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J1–J2–J⊥
1 Model on the Honeycomb-Lattice Bilayer

J1–J2–J⊥
1 model on a honeycomb-lattice AA-stacked bilayer (i.e., all

bonds of Heisenberg type); 4 sites per unit cell

We’ll look at the case with s = 1
2 spins (viz., the most quantum case)

H = J1

∑
⟨i,j⟩,α

si,α · sj,α + J2

∑
⟨⟨i,k⟩⟩,α

si,α · sk,α + J⊥
1

∑
i

si,A · si,B

(where ⟨i, j⟩ and ⟨⟨i, k⟩⟩ run, respectively, over all NN and NNN
intralayer pairs; α = A,B labels the two layers; and we set J1 > 0)

A

A

2
B

1
B

2

1

—- = —- = J1: NN intralayer bond

- - - = J⊥
1 : NN interlayer bond

J2: NNN intralayer bonds (not shown)
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Limiting Cases
limiting bond cases:

J2 = 0: isotropic HAF on 2D honeycomb lattice
J1 = 0: two uncoupled isotropic HAFs on two
non-overlapping 2D triangular lattices

classical limit (s → ∞):
for J1 > 0; J2 ≡ κJ1 > 0: ground-state (GS) phase diagram
contains 2 different ordered phases;

Néel: κ ≤ 1
6

Spiral-I: κ > 1
6

spin-1
2 monolayer case:

when J⊥
1 = 0 the classical critical point at κ = 1

6 is broken
into (at least) 2 quantum critical points, such that:

quasiclassical Néel state is the stable GS for κ ≤ κ>
c1 ≈ 0.18

another quasiclassical AFM state (viz. the Néel-II state) is
the stable GS for κ<

c2 ≤ κ ≤ κ>
c2 , where κ>

c1 < κ<
c2 ≈ 0.44 and

κ>
c2 ≈ 1.5
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Quasiclassical AFM Phases (J1 > 0)

OJ

J1

2

O a

b

(a) Néel (b) Néel-II (one of 3 equivalent states)

Shown in (a) are the J1 and J2 bonds, and in (b) the triangular
Bravais lattice vectors

Even after many studies there is still no consensus on the GS
phase diagram for the s = 1

2 case

To try to shed more light we now investigate the corresponding
J1–J2–J⊥

1 bilayer case where the two layers in AA-stacking are
now coupled by interlayer NN J⊥

1 bonds of either sign
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The Coupled Cluster Method (CCM)

The CCM is one of the most pervasive, most powerful and
most accurate of all ab initio formulations of microscopic
quantum many-body theory.
It has probably been applied to more systems in quantum
chemistry, quantum field theory, atomic, nuclear,
subnuclear, condensed matter and other areas of physics
than any other competing method.
It has yielded numerical results that are among the most
accurate available for an incredibly wide range of both finite
and extended physical systems defined on a spatial
continuum, including, e.g.: −→
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The Coupled Cluster Method
atoms and molecules of interest in atomic physics and
quantum chemistry, where the CCM is the gold standard
electron gas (or jellium – the one-component Coulomb plasma)
atomic nuclei
dense nuclear and baryonic matter
models in quantum optics and solid-state optoelectronics
continuum quantum field theories

ϕ4 field theory
pions and nucleons with isovector, pseudoscalar coupling

quantum fluid mechanics of a condensed Bose fluid
⇒ This widespread success motivated us to extend the CCM

to deal with systems on a regular spatial lattice, e.g.:
lattice quantum field theories

O(4)D+1 nonlinear sigma model [chiral meson field theory]
SU(N) lattice gauge field theories [e.g., lattice QED, QCD]

spins [spin-lattice problems in quantum magnetism] →
electrons [e.g., lattice Hubbard model, etc.]
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Elements of the CCM: GS Formalism
We use the (normal) coupled cluster method (CCM):

ground-state (GS) wavefunction:
|Ψ⟩ = eS |Φ⟩; ⟨Ψ̃| = ⟨Φ|S̃e−S ; ⟨Ψ̃|Ψ⟩ = ⟨Φ|Ψ⟩ = ⟨Φ|Φ⟩ ≡ 1 ,

