Solving Nuclear Structure Problems with the Adaptive Variational Quantum Algorithm

J. Engel With A. Romero Marquez, S. Economou, H.L. Tang

September 13, 2022

Quantum Computing in the NISQ¹ Era

Quantum computers perform unitary transformations on qubits, so given an initial state $|\Psi(0)\rangle$ and a mapping, they can evaluate the unitary transformation

 $|\Psi(t)\rangle = e^{-iHt} |\Psi(0)\rangle$.

They can also find eigenvalues through a unitary "phase estimation" circuit. The problem? Need to implement the transformation in hardware.

¹Noisy Intermediate Scale Quantum

Quantum Computing in the NISQ¹ Era

Quantum computers perform unitary transformations on qubits, so given an initial state $|\Psi(0)\rangle$ and a mapping, they can evaluate the unitary transformation

 $|\Psi(t)\rangle = e^{-iHt} |\Psi(0)\rangle$.

They can also find eigenvalues through a unitary "phase estimation" circuit. The problem? Need to implement the transformation in hardware.

We are in the NISQ (hundreds or thousands of noisy qubits) era, probably for a while. It's hard to build gates involving more than a few qubits at the same time.

¹Noisy Intermediate Scale Quantum

Quantum Computing in the NISQ¹ Era

Quantum computers perform unitary transformations on qubits, so given an initial state $|\Psi(0)\rangle$ and a mapping, they can evaluate the unitary transformation

 $|\Psi(t)\rangle = e^{-iHt} |\Psi(0)\rangle$.

They can also find eigenvalues through a unitary "phase estimation" circuit. The problem? Need to implement the transformation in hardware.

We are in the NISQ (hundreds or thousands of noisy qubits) era, probably for a while. It's hard to build gates involving more than a few qubits at the same time.

Though time evolution and phase estimation can be implemented with few qubit gates, you need a lot of them chained together, a deep circuit that maintains coherence.

¹Noisy Intermediate Scale Quantum

Hybrid Algorithms

One idea for reducing depth of circuits — the "Variational Quantum Eigensolver" (VQE) — is to offload some of the computation onto a classical computer.

Hybrid Algorithms

One idea for reducing depth of circuits — the "Variational Quantum Eigensolver" (VQE) — is to offload some of the computation onto a classical computer.

Variational Method

Construct ground-state ansatz

 $|\Psi\rangle = U(\theta_1, \theta_2, \ldots, \theta_N) |\Psi_0\rangle ,$

that depends on parameters θ_i . $|\Psi_0\rangle$ is some simple state.

• Vary parameters to minimize $\langle \Psi | H | \Psi \rangle$.

Hybrid Algorithms

One idea for reducing depth of circuits — the "Variational Quantum Eigensolver" (VQE) — is to offload some of the computation onto a classical computer.

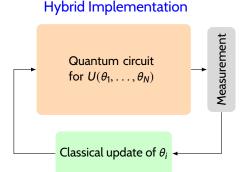
Variational Method

Construct ground-state ansatz

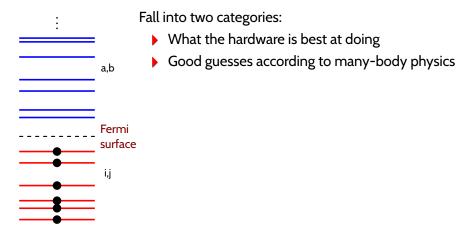
 $|\Psi\rangle = U(\theta_1, \theta_2, \ldots, \theta_N) |\Psi_0\rangle ,$

that depends on parameters θ_i . $|\Psi_0\rangle$ is some simple state.

• Vary parameters to minimize $\langle \Psi | H | \Psi \rangle$.

