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Ingredients for a Many-Body Calculation

Many-Body Perturbation Infinite Matter
Theory or
Coupled-Cluster Theory

Many-Body Calculation = Many-Body Method + System
+ Approximations + Computational Methods

To Be Discussed




Many-Body Methods: Many-Body Perturbation Theory
and Coupled-Cluster Theory

Many-Body Perturbation Theory Coupled-Cluster Theory (CC)
(MBPT) e Arranges the basis into excitation
e Provides a method to systematically clusters that provide a favorable
add in interaction terms to reduce truncation scheme
complexity of calculation o (CCSD: one-particle one-hole
o  MBPT2: one and two body and two-particle two-hole
interaction terms excitation clusters
e Terms are simple which reduces the e Interactions are summed to infinite
run time of a calculation order which reduces error

G. Baardsen et. al. Physical Review C 88, 054312 (2013).; Lecture Notes in Physics (LNP) 936; arXiv 1312.7872
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Energy and Correlation Energy from MBPT and CC
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Correlation Energy:
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e Reference energy is typically Hartree-Fock (quick to calculate)

Lecture Notes in Physics (LNP) 936




Machine Learning
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Machine learning: A set of computer algorithms that learn to accomplish a task
by considering examples but without explicitly being told what to do

Examples: neural networks, principal component analysis (PCA), random forest,
linear regression




Bayesian Ridge Regression

% ) p— X 9 e ) is a hyperparameter,its value has
sz d ge to be set by the user and can
greatly affect the algorithm
e Bayesian statistics are used to find

J Rid ge (6’ ) = )\6’2 —+ the optimal value of A instead of a
ﬁ[ X0 — Y] [ X0 — Y] traditional grid search method

Oridge = (XX + X))~ 1x Ty
Hands-On Machine Learning by Aurélien Géron and
Sci-Kit Learn’s website




Sequential Regression Extrapolation (SRE)

e Traditional: { (x) =y, an input value is matched to an output value

e SRE:f .(v,_.y,_) =V, asequence of output values is matched to the next
output

e Motivation: Teaching the ridge regression algorithm a sequence of y values
should make the algorithm better at predicting the nexty value
o Note that machine learning is typically not used for extrapolation

]. Butler et. al. Manuscript under preparation.
e



Homogeneous Electron Gas: Building the

Methodology




The Homogeneous Electron Gas

e Infinite matter system containing e Measure of density: Wigner-Seilz
only electrons (long-range Radius
Coulomb force)

e Uniform positive background Ly = /Ty
charge for a total net charge of e (Calculations are performed at
Z€ero “magic numbers” of electrons

e (Can only simulate a finite system:
Plane wave basis and periodic
boundary conditions

G. Baardsen et. al. Physical Review C 88, 054312 (2013).; C. Drischler et. al., Annual Review of Nuclear and Particle Science 71, 403
(2021).; LNP 936
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Finite Size Effects: Truncating N and M
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Finite Size Effects: Truncating N and M
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Convergence of MBPT and CC Results
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MBPT vs CC--A Linear(ish) Relationship
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This relationship should become increasingly linear as M increases!
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SRE Methodology

CC Correlation Energy (Hartrees)
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Measurement of Success:
SRE Method must be faster
than generating the data
traditionally and must be
fairly accurate.



SRE Prediction for N_ =70 using only 5-20 open shells: Time
Savings
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Note: Comparisons are made to Nmax=70, but predictions should be the fully converged
result



SRE Prediction for N_ =70 using only 5-20 open shells:

AEcc 79 / Number of Electrons (Hartr

Number of Electrons
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Extrapolation to the Thermodynamic Limit

with SRE

g 0.00 -
5 , | W Predicted
= —0.02 1
"8 B Calculated
& 0.04 -
i
A —0.06
H
Ej ~0.08 -
m T
Q.\

J. Chem. Phys. 145, 031104 (2016)

r,=1.0:-0.0517 Hartrees

Close to literature values!
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Pure Neutron Matter and Symmetric

Nuclear Matter




Infinite Nuclear Matter

Pure Neutron Matter Symmelric Nuclear Matter
e Only contains neutrons (so has no e Matter containing an equal number
electric charge) of protons and neutrons in a
negative electric field (so no net
charge)

e (Calculations are performed at particle numbers that have closed shells, d = 0.16 fm™
(nuclear matter saturation density)
e Periodic boundary conditions, optimized block diagonal structure

Nuclear matter only has short range interactions!

LNP 936; G. Baardsen et. al. Physical Review C 88; C. Drischler et. al., Annual Review of Nuclear and Particle

Science 71, 403 (2021).
e



Convergence of Many-Body Methods (Pure
Neultron Matter and Symmetric Nuclear Matter)
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Ridge Regression Does Not Work Well Here,
Use Kernel Ridge Regression Instead

YK RR = Zf\i 1 0 k(x;, ) e Outputis alinear combination of
kernel functions instead of inputs
— Can model more complicated

JirR(0) = X0% + data

1 - - e Drawback: Hyperparameter

M [HK Y] [QK Y] tuning must be done via brute

force/grid search (for now...)
Oxkrr = (K —AD)7'Y

Hands-On Machine Learning by Aurélien Géron and
Sci-Kit Learn’s website




SRE Prediction for N __ =70 using only 5-25 open shells
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Extrapolation to the Thermodynamic Limit
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Conclusions and Future Works




Conclusions and Future Works

Conclusions
e SRE is an excellent tool in many-body °
theory for extrapolations to reduce finite
size effects and to extrapolate to the °

thermodynamic limit

Future Works

Electron Gas: Extend the calculations to
higher values of r

Nuclear Matter: Extend the analysis to
higher particle numbers, Implement
Bayesian hyperparameter tuning for
kernel ridge regression

Change the boundary conditions from
periodic to average angles

Extend this methodology to achieve
triples predictions at significantly
reduced runtimes
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LNP 936

Shell Structure and Finite Size Effects

e Truncating the number of 3rd Open Shell 575 #S.D.5. =12
open shells introduces an
error into the calculations for  Open 2nd Open Shell S=4, #8.D.8.=16
enerey. Shells
e Magic Number: The number
of pgarticles exactly fills the 15t Open Shell S S5
last particle shell §=2.
(2,14,38,54,60....) #8.D.5.=12
e Notation: AEX’Y(N) Filled
o X=MBPTorCC,Y = (Particle)

Shells (p) S=1, #S.p.S.=2

Number of shells. N =

Number of particles N: Number of Particles, M: Number of Single Particle States
0 AL AL 00 N_ ... Number of Levels
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