S =
∑
I ̸=0

SIC+
I ; S̃ = 1+

∑
I ̸=0

S̃IC
−
I

(
⇒ ⟨Φ|S̃ =

⟨Φ|eS†
eS

⟨Φ|eS†eS |Φ⟩

)
,

C+
0 ≡ 1; C−

I ≡ (C+
I )†; C−

I |Φ⟩ = 0, ∀I ̸= 0
I is a multi-configurational (i.e., many-body) set index
choose reference (or model) state |Φ⟩ to be a generalized vacuum state (or
cyclic vector) ⇒ {C+

I |Φ⟩} is a complete set of wf’s; and [C+
I ,C+

J ] = 0
we can always choose the C+

I |Φ⟩ to be orthonormalized:

⇒ ⟨Φ|C−
I C+

J |Φ⟩ = δI,J ;
∑

I

C+
I |Φ⟩⟨Φ|C−

I = 1

⇒ explicit expressions: SI = ⟨Φ|C−
I S|Φ⟩ ; S̃I = ⟨Φ|S̃C+

I |Φ⟩
example: for spin-lattice systems choose model (or reference) state |Φ⟩ to be,
e.g., a classical GS [i.e., here Néel and Néel-II on each layer and NN interlayer
pairs either aligned (for δ < 0) or anti-aligned (for δ > 0)]
choose spin axes on each site so |Φ⟩ = | ↓↓ · · · ↓⟩ in these local axes ⇐⇒ a
set of local passive rotations
⇒ C+

I → s+ℓ1
s+ℓ2

· · · s+ℓm
; s+ℓ ≡ sx

ℓ + isy
ℓ , in local axes
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Elements of the CCM: GS Formalism
each s+

ℓ in C+
I can appear at most once for s = 1

2 , twice for s = 1, . . . ,
and 2s times for general spin-s case, on a given lattice site ℓ

solve for {SI , S̃I} from GS Schrödinger eqs. for |Ψ⟩, ⟨Ψ̃| ⇐⇒
equivalently, minimize H = H(SI , S̃I) ≡ ⟨Ψ̃|H|Ψ⟩ = ⟨Φ|S̃ e−SH eS |Φ⟩
with respect to all considered independent parameters {SI , S̃I ; ∀I ̸= 0}:

−→ δH
δS̃I

= 0 =⇒ ⟨Φ|C−
I e−SH eS |Φ⟩ = 0 , ∀I ̸= 0

↪→ a coupled set of nonlinear equations for {SI}

=⇒ E = ⟨Φ|e−SH eS |Φ⟩ = ⟨Φ|H eS |Φ⟩

−→ δH
δSI

= 0 =⇒ ⟨Φ|S̃ e−S[H,C+
I ]e

S |Φ⟩ = 0 , ∀I ̸= 0

=⇒ ⟨Φ|S̃ (e−SH eS − E1)C+
I |Φ⟩ = 0 , ∀I ̸= 0

↪→ a coupled set of linear generalized eigenvalue
equations for {S̃I} with {SI} as input
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Elements of the CCM: GS Formalism
Note that the nonlinear exponentiated terms only ever appear in
the form of the similarity transform of the Hamiltonian: e−SH eS

=⇒ use the nested commutator expansion

e−SH eS = H + [H,S ] + 1
2! [ [H,S ],S ] + 1

3! [ [ [H,S ],S ],S ] + · · ·
NOTE: This series will terminate exactly after the term bilinear in
S for our Heisenberg Hamiltonians =⇒
CCM satisfies:

the Goldstone linked cluster theorem – very important, and
the Hellmann-Feynman theorem – equally (or more) important

for all truncations on the complete set {I } (same for S and S̃)

We use the natural lattice geometry to define the approximation
schemes and we retain all distinct fundamental configurations in
the set {I } with respect to all space- and point-group symmetries
of both the Hamiltonian and the model state |Φ⟩: number Nf