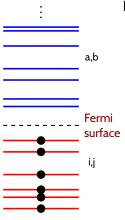


Ansätze for Many-Body Problem



Hartree-Fock state $|\Phi\rangle$

Ansätze for Many-Body Problem



Hartree-Fock state $|\Phi\rangle$

Fall into two categories:

- What the hardware is best at doing
- Good guesses according to many-body physics

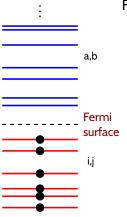
Typical of the latter is "unitary coupled clusters."

$$|\Psi\rangle = e^{T-T^{\dagger}} |\Phi\rangle$$

 $T = \sum_{ia} t_i^a a_a^{\dagger} a_i + \sum_{iajb} t_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_j a_i + \dots$

(Series for *T* but has to be truncated somewhere.)

Ansätze for Many-Body Problem



Fall into two categories:

- What the hardware is best at doing
- Good guesses according to many-body physics

Typical of the latter is "unitary coupled clusters."

$$\begin{aligned} |\Psi\rangle &= e^{T-T^{\dagger}} |\Phi\rangle \\ T &= \sum_{ia} t^{a}_{i} a^{\dagger}_{a} a_{i} + \sum_{iajb} t^{ab}_{ij} a^{\dagger}_{a} a^{\dagger}_{b} a_{j} a_{i} + \dots \,. \end{aligned}$$

(Series for *T* but has to be truncated somewhere.)

Hartree-Fock state $|\Phi\rangle$

Unfortunately, the first kind is limited by hardware, and the second, usually, to systems that aren't too strongly correlated.

ADAPT-VQE

٠

Grimsley, Economou, Barns, and MayHall, Nature Comm. 10:3007 (2019)

Want a procedure capable of producing the exact ground state. Ansatz:

Iteration 1: $|\Psi\rangle = e^{-i\theta_1A_1} |\Psi_0\rangle$ Iteration 2: $|\Psi\rangle = e^{-i\theta_2A_2}e^{-i\theta_1A_1} |\Psi_0\rangle$

 $A_1, A_2 \dots$ are all operators of the form $a^{\dagger}_{\alpha} a_{\beta} a_{\beta} a d a^{\dagger}_{\alpha} a^{\dagger}_{\beta} a_{\gamma} a_{\delta}$.

 $|\Psi_0\rangle$ is a "reference state," e.g. the Hartree-Fock state $|\Phi\rangle$.

ADAPT-VQE

•

Grimsley, Economou, Barns, and MayHall, Nature Comm. 10:3007 (2019)

Want a procedure capable of producing the exact ground state. Ansatz:

Iteration 1: $|\Psi\rangle = e^{-i\theta_1A_1} |\Psi_0\rangle$ Iteration 2: $|\Psi\rangle = e^{-i\theta_2A_2}e^{-i\theta_1A_1} |\Psi_0\rangle$

 $A_1, A_2 \dots$ are all operators of the form $a^{\dagger}_{\alpha} a_{\beta} a_{\beta} a d a^{\dagger}_{\alpha} a^{\dagger}_{\beta} a_{\gamma} a_{\delta}$.

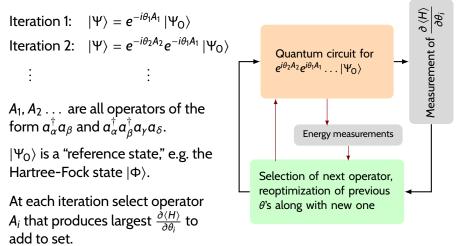
 $|\Psi_0\rangle$ is a "reference state," e.g. the Hartree-Fock state $|\Phi\rangle$.

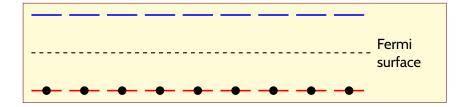
At each iteration select operator A_i that produces largest $\frac{\partial \langle H \rangle}{\partial \theta_i}$ to add to set.

