 155, 194101 (2021)

Time evolution:

Brockt, Dorfner, Vidmar, Heidrich-Meisner, Jeckelmann, Phys. Rev. B **92**, 241106 (2015) Herbrych, Dorfner, Dagotto, Heidrich-Meisner, Phys. Rev. B **101**, 035134 (2020) DJ, Jooss and Heidrich-Meisner, Phys. Rev. B **104**, 195116 (2021)

Finite tempertaure:

DJ, Bonča, Heidrich-Meisner, Phys. Rev. B **102**, 165155 (2020) DJ, Bonča, Heidrich-Meisner, arXiv:2206.00985 (2022) (accepted in PRB)

Ground state:

Stolpp, Herbrych, Dorfner, Dagotto, Heidrich-Meisner, Phys. Rev. B **101**, 035134 (2020) Guo, Weichselbaum, von Delft, Vojta, Phys. Rev. Lett. **108**, 160401 (2012)

Challenge 2: Finite temperature

$$\langle \hat{O} \rangle_{\beta} = \frac{1}{Z} \sum_{n} e^{-E_{n}\beta} \langle n | \hat{O} | n \rangle$$

Purification

$$L=21,\gamma/\omega_0=\sqrt{2},t_0/\omega_0=1$$

Challenge 2: Finite temperature

$$\langle \hat{O} \rangle_{\beta} = \frac{1}{Z} \sum_{n} e^{-E_{n}\beta} \langle n | \hat{O} | n \rangle$$

Purification

$$L=21,\gamma/\omega_0=\sqrt{2},t_0/\omega_0=1$$

Challenge 2: Finite temperature

$$\langle \hat{O} \rangle_{\beta} = \frac{1}{Z} \sum_{n} e^{-E_{n}\beta} \langle n | \hat{O} | n \rangle$$

Purification

Verstraete et al., Phys. Rev. Lett. 93, 207204 (2004)

$$L = 21, \gamma/\omega_0 = \sqrt{2}, t_0/\omega_0 = 1$$

$$d_{\text{LBO}} \leq 2(M+1)$$

$$d_{0} \leq 2(M+1)$$

$$-M = 20 - -M = 30$$

$$T/\omega_0$$

$$D, \text{ Bonča and Heidrich-Meisner, Phys. Rev. B 102, 165155 (2020)$$

$$Purification gives correct physics in low temperature regime!$$

DJ, Bonča and Heidrich-Meisner, Phys. Rev. B 102, 165155 (2020)

Spectral functions

DJ, Bonča and Heidrich-Meisner, Phys. Rev. B 102, 165155 (2020)

Spectral functions

Electron emission function

 $G_{T,1}^{<}(m,n,t) = i \langle \hat{c}_m^{\dagger}(0) \hat{c}_n(t) \rangle_{T,1}$

$$\longrightarrow A^+(\omega, k) = -\frac{1}{2\pi} Im[-G^<_{T,1}(k, \omega)]$$

Phonon spectral function

Large systems

Temperature dependence

Full momentum resolution

$$D^{>}_{T,1}(m,n,t) = -i\langle \hat{X}^{\dagger}_m(t)\hat{X}_n(0)\rangle_{T,1}$$

$$\longrightarrow B(\omega, k) = -\frac{1}{2\pi} Im[D_{T,1}^{>}(k, \omega)]$$

 $+t_{\rm ph}$

Influence on CDW formation in 2D with QMC Costa et al., Phys. Rev. Lett. **120**, 187003 (2018) Polaron effective mass Dominic et al., Phys. Rev. B 88, 060301(R) (2013) Optical conductivity and spectral functions in the ground state Bonča and Trugman, Phys. Rev. B **103**, 054304 (2021)

Adding dispersion

$$\sum_{i} (b_i^{\dagger} b_{i+1} + h \cdot c.)$$

How to get $\sigma(\omega)$

Linear response theory $J(\omega) = \sigma(\omega)E(\omega), \sigma'(\omega) = Re[\sigma(\omega)]$

With
$$\sigma'(\omega) = \frac{1 - e^{-\omega/T}}{\omega} \int_0^\infty dt \, Re[e^{i\omega t} \langle J(t)J(0) \rangle_T]$$

And
$$J = i \sum_{i,\sigma} (c_{i\sigma}^{\dagger} c_{i+1\sigma} - h \cdot c.)$$

Lots of research

Goodvin et al., Phys. Rev. Lett. **107**, 076403 (2011) Schubert et al., Phys. Rev. B 72, 104304 (2005) Zhang et al., Phys. Rev. B **60**, 14092 (1999) Fratini and Ciuchi, Phys. Rev. B **74**, 075101 (2006) Bonča and Trugman, Phys. Rev. B **103**, 054304 (2021)