A similar CCM parametrization also exists for excited states
Frustrated Honeycomb-Lattice Bilayer via the CCM RPMBT-21 Ray Bishop 12/27
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CCM Truncation Schemes

The only approximation is to truncate set {I }
for s = 1

2 case we use the LSUBm scheme where we retain
all possible multispin-flip correlations over different locales
on the lattice defined by m or fewer contiguous lattice sites
for s ≥ 1 cases we often use the alternative SUBn–m
scheme in which we retain all multispin-flip correlations
involving up to n spin flips spanning a range of no more
than m adjacent (or contiguous) lattice sites. We then set
m = n and employ the so-called SUBm–m scheme
NOTE: LSUBm ≡ SUB2sm–m for general spin-s case,
(i.e., LSUBm ≡ SUBm–m only for s = 1

2 case)
For a given LSUBm approximation we have Nf = Nf (m)

Here, e.g., Nf (10) ≈ 2 × 105 for the Néel-II model state on
each monolayer for both δ > 0 and δ < 0
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Universal CCCM code
We have developed a universal code (CCCM) (freely available at
https://www-e.uni-magdeburg.de/jschulen/ccm/) for solving all such
spin-lattice models based on any single-spin product state |Φ⟩, with
elements:

Derive the equations for {SI , S̃I ; ∀I ̸= 0} by the following steps:
evaluate H in the local rotated axes for chosen model state |Φ⟩
enumerate all Nf (m) independent multispin-flip configurations I ∈
LSUBm [i.e., find all lattice animals (or polyominos) up to size m
and populate them]
evaluate e−SH eS |Φ⟩ by computer algebra at LSUBm level
pattern match to find terms in above with a nonzero overlap with
⟨Φ|C−

I , ∀I ∈ LSUBm, taking into account all available symmetries,
and using computer algebra to evaluate

Solve the corresponding coupled set of nonlinear multinomial equations
for the set {SI}, ⟨Φ|C−

I e−SH eS |Φ⟩ = 0 , one for each I ∈ LSUBm

Solve the coupled set of linear equations for the set {S̃I},
⟨Φ|S̃ e−SH eS − E1)C+

I |Φ⟩ = 0 , one for each I ∈ LSUBm, using the set
{SI , ∀I ∈ LSUBm } so obtained above as input
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CCM Extrapolations to Exact (m → ∞) Limit
at each LSUBm or SUBm–m level the CCM operates at
the N → ∞ limit from the outset =⇒ no finite-size scaling
for the GS (in the sz

T ≡
∑N

i=1 sz
li
= 0 sector in the original

unrotated axes) calculate E/N and magnetic order
parameter (i.e., local average onsite magnetization)
M ≡ − 1

N
∑N

i=1⟨Ψ̃|sz
ℓi
|Ψ⟩ in the local rotated axes, where

ℓi ≡ (ki , α) labels sites on both layers α = A,B
for excited states (in the |sz

T | = 1 sector) calculate the spin
gap ∆ to the lowest-lying (triplet) excitation
extrapolate to the exact m → ∞ limit, using well-tested
empirical scaling laws:

E/N = a0 + a1m−2 + a2m−4

M = b0 + b1m−1 + b2m−2 for unfrustrated models

M = b0 + b1m−1/2 + b2m−3/2 for highly frustrated models
or near a QCP

∆ = d0 + d1m−1 + d2m−2
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Preliminaries
The relevant parameters are now:

κ ≡ J2/J1 > 0: the intralayer frustration parameter
(when J1 > 0)
δ ≡ J⊥

1 /J1: the interlayer coupling parameter

The effect of δ is to cause competition without frustration:
classically (s → ∞) δ has no effect at all
for δ > 0 (AFM interlayer coupling) the effect (for s = 1

2 ) is
to promote spin-singlet NN interlayer dimers ⇒ an
interlayer dimerized VBC (IDVBC) state as δ → ∞
for δ < 0 (FM interlayer coupling) the effect (for s = 1

