

Ab initio Electroweak Reactions with Nuclei

Sonia Bacca

Johannes Gutenberg Universität Mainz

September 14th, 2022

International Conference on Recent Progress in Many-Body Theories XXI

Ab initio nuclear theory

• Start from neutrons and protons as building blocks (centre of mass coordinates, spins, isospins)

 Solve the non-relativistic quantum mechanical problem of A-interacting nucleons

 $H|\psi_i\rangle = E_i|\psi_i\rangle$

 $H = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$

using interactions from chiral effective field theory

• Find numerical solutions with no approximations or controllable approximations

Ab initio calculations starting from NN+3N interactions

J.Simonis, SB, G.Hagen, Eur. Phys. J. A 55, 241 (2019).

²⁰⁸Pb

arXiv:2112.01125

Coupling to the em field

Cross
Section
$$\sigma_{em} \sim R(\omega) = \oint_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Electroweak operator

The continuum problem

$$R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Depending on $\,E_{\rm f}$, many channels may be involved

Integral Transforms

Reduce the continuum problem to a bound-state-like equation

Sonia Bacca

The inversion is performed numerically with a regularization procedure (ill-posed problem)

Message: Inversions are stable if the LIT is calculated precisely enough

Coupled-cluster theory formulation

$$|\psi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle = e^{T}|\phi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle$$

$$T = \sum T_{(A)}$$

cluster expansion

See also G. Hagen's talk

SB et al., Phys. Rev. Lett. 111, 122502 (2013)

$$(\bar{H} - E_0 - \boldsymbol{\sigma} + i\boldsymbol{\Gamma})|\tilde{\Psi}_R\rangle = \bar{\Theta}|\Phi_0\rangle$$

 $\bar{H} = e^{-T} H e^{T}$ $\bar{\Theta} = e^{-T} \Theta e^{T}$ $|\tilde{\Psi}_R\rangle = \hat{R} |\Phi_0\rangle$

Results with implementation at CCSD level

$$T = T_1 + T_2$$
$$R = R_0 + R_1 + R_2$$

+ some study of triples contributions

Title Text

Applications to lepton-nucleus scattering

CEvNS

Coherent elastic neutrino scattering

The neutrino exchanges a Z-boson with the nucleus, that recoils as a whole (no internal excitation).

This is valid for neutrino energies up to 50 MeV

Experimental signature: tiny energy deposited by nuclear recoils in the target material

COHERENT@SNS-ORNL

Science

REPORTS

Cite as: D. Akimov et al., Science 10.1126/science.aao0990 (2017).

Observation of coherent elastic neutrino-nucleus scattering

⁴⁰Ar Form Factors

C. Payne et al., Phys. Rev. C 100, