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Quantum computers perform unitary transformations on qubits, so
given an initial state |'¥(0)) and a mapping, they can evaluate the
unitary transformation

¥ (1)) = e ¥ (0)) .

They can also find eigenvalues through a unitary “phase estimation”
circuit. The problem? Need to implement the transformation in
hardware.

'Noisy Intermediate Scale Quantum



Quantum Computing in the NISQ' Era

Quantum computers perform unitary transformations on qubits, so
given an initial state |'¥(0)) and a mapping, they can evaluate the
unitary transformation

¥ (1)) = e ¥ (0)) .

They can also find eigenvalues through a unitary “phase estimation’
circuit. The problem? Need to implement the transformation in
hardware.

We are in the NISQ (hundreds or thousands of noisy qubits) era,
probably for a while. It's hard to build gates involving more than a
few qubits at the same time.

'Noisy Intermediate Scale Quantum



Quantum Computing in the NISQ' Era

Quantum computers perform unitary transformations on qubits, so
given an initial state |'¥(0)) and a mapping, they can evaluate the
unitary transformation

¥ (1)) = e ¥ (0)) .

They can also find eigenvalues through a unitary “phase estimation”
circuit. The problem? Need to implement the transformation in
hardware.

We are in the NISQ (hundreds or thousands of noisy qubits) era,
probably for a while. It's hard to build gates involving more than a
few qubits at the same time.

Though time evolution and phase estimation can be implemented
with few qubit gates, you need a lot of them chained together, a
deep circuit that maintains coherence.
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One idea for reducing depth of circuits — the “Variational Quantum
Eigensolver” (VQE) — is to offload some of the computation onto a

classical computer.

Variational Method

» Construct ground-state ansatz

V) =U(6,62,...,6n) Yo) .

that depends on parameters 6;.

|Wo) is some simple state.

» Vary parameters to minimize
(YIHY).

Hybrid Implementation

Quantum circuit
for U(G], ceey GN)

Classical update of 6; A—‘

Measurement
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Unfortunately, the first kind is limited by hardware, and the second,
usually, to systems that aren't too strongly correlated.
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Grimsley, Economou, Barns, and MayHall, Nature Commm. 10:3007 (2019)

Want a procedure capable of producing the exact ground state.

Ansatz:

lteration 1:  |¥) = /0% |Wg)

lteration 2:  |¥) = e 02A2e =101 |y)

Ay, A; ... are all operators of the

i ¥ ot
form azap and a,ajayas.

[Wo) is a “reference state;” e.g. the
Hartree-Fock state |®).

At each iteration select operator
A, that produces largest —z~ "<H> to
add to set.

Quantum circuit for
ef2h2ei®M  |yy)

l

Energy measurements

'

—>
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Likpin model

Want to understand, how efficiency of ADAPT-VQE scales with N.
Investigate with simple solvable model of nuclear interactions.
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Likpin model

Want to understand, how efficiency of ADAPT-VQE scales with N.
Investigate with simple solvable model of nuclear interactions.

Fermi

surface

o 90— 90— 0 0 0 0 —0— —0—

Equivalent to a set of spins with Hamiltonian:
1
H=gl, - —v(13+/2_)

All spins interact with the same strength.

N
(0i+0j+ + 0i—0j )

Nlm
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Spontaneous Symmetry Breaking in Nuclear Structure

Example: Parity in octupole-deformed systems

Calculated 25Ra density

Parity is broken spontaneously in mean-field theory, which gives
good description of “intrinsic state,” but contains only a single
orientation for that shape.

To work with this wave function you have to first “restore” reflection
symmetry.
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In a variational calculation you can restore symmetry — also called
“projecting” onto states with good quantum numbers — after
energy minimization (PAV) or before the variation, in the ansatz

itself (VAP).

The second method harder but gives better results.
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H excites particles in pairs, so
“Number Parity" — (_1)# excited particles
= (=1)7 UPSPINS i pin interpretation

is conserved.

But for large enough V, Hartree-Fock state breaks the symmetry:
each single-particle state contains both spin-up and spin-down.

Transition occurs when V = ¢/(N —1).

How does the transition affect ADAPT-VQE's efficiency?
Does it help to restore the symmetry explicitly?
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Symmetry-breaking reference state and symmetry restoration help!



Results on Scaling
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Results on Scaling
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Our best method scales linearly in N!

That's promising. What about the effects of noise?



Effects of Noise

Qiskit custom noise models:

Weak: 10% depolarizing
gate-error rate, plus shot
noise

Strong: 20% depolarizing
gate-error rate, plus shot
noise

Qiskit Vigo: Noise from actual
device, includes
measurement error.

[ S
S 9 9
— = o

107?

Energy error

10"
10713
0.014
0.012

0.010

Gradient error

0.008

0.006

—>— Weak gate error

—2&x— Strong gate error
=V~ Vigo
=V~ Noiseless (a)
(b)
0 5 10 15 20

[terations




Scaling in the Shell Model

With Jordan-Wigner mapping

350 L] X Oxygen
® Neon
300 A Calcium

N

)

Iterations
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Valence neutrons

Not as orderly, but still quite mild.

We haven't yet tried breaking symmetries or looking at noise.
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Thanks for listening!