2 ) is to
align the spins of NN interlayer pairs ⇒ we expect the
system to approach a spin-1 J1–J2 honeycomb-lattice
monolayer as δ → −∞

So, we examine the GS Néel and Néel-II phases on each
layer in the κ-δ half-plane with κ > 0 [especially their
respective boundaries κc1(δ) and κc2(δ)]
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RESULTS: Bilayer with J1 > 0

We study the case J1 > 0; J2 ≡ κJ1 > 0; J⊥
1 ≡ δJ1 of either

sign
We obtain real solutions for a given model state (i.e., Néel
or Néel-II) only for certain regions in the κ-δ phase space
We have calculated E/N , M , ∆ and also (the zero-field
transverse magnetic susceptibility) χ

References
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s = 1
2 J1–J2–J⊥

1 Honeycomb-Lattice Bilayer Model:
Order Parameter for the Néel and Néel-II States (for a fixed value of δ)

P.H.Y. Li and R.F. Bishop, JMMM 555, 169307 (2022)

κ ≡ J2/J1 ; δ ≡ J⊥
1 /J1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.05  0.1  0.15  0.2  0.25  0.3

M

κ

δ=−1.2
Néel

LSUB2

LSUB4

LSUB6

LSUB8

LSUB10

LSUB∞
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5
M

κ

δ=−1.2Néel−II

LSUB2

LSUB4

LSUB6

LSUB8

LSUB10

LSUB∞

NOTES:
LSUBm curves show both a 2m/(2m − 1) staggering (as expected, which is why
we show only even values of m) and a 4m/(4m − 2) staggering for the even m
values (due to the non-Bravais nature of the honeycomb lattice) =⇒
LSUB∞ extrapolations are based on LSUBm data sets with m = {2, 6, 10}
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2 J1–J2–J⊥

1 Honeycomb-Lattice Bilayer Model:
Extrapolated Order Parameter for the Néel and Néel-II States (for several values of δ)

P.H.Y. Li and R.F. Bishop, JMMM 555, 169307 (2022)

κ ≡ J2/J1 ; δ ≡ J⊥
1 /J1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4
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κ
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δ=−2.5

δ=−∞ (s=1)

 0

 0.05
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 0.25
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 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5
M

κ

Néel−II
δ=0.0
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δ=−2.5
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δ=−6.0

δ=−10.0
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δ=−100.0

δ=−∞ (s=1)

NOTES:

LSUB∞ extrapolations are based on LSUBm data sets with m = {2, 6, 10}
The curve labelled δ = −∞(s = 1) uses SUBm–m data sets with
m = {2, 6, 10} for the spin-1 version of the model
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s = 1
2 J1–J2–J⊥

1 Honeycomb-Lattice Bilayer Model:
GS Phase Boundaries of the Quasiclassical AFM States

P.H.Y. Li and R.F. Bishop, JMMM 555, 169307 (2022)

κ ≡ J2/J1 ; δ ≡ J⊥
1 /J1

δ

κ

−1
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δ
κ

−10
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 2

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

Néel−II

NOTES:
LSUB∞ extrapolations are based on LSUBm data sets with m = {2, 6, 10}
The filled and empty square symbols are points at which the extrapolated GS magnetic order parameter M
for the Néel and Néel-II phases vanishes, for specified values of δ and κ, respectively

The vertical lines at κ = κ>
c1

≈ 0.248, κ = κ<
c2

≈ 0.343 and κ = κ>
c2

≈ 1.274 are taken from the

extrapolated spin-1 model results using SUBm–m data sets with m = {2, 6, 10}
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s = 1
2 J1–J2–J⊥

1 Honeycomb-Lattice Bilayer Model:
T = 0 Quantum Phase Diagram of the Two Collinear Quasiclassical AFM Phases

P.H.Y. Li and R.F. Bishop, JMMM 555, 169307 (2022)

