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Quantum Computing in the NISQ1 Era
Quantum computers perform unitary transformations on qubits, so
given an initial state |Ψ(0)⟩ and a mapping, they can evaluate the
unitary transformation

|Ψ(t)⟩ = e−iHt |Ψ(0)⟩ .

They can also find eigenvalues through a unitary “phase estimation”
circuit. The problem? Need to implement the transformation in
hardware.

We are in the NISQ (hundreds or thousands of noisy qubits) era,
probably for a while. It’s hard to build gates involving more than a
few qubits at the same time.

Though time evolution and phase estimation can be implemented
with few qubit gates, you need a lot of them chained together, a
deep circuit that maintains coherence.

1Noisy Intermediate Scale Quantum
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Hybrid Algorithms

One idea for reducing depth of circuits — the “Variational Quantum
Eigensolver” (VQE) — is to offload some of the computation onto a
classical computer.

Variational Method

Construct ground-state ansatz

|Ψ⟩ = U(θ1, θ2, . . . , θN) |Ψ0⟩ ,

that depends on parameters θi.
|Ψ0⟩ is some simple state.

Vary parameters to minimize
⟨Ψ|H|Ψ⟩.

Hybrid Implementation

Quantum circuit
for U(θ1, . . . , θN)

M
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Ansätze for Many-Body Problem

Fermi
surface

...

i,j

a,b

Hartree-Fock state |Φ⟩

Fall into two categories:
What the hardware is best at doing
Good guesses according to many-body physics

Typical of the latter is “unitary coupled clusters.”

|Ψ⟩ = eT−T† |Φ⟩
T =

∑
ia
tai a

†
aai +

∑
iajb

tabij a
†
aa†bajai + . . . .

(Series for T but has to be truncated
somewhere.)

Unfortunately, the first kind is limited by hardware, and the second,
usually, to systems that aren’t too strongly correlated.
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ADAPT-VQE
Grimsley, Economou, Barns, and MayHall, Nature Comm. 10:3007 (2019)

Want a procedure capable of producing the exact ground state.

Ansatz:

Iteration 1: |Ψ⟩ = e−iθ1A1 |Ψ0⟩
Iteration 2: |Ψ⟩ = e−iθ2A2e−iθ1A1 |Ψ0⟩
...

...

A1, A2 . . . are all operators of the
form a†αaβ and a†αa†βaγaδ .

|Ψ0⟩ is a “reference state,” e.g. the
Hartree-Fock state |Φ⟩.

At each iteration select operator
Ai that produces largest ∂ ⟨H⟩

∂θi
to

add to set.

Quantum circuit for
eiθ2A2eiθ1A1 . . . |Ψ0⟩

M
ea

su
re

m
en

to
f∂

⟨H
⟩

∂
θ i

Selection of next operator,
reoptimization of previous
θ’s along with new one

Energy measurements
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Likpin model
Want to understand, how efficiency of ADAPT-VQE scales with N.
Investigate with simple solvable model of nuclear interactions.

Fermi
surface

Equivalent to a set of spins with Hamiltonian:

H = ε Jz −
1
2V

(
J2+ + J2−

)
=

ε

2

N∑
i=1

σi,z −
1
8V

N∑
i,j=1

(
σi,+σj,+ + σi,−σj,−

)
All spins interact with the same strength.
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Spontaneous Symmetry Breaking in Nuclear Structure
Example: Parity in octupole-deformed systems

Calculated 225Ra density

Parity is broken spontaneously in mean-field theory, which gives
good description of “intrinsic state,” but contains only a single
orientation for that shape.

To work with this wave function you have to first “restore” reflection
symmetry.



Symmetry Restoration
When intrinsic state | ⟩ is
asymmetric, it breaks parity.

To get states with good parity, we
superpose the intrinsic state and its
reflection:

|±⟩ = 1
√

2
(
| ⟩ ± | ⟩

)

Symmetric state |+⟩ gains binding
energy when symmetry is restored.

Parity Doublet in 225Ra
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Fig. 5. Proposed grcxxping of the low-lying states OF 2zSRa into rotation& bands. T’ke two members of 
tke f? = $- band have been reported in a study of the ‘%?r decay 2oj; they are not observed in the 

present study. 

of the favored K * = z* band. (We have chosen to show in fig. 4 the M 1 multipolarity 
for the 134 keV y so that this apparent con%& in the data will not be overlooked 
by the reader.) 

Definitive I” assignments for the remaining levels above 236 keV are difficult to 
make fram the available data, although the y-ray multipolarities and o-transition 
hindrance factors provide at least some insight. Again, the low value (23) of the 
hindrance factor of the rw-transition to the 394.7 keV Ievel is quite interesting, but 
no definite conclusion can be drawn regarding the I” assignment of this fevei. 

|+⟩

|−⟩

In a variational calculation you can restore symmetry — also called
“projecting” onto states with good quantum numbers — after
energy minimization (PAV) or before the variation, in the ansatz
itself (VAP).

The second method harder but gives better results.
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Symmetry Breaking in Lipkin Model

H excites particles in pairs, so

“Number Parity” = (−1)# excited particles

= (−1)# up spins in spin interpretation

is conserved.

But for large enough V, Hartree-Fock state breaks the symmetry:
each single-particle state contains both spin-up and spin-down.

Transition occurs when V = ε/(N − 1).

How does the transition affect ADAPT-VQE’s efficiency?
Does it help to restore the symmetry explicitly?
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Results on Symmetry Breaking
From Antonio Marquéz Romero

y =
(
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Results on Scaling
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Our best method scales linearly in N!

That’s promising. What about the effects of noise?
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Effects of Noise

Qiskit custom noise models:

Weak: 10% depolarizing
gate-error rate, plus shot
noise
Strong: 20% depolarizing
gate-error rate, plus shot
noise

Qiskit Vigo: Noise from actual
device, includes
measurement error.
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Scaling in the Shell Model

With Jordan-Wigner mapping
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Not as orderly, but still quite mild.

We haven’t yet tried breaking symmetries or looking at noise.



Finally . . .

1. Projection helps.
2. Scaling is mild.

In short, the situation is promising.

Thanks for listening!
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