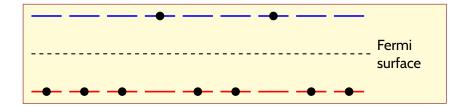
ADAPT-VQE

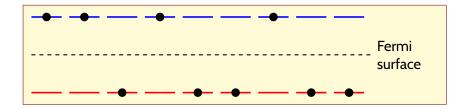
Grimsley, Economou, Barns, and MayHall, Nature Comm. 10:3007 (2019)

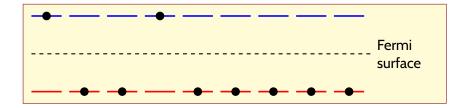
Want a procedure capable of producing the exact ground state. Ansatz:



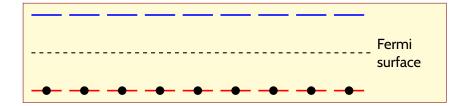








Want to understand, how efficiency of ADAPT-VQE scales with *N*. Investigate with simple solvable model of nuclear interactions.



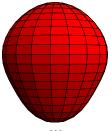
Equivalent to a set of spins with Hamiltonian:

$$H = \varepsilon J_z - \frac{1}{2} V \left(J_+^2 + J_-^2 \right)$$
$$= \frac{\varepsilon}{2} \sum_{i=1}^N \sigma_{i,z} - \frac{1}{8} V \sum_{i,j=1}^N \left(\sigma_{i,+} \sigma_{j,+} + \sigma_{i,-} \sigma_{j,-} \right)$$

All spins interact with the same strength.

Spontaneous Symmetry Breaking in Nuclear Structure

Example: Parity in octupole-deformed systems



Calculated ²²⁵Ra density

Parity is broken spontaneously in mean-field theory, which gives good description of "intrinsic state," but contains only a single orientation for that shape.

To work with this wave function you have to first "restore" reflection symmetry.

When intrinsic state $| \bullet \rangle$ is asymmetric, it breaks parity.

To get states with good parity, we superpose the intrinsic state and its reflection:

$$|\pm\rangle = \frac{1}{\sqrt{2}} \left(| \bigoplus\rangle \pm | \bigoplus\rangle \right)$$

When intrinsic state $| \bullet \rangle$ is asymmetric, it breaks parity.

To get states with good parity, we superpose the intrinsic state and its reflection:

$$|\pm\rangle = \frac{1}{\sqrt{2}} \left(| \bigoplus\rangle \pm | \bigoplus\rangle \right)$$

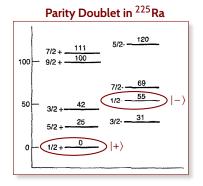
Symmetric state $|+\rangle$ gains binding energy when symmetry is restored.

When intrinsic state $| \bigoplus \rangle$ is asymmetric, it breaks parity.

To get states with good parity, we superpose the intrinsic state and its reflection:

 $|\pm\rangle = \frac{1}{\sqrt{2}} \left(| \bigoplus \rangle \pm | \bigoplus \rangle \right)$

Symmetric state $|+\rangle$ gains binding energy when symmetry is restored.



When intrinsic state $| \bigoplus \rangle$ is asymmetric, it breaks parity.

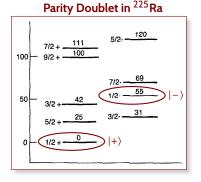
To get states with good parity, we superpose the intrinsic state and its reflection:

$$|\pm\rangle = \frac{1}{\sqrt{2}} \left(| \bigoplus\rangle \pm | \bigoplus\rangle \right)$$

Symmetric state $|+\rangle$ gains binding energy when symmetry is restored.

In a variational calculation you can restore symmetry — also called "projecting" onto states with good quantum numbers — after energy minimization (PAV) or before the variation, in the ansatz itself (VAP).

The second method harder but gives better results.



Symmetry Breaking in Lipkin Model

```
H excites particles in pairs, so

"Number Parity" = (-1)^{\text{# excited particles}}

= (-1)^{\text{# up spins}} in spin interpretation
```

is conserved.

Symmetry Breaking in Lipkin Model

```
H excites particles in pairs, so

"Number Parity" = (-1)^{\text{# excited particles}}

= (-1)^{\text{# up spins}} in spin interpretation
```

is conserved.

But for large enough V, Hartree-Fock state breaks the symmetry: each single-particle state contains both spin-up and spin-down.

Transition occurs when $V = \varepsilon/(N-1)$.

Symmetry Breaking in Lipkin Model

```
H excites particles in pairs, so

"Number Parity" = (-1)^{\text{# excited particles}}

= (-1)^{\text{# up spins}} in spin interpretation
```

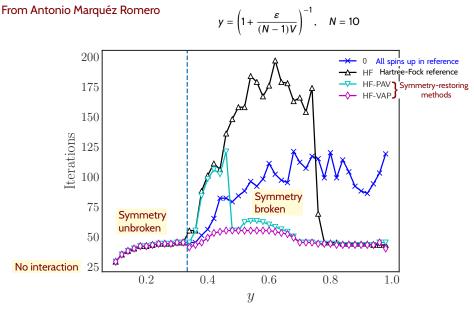
is conserved.

But for large enough V, Hartree-Fock state breaks the symmetry: each single-particle state contains both spin-up and spin-down.

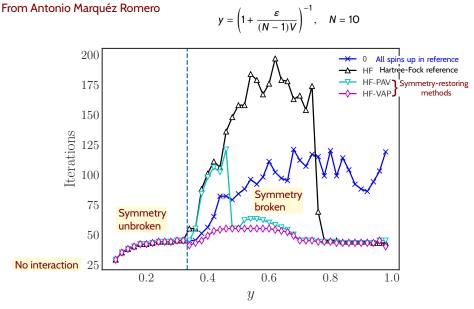
Transition occurs when $V = \varepsilon/(N-1)$.

How does the transition affect ADAPT-VQE's efficiency? Does it help to restore the symmetry explicitly?

Results on Symmetry Breaking

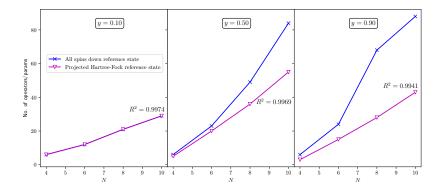


Results on Symmetry Breaking

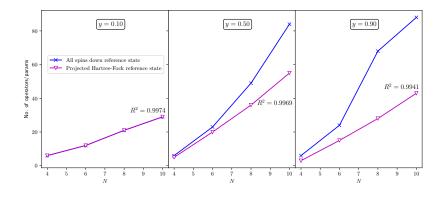


Symmetry-breaking reference state and symmetry restoration help!

Results on Scaling



Results on Scaling



Our best method scales linearly in N!

That's promising. What about the effects of noise?

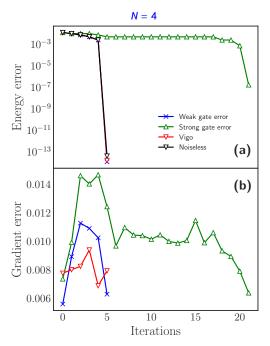
Effects of Noise

Qiskit custom noise models:

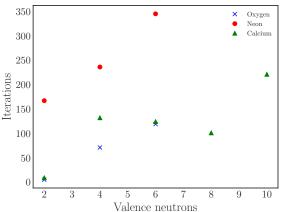
Weak: 10% depolarizing gate-error rate, plus shot noise

Strong: 20% depolarizing gate-error rate, plus shot noise

Qiskit Vigo: Noise from actual device, includes measurement error.



Scaling in the Shell Model



With Jordan-Wigner mapping

Not as orderly, but still quite mild.

We haven't yet tried breaking symmetries or looking at noise.

Finally ...

- 1. Projection helps.
- 2. Scaling is mild.

In short, the situation is promising.

Finally ...

- 1. Projection helps.
- 2. Scaling is mild.

In short, the situation is promising.

Thanks for listening!