κ ≡ J2/J1 ; δ ≡ J⊥
1 /J1

δ

κ
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 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5
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NOTES:
LSUB∞ extrapolations are based on LSUBm data sets with m = {2, 6, 10}

The filled and empty square symbols are points at which the extrapolated GS magnetic order parameter M
for the Néel and Néel-II phases vanishes, for specified values of δ and κ, respectively

The vertical lines at κ = κ>
c1

≈ 0.248, κ = κ<
c2

≈ 0.343 and κ = κ>
c2

≈ 1.274 are taken from the

extrapolated spin-1 model results using SUBm–m data sets with m = {2, 6, 10}
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Discussion
Both the Néel and Néel-II AFM phases exhibit reentrant
regimes around δ = 0
The phase boundaries of the two quasiclassical AFM
phases exhibit a typical avoided crossing behaviour around
δ = 0 =⇒ the paramagnetic region is singly connected
The paramagnetic regime is likely to contain a mixture of at
least three valence-bond crystal (VBC) phases:

IDVBC (interlayer dimers)
PVBC (plaquettes in both layers separately)
SDVBC (staggered dimers in both layers separately)

The phase diagram clearly explains the observed extreme
sensitivity in calculations of κ>c1

(0), κ<c2
(0), and κ>c2

(0)
We have also calculated the spin gap ∆ and the zero-field
transverse magnetic susceptibility χ, which corroborate the
T = 0 quantum phase diagram above obtained from M
Calculations of ∆ also show if a state is gapped or gapless
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Conclusions
In conclusion, we know of no more powerful nor more
accurate method than the CCM for dealing with these
strongly correlated and highly frustrated 2D spin-lattice
models of quantum magnets, such as the honeycomb-
lattice examples used here for an illustration
By now, we have used the CCM for many other spin-lattice
models. Some other typical examples are:

the Heisenberg (J1) model on all 11 Archimedean lattices
the J1–J2 model on the square lattice
the J1–J2 model on the checkerboard lattice
the J1–J2 model on the Union Jack lattice
other similar depleted J1–J2 models on the square lattice
other models that interpolate between various lattices, e.g.,

(a) kagome-triangle; (b) kagome-square;
(c) square-triangle; (d) hexagon-square

the J1–J2–J⊥
1 model on the square-lattice bilayer

By now ≳ 150 papers have used the CCM for spin lattices
Frustrated Honeycomb-Lattice Bilayer via the CCM RPMBT-21 Ray Bishop 25/27
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Landau’s pearl of wisdom #1

It is so shameful when you derive
an outstanding result and fail to
understand its meaning!

Lev Landau
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Given the enormous power and manifold successes of the
CCM in dealing with a huge variety of quantum
many-body/field-theoretic systems, I would like to end by
asking if we can try to understand the reasons for this
success at a fundamental level
In order to do so let us try to rationalize the particular
choice of CCM parametrizations of the GS many-body ket
and bra states, particularly the seemingly very asymmetric
way in which the two fundamental CCM correlation
operators S and S̃ have been introduced −→
To do this it is very instructive to consider the
generalization of the CCM to its time-dependent version
−→
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Elements of the CCM: Time-Dependent Formalism

Let the CCM correlation coefficients be time-dependent: {SI(t), S̃I(t)}

Define the action: A ≡
∫ t1

t0
dt ⟨Ψ̃(t)|(i

−→
∂ t − H)|Ψ(t)⟩. Extremization of A

is now equivalent to the time-dependent Schrödinger equations:

δA/δ⟨Ψ̃(t)| = 0 =⇒ i∂t |Ψ(t)⟩ = H |Ψ(t)⟩

δA/|Ψ(t)⟩ = 0 =⇒ −i∂t⟨Ψ̃(t)| = ⟨Ψ̃(t)|H

Now insert the CCM parametrizations of the ket and bra states:

A =

∫ t1

t0

dt ⟨ϕ|S̃(t) e−S(t)(i
−→
∂ t − H) eS(t)|Φ⟩

=

∫ t1

t0

dt
{
⟨Φ|S̃(t) iṠ|Φ⟩ − H(SI , S̃I)

