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Motivation

Formation of liquid drops of Bose-Bose mixtures and dipolar

atoms leads to denser systems than usual quantum gases

Even if these drops are ultradilute they can show departure of

universality in terms of the s-wave scattering length

Terms beyond the Lee-Huang-Yang in the perturbative series for

bosons are not known, but probably depend on the effective range,

p-wave scattering length, . . .

We have used a combination of quantum Monte Carlo (QMC)

methods and Density Functional Theory (DFT) to estimate first

corrections to the universal terms

Measurable effects observed in experiments with liquid droplets

and in the Fermi polaron in two dimensions
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Outline

Quantum Monte Carlo methods

Formation of drops in Bose-Bose mixtures. Limitations of the

LHY correction

A new functional for Bose-Bose-liquids
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Diffusion Monte Carlo (DMC)

Starting point: Schrödinger equation for N particles
in imaginary time

−
∂Ψ(R, t)

∂t
= (H − E)Ψ(R, t)

WALKER −→ R = (r1, . . . , rN )

Expanding Ψ(R, t),

Ψ(R, t) =
∑
n

cn exp[−(En − E)t] Φn(R)

with

H Φn(R) = EnΦn(R)

When t → ∞ =⇒ Φ0(R): GROUND STATE
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PIGS

The path integral ground state method (PIGS) is a T = 0 version of

PIMC method.

At any imaginary time τ ,

Ψ(R, τ) = e−τHΨT (R) =
∞∑

n=0

cne
−τEnΨn(R)

When τ → ∞ only the ground-state survives,

Ψ0(R) = lim
τ→∞

Ψ(R, τ) = lim
τ→∞

∫
dR′G(R,R′, τ)ΨT (R

′)

PIGS is based on the convolution property of the Green’s function

Ψ(RM ) =

∫ M−1∏
j=0

dRjG(Rj+1,Rj , ǫ)ΨT (R0)

with ǫ = τ/M
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Drops in Bose mixtures

Using mean-field (MF) theory plus LHY correction Petrov predicts the

existence of very dilute liquid drops when g212 ≃ g11g22 (Phys. Rev.

Lett. 115, 155302, (2015)).

Drops are stabilized by competition between the attractive MF term

∼ n2 and the repulsive LHY term ∼ n5/2 .

Similar predictions in 1D and 2D geometries (D. S. Petrov, G. E.

Astrakharchik, Phys. Rev. Lett. 117, 100401 (2016))
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Drops in Bose mixtures

Following Petrov proposal and experimental results from ICFO we

carried out a DMC study on formation of self-bound (liquid) drops

The Hamiltonian

H = −
~
2

2

N∑
i=1

∇
2
i

mi

+

Nα,Nβ∑
i,j

V (α,β)(rij)

Repulsive interaction (HS) between equal species and attractive

(SW) between different ones

Trial-wave functions: Jastrow model with two-body factors from

solutions of the two-body problem

To reduce number of variables, we take mα = mβ ≡ m and

aαα = aββ . aαβ < 0, no dimer bound state
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Drops in Bose mixtures

By changing the depth of attractive potential, increasing a12, the

system evolves from a gas E > 0 to a self-bound liquid drop E < 0
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Drops in Bose mixtures

Density profiles show the characteristic liquid behavior

Notice the very low density in the center (ρ0 ≃ 1017 cm−3). Five

orders of magnitude lower than for 4He.

a12 = −3.09a11 a12 = −3.81a11
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Drops in Bose mixtures

Our results also show the evolution of the drop going to larger

attraction.

Even by increasing a12 an order of magnitude we do not see collapse.

Central density increases and size reduces, but not in an exponential

way.
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Drops in Bose mixtures

The energy of the drop can be fitted to a liquid-drop model:

E(N)/N = Ev + xEs + x2Ec, with x ≡ N−1/3

Ev is the energy per particle of bulk phase, Es is a surface term and Ec

a curvature contribution

The surface tension of the liquid can be obtained as t = Es/(4πr
2
0)

with 4πr30ρ0/3 = 1
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Bose-Bose droplets

Critical atom numbers in experiments are much larger than the

capabilities of DMC

To make the connection with experiments we rely on a DFT+LDA

approach

The idea is similar to the one used extensively in liquid Helium

The new function is built by using the DMC equation of state of

the bulk liquid

RPMBT21 – p. 12/21



Bose-Bose droplets

Left: Energy of the bulk liquid for different scattering lengths,

compared with MF+LHY theory. Right: Universality in terms of the

s-wave scattering length and effective range.

QMC-based new functional

E =
~
2

2m
N |∇φ|2 +

25π2
~
2|a11 + a12|3

49152ma5
11

[

−3
N2|φ|4

ρ0
+ β

(N |φ|2)γ+1

ργ
0

]

MF+LHY values: β = 2, γ = 1.5
V. Cikojević et al., Phys. Rev. A 99, 023618 (2019)
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Bose-Bose droplets
Application to the experiment of Cabrera et al. (Science 359, 301 (2018))

composed by a mixture of two hyperfine levels of 39K

QMC results for the bulk liquid phase (V. Cikojević et al., NJP 22, 053045 (2020))

Comparison with experiment
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Dipolar droplets

=⇒ Hamiltonian of the system

Ĥ = −
~
2

2m

N∑
i=1

∇
2
i +

Cdd

4π

∑
i<j

1− 3 cos2 θi,j
r3i,j

+ VHC + Vtrap ,

with VHC a short-range repulsive interaction.

=⇒ Notice the anisotropic character of the dipolar interaction and the

combination between repulsive and attractive pairs.

=⇒ The short-range potential part is able to stabilize the system and

controls the phase of the system: gas, liquid, . . .

=⇒ We use PIGS (T = 0) to determine the critical atom number for

formation of self-bound systems (drops).
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Dipolar droplets

The inclusion of the LHY term seems not to be accurate enough to

describe relevant properties of dipolar droplets such as the critical atom

number

ǫdd = add/as, add = µ0µ
2m/(12π~2)

F. Böttcher et al., Phys. Rev. Res. 1, 033088 (2019)
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Dipolar droplets

We are working in a QMC-DFT approach to include efficiently the

finite-range effects of the dipolar interaction

Left: DMC results for the equation of state of the bulk liquid; right: Our

predictions for the critical atom number Nc introducing in the functional the

DMC equation of state (work is in progress)
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Fermi polaron in 2D
We studied the repulsive Fermi polaron in a two-component,

two-dimensional system of fermionic atoms inspired by the results

of a recent experiment with 173Yb atoms [N. Darkwah Oppong et

al., Phys. Rev. Lett. 122, 193604 (2019)]

We use the diffusion Monte Carlo method to report properties such

as the polaron energy and the quasi-particle residue that have been

measured in that experiment

We show that the effective range, together with the scattering

length, is needed in order to reproduce the experimental results.

The Hamiltonian of the system is

Ĥ = −
~
2

2m
∇

2
↓ −

~
2

2m

N↑∑
i=1

∇
2
i +

N↑∑
j=1

V int(r↓j)
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Fermi polaron in 2D

Comparison with experiment (R. Bombín et al., PRA 103, L041302

(2021)). Left, quasi-particle residue; right, polaron energy)

Effective mass of the polaron
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Summary

Several experiments in the field of dilute quantum gases point to

the necessity of including many-body effects in the theory

We use QMC methods to go beyond perturbative approximations

With the QMC data for bulk we build new functionals that seem to

produce better results

The knowledge of the effective range of the atomic interactions

helps to improve the results and generate an approximate universal

equation of state in terms of two scattering parameters
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THANKS FOR YOUR ATTENTION!
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