Study polaron and bipolaron Dispersive phonons Different parameter regimes Finite temperature Relatively large systems

+more

Need $\langle J(t)J(0)\rangle_T$

Finite temperature: Purification

Verstraete et al., Phys. Rev. Lett. 93, 207204 (2004) Karrasch et al., New J. Phys. **15**, 083031 (2013) Kennes and Karrasch, Comput. Phys. Commun. 200, 37 (2016)

Time evolution real and imaginary

\rightarrow (p)2TDVP with LBO and 1TDVP!

Zhang, Jeckelmann and White, Phys. Rev. Lett. 80, 2661 (1998) Haegeman et al., Phys. Rev. Lett. 107, 070601 (2011) Secular et al., Phys. Rev. B 101, 235123 (2020)

We:

Challenge 3: Time evolution

Linear response theory $J(\omega) = \sigma(\omega)E(\omega), \sigma'(\omega) = Re[\sigma(\omega)]$

With
$$\sigma'(\omega) = \frac{1 - e^{-\omega/T}}{\omega} \int_0^\infty dt \, Re[e^{i\omega t} \langle J(t)J(0) \rangle_T]$$

And
$$J = i \sum_{i,\sigma} (c_{i\sigma}^{\dagger} c_{i+1\sigma} - h \cdot c.)$$

Lots of research

Goodvin et al., Phys. Rev. Lett. **107**, 076403 (2011) Schubert et al., Phys. Rev. B 72, 104304 (2005) Zhang et al., Phys. Rev. B **60**, 14092 (1999) Fratini and Ciuchi, Phys. Rev. B 74, 075101 (2006) Bonča and Trugman, Phys. Rev. B **103**, 054304 (2021)

+more

Study polaron and bipolaron Dispersive phonons Different parameter regimes Finite temperature Relatively large systems

Need $\langle J(t)J(0)\rangle_T$

Finite temperature: Purification

Verstraete et al., Phys. Rev. Lett. 93, 207204 (2004) Karrasch et al., New J. Phys. **15**, 083031 (2013) Kennes and Karrasch, Comput. Phys. Commun. 200, 37 (2016)

Time evolution real and imaginary

\rightarrow (p)2TDVP with LBO and 1TDVP!

Zhang, Jeckelmann and White, Phys. Rev. Lett. 80, 2661 (1998) Haegeman et al., Phys. Rev. Lett. 107, 070601 (2011) Secular et al., Phys. Rev. B 101, 235123 (2020)

We:

Challenge 3: Time evolution

400

200

max

Brockt, Dorfner, Vidmar, Heidrich-Meisner, Jeckelmann, Phys. Rev. B 92, 241106 (2015) DJ, Bonča and Heidrich-Meisner, Phys. Rev. B 102, 165155 (2020) DJ, Bonča and Heidrich-Meisner, arXiv:2206.00985 (2022) (accepted in PRB)

Need $\langle J(t)J(0)\rangle_T$

Finite temperature: Purification

Verstraete et al., Phys. Rev. Lett. 93, 207204 (2004) Karrasch et al., New J. Phys. **15**, 083031 (2013) Kennes and Karrasch, Comput. Phys. Commun. 200, 37 (2016)

Time evolution real and imaginary

(p)2TDVP with LBO and 1TDVP!

Zhang, Jeckelmann and White, Phys. Rev. Lett. 80, 2661 (1998) Haegeman et al., Phys. Rev. Lett. **107**, 070601 (2011) Secular et al., Phys. Rev. B **101**, 235123 (2020)

Known that TDVP performs very well!

Paeckel et al., Ann. Phys., **411**, 167998 (2019)

Optical conductivity: Polaron

Spectrum goes from discrete to continuous

Peak shifts to lower frequencies

Enhanced spectral weight at low frequencies

 $L = 20, M = 20, \gamma/\omega_0 = 1, t_0/\omega_0 = 1$

DJ, Bonča and Heidrich-Meisner, arXiv:2206.00985 (2022) (accepted in PRB)

Look at the Holstein dimer, define $\tilde{\omega} = \omega_0 - t_{\rm ph}$

Rewrite our Hamiltonian in terms of q, Q

with
$$Q = (x_1 + x_2))/\sqrt{2}, q = (x_1 - x_2)/\sqrt{2}$$

Look at fixed phonon configurations

$$H = H_{ekin} + \gamma [\bar{q}(n_1 - n_2)] + \frac{1}{2} \bar{q}^2 (\omega_0 - t_{ph}) \text{ and } \bar{q} = q \sqrt{m\omega_0/\hbar}$$