}
=

∫ t1

t0

dt
{

i
∑
I ̸=0

S̃I(t)ṠI(t)− H(SI , S̃I)
}
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Elements of the CCM: Time-Dependent Formalism

Now extremize A with respect to all parameters {SI(t), S̃I(t); ∀I ̸= 0}:

∂A
∂S̃I

= 0 =⇒ iṠI =
∂H
∂S̃I

∂A
∂SI

= 0 =⇒ −i ˙̃S I =
∂H
∂SI

Consider an expectation value of an arbitrary operator V (t):

V (t) ≡ ⟨ϕ|S̃(t) e−S(t)V (t) eS(t)|Φ⟩ ≡ V (SI , S̃I ; t)

By the usual chain rule of partial differentiation −→

dV
dt

=
∂V
∂t

+
∑
I ̸=0

{
∂V
∂SI

dSI

dt
+

∂V
∂S̃I

dS̃I

dt

}
Hence, from the above equations of motion for {SI(t), S̃I(t)} −→
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Elements of the CCM: Time-Dependent Formalism
The CCM equation of motion for the expectation value V (t):

dV
dt

=
∂V
∂t

+
{

V ,H
}

which is just the usual classical Hamilton’s equation of motion in terms
of the generalized classical Poisson (or Moyal) bracket defined as −→{

A,B
}
≡ 1

i

∑
I ̸=0

{
∂A
∂SI

∂B
∂S̃I

− ∂A
∂S̃I

∂B
∂SI

}
The above CCM equation of motion for V (t) is just the exactly mapped
counterpart in the CCM phase space P of the usual Heisenberg
equation of motion for operator V (t) in the original Hilbert space H :

dV
dt

=
∂V
∂t

+
1
i
[V ,H ]

We can now make this exact classicization map H 7→ P even clearer
by defining sets of c-number CCM fields {ϕI} and their c-number
canonically conjugate CCM momentum densities {πI} −→

ϕI ≡
1√
2

(
SI + S̃I

)
; πI ≡ − i√

2

(
SI − S̃I

)
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Elements of the CCM: Time-Dependent Formalism
In terms of {ϕI , πI} the generalized Poisson bracket takes the form:{

A,B
}
=

∑
I ̸=0

{
∂A
∂ϕI

∂B
∂πI

− ∂A
∂πI

∂B
∂ϕI

}
which is exactly the usual classical Poisson bracket
Hamilton’s equations of motion for the new variables {ϕI , πI} are:

ϕ̇I =
∂H
∂πI

= {ϕI ,H} ; ∀I ̸= 0 ,

π̇I = − ∂H
∂ϕI

= {πI ,H} ; ∀I ̸= 0

The phase space P ∋ {ϕI , πI ; ∀I ̸= 0} has the symplectic structure,
{ϕI , πJ} = δI,J ; ∀I ̸= 0 , J ̸= 0 ,

{ϕI , ϕJ} = 0 = {πI , πJ} .
To complete this description of a complete and exact classicization of
an arbitrary quantum many-body theory, we need also to show that the
expectation value of the commutator between an arbitrary pair of
operators A and B in the original Hilbert space H is also exactly
mapped into its corresponding Poisson bracket in P −→
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Elements of the CCM: Time-Dependent Formalism
The CCM expectation value of the product of any two operators is:

AB = ⟨Φ|S̃ e−SAB eS |Φ⟩

=
∑

I

⟨Φ|S̃ e−SA eSC+
I︸ ︷︷ ︸ |Φ⟩⟨Φ|C−

I e−SB eS |Φ⟩

=
∑

I

⟨Φ|S̃
[
e−SA eS ,C+

I

]
|Φ⟩⟨Φ|C−

I e−SB eS |Φ⟩

+
∑

I

⟨Φ|S̃C+
I e−SA eS |Φ⟩⟨Φ|C−

I e−SB eS |Φ⟩

=
∑
I ̸=0

∂A
∂SI

∂B
∂S̃I

+
∑

I

∑
J

⟨Φ|S̃C+
I C+

J |Φ⟩⟨Φ|C
−
J e−SA eS |Φ⟩⟨Φ|C−

I e−SB eS |Φ⟩

↪→ a formula for the CCM phase space star product: AB ≡ A ⋆B
The last term is invariant under interchanges I ⇌ J and A ⇌ B −→
The CCM expectation value of the commutator of any two operators is:

⟨Φ|S̃e−S[A,B ]eS |Φ⟩ ≡ AB − BA = A ⋆B − B ⋆A

=
∑
I ̸=0

{
∂A
∂SI

∂B
∂S̃I

− ∂A
∂S̃I

∂B
∂SI

}
= i

{
A,B

}
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Elements of the CCM: Time-Dependent Formalism
In summary, the CCM exactly maps H 7→ P, from a quantum
many-body theory in the Hilbert space H into a classical many-body
theory in the CCM phase space P, a symplectic differentiable manifold
in the modern terminology of classical mechanics, as shown

The symplectic nature of the phase space is a direct consequence of the
existence of the generalized Poisson (or Moyal) bracket, which is just a
skew-symmetric bilinear form that can be used to define a Hamiltonian
vector field in the tangent space of the manifold =⇒
In other words, the set of trajectories defined by the equations of motion fill
the whole of the dynamically allowed region of the phase space

The exact classicization mapping opens up the possibility of exploiting
or extending techniques in classical mechanics for use in the quantum
many-body problem, e.g., to make easy contact with conservation laws
and the associated sum rules by using the Noether currents
In principle, the CCM phase space P can now also be used to
generalize to an arbitrary quantum many-body system the well-known
Wigner-Weyl-Moyal-Groenewold programme of work to describe the
quantum mechanics of a set of particles described by coordinates {xi}
and momenta {pi} as a form of non-deterministic statistical mechanics
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Elements of the CCM: Time-Dependent Formalism
It is also intuitively apparent from the existence of this mapping
H 7→ P onto classical mechanics that the c-number CCM amplitudes
{ϕI , πI} or {SI , S̃I}, which completely characterize and decompose our
many-body problem, may be viewed as a set of generalized (quasi-
local) mean fields that describe each subsystem of particles (labelled
by the configuration-space indices {I }) in the interacting many-body
system, which mutually interact via non-local classical interactions
Indeed, this interpretation can formally be extended to show how the
CCM may very profitably also be viewed as an exact bosonization
procedure in which the CCM states may be exactly associated, in a
one-to-one fashion, with a set of generalized coherent states in some
suitably defined boson space −→ the usual Glauber coherent states
are then just the associates of the lowest-order one-body mean fields
This CCM bosonization procedure differs from other more well-known
such procedures by taking the usual motivation for any bosonization
scheme to its ultimate conclusion, viz., that the resultant generalized
coherent boson fields are simply classical c-number fields with only
classical (nonlinear and nonlocal) interactions between them
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Landau’s pearl of wisdom #2

Let Dau have the last word:

A method is more important than a
discovery, since the right method
will lead to new and even more
important discoveries.

Lev Landau
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The 11 Archimedean Lattices in 2D
Archimedes was one of the first people to describe regular tilings in two spatial
dimensions. Archimedean lattices are infinite and they are composed of arrangements
of regular polygons with every site equivalent (but NN bonds may be inequivalent) =⇒
there are 11 uniform 2D Archimedean lattices.

square = 44; honeycomb = 63; CaVO = 4·82

SHD = 4·6·12; SrCuBO = 32 ·4·3·4; triangle = 63

bounce = 3·4·6·4; maple-leaf = 34 ·6; trellis = 33 ·42

kagome = 3·6·3·6; star = 3·122

– The only unfrustrated cases: square, honeycomb, CaVO, SHD
– All bonds are equivalent only on: square, honeycomb, triangle, kagome
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