Diagonalize and get the eigenvalues

$$\begin{pmatrix} \frac{\bar{q}^2}{2}\tilde{\omega}_0 + \gamma\bar{q} & -t_0 \\ -t_0 & \frac{\bar{q}^2}{2}\tilde{\omega}_0 - \gamma\bar{q} \end{pmatrix}$$

$$\blacktriangleright E^{BO}_{\pm} = \frac{1}{2} (\bar{q}^2 \tilde{\omega}_0 \pm 2\sqrt{(\gamma \bar{q})^2} - \frac{1}{2} (\bar{q}$$

Draw the surfaces

$$2\tilde{\omega}_0 \pm 2\sqrt{(\gamma\bar{q})^2 + t_0^2}$$

$$\alpha = \tilde{\omega}_0 c$$

Without dispersion: Fratini and Ciuchi, Phys. Rev. B 74, 075101 (2006)

Obtain formula $\sigma_{SC}(\omega) = \frac{1 - e^{-\beta\omega}}{\omega} \sqrt{\frac{2\pi}{\Delta_{BO}\alpha}} t_0^2 e^{-(\Delta_{BO} - \omega)^2/(2\Delta_{BO}\alpha)}$

 $\operatorname{coth}(\beta \tilde{\omega}_0/2)$

Obtain formula $\sigma_{SC}(\omega) = \frac{1-e}{\omega}$

 $\alpha = \tilde{\omega}_0 \coth(\beta \tilde{\omega}_0/2)$

Without dispersion: Fratini and Ciuchi, Phys. Rev. B 74, 075101 (2006)

$$e^{-\beta\omega}\sqrt{\frac{2\pi}{\Delta_{BO}\alpha}}t_0^2e^{-(\Delta_{BO}-\omega)^2/(2\Delta_{BO}\alpha)}$$

Obtain formula $\sigma_{SC}(\omega) = \frac{1-e}{----}$ a

 $\alpha = \tilde{\omega}_0 \coth(\beta \tilde{\omega}_0/2)$

Without dispersion: Fratini and Ciuchi, Phys. Rev. B 74, 075101 (2006)

$$e^{-\beta\omega}\sqrt{\frac{2\pi}{\Delta_{BO}\alpha}}t_0^2e^{-(\Delta_{BO}-\omega)^2/(2\Delta_{BO}\alpha)}$$

Optical conductivity: Polaron

$$\sigma_{SC}(\omega) = \frac{1 - e^{-\beta\omega}}{\omega} \sqrt{\frac{2\pi}{\Delta_{BO}\alpha\tilde{\omega}_0}} t_0^2 e^{-(\Delta_{BO} - \omega)^2/(2\Delta_B)}$$

BO surfaces calculated for bipolaron

$\sigma_{SC}(\omega)$ fits well in all cases!

Main peak shifts to higher frequencies

$$L = 20, M = 35, \gamma/\omega_0 = 3, t_0/\omega_0 = 1$$

Optical conductivity: Bipolaron

$$\sigma_{SC}(\omega) = \frac{1 - e^{-\beta\omega}}{\omega} \sqrt{\frac{2\pi}{\Delta_{BO}\alpha\tilde{\omega}_0}} t_0^2 e^{-(\Delta_{BO} - \omega)^2/(2\Delta_B)}$$

BO surfaces calculated for bipolaron

$\sigma_{SC}(\omega)$ fits well in all cases!

Main peak shifts to higher frequencies

$$L = 20, M = 35, \gamma/\omega_0 = 2, t_0/\omega_0 = 1$$

 $_{BO}\tilde{\omega}_{0}\alpha)$

DJ, Bonča and Heidrich-Meisner, arXiv:2206.00985 (2022) (accepted in PRB)

Summary and outlook

Electron-phonon systems

Finite temperature

DJ, Bonča and Heidrich-Meisner, Phys. Rev. B 102, 165155 (2020)

Using p2TDVP with LBO

Polarons and bipolarons Weak and strong coupling

DJ, Bonča and Heidrich-Meisner, arXiv:2206.00985 (2022) (accepted in PRB)

Outlook

Transport and energy transfer in:

Hetero structures

DJ, Jooss and Heidrich-Meisner, Phys. Rev. B 104, 195116 (2021)

Interfaces

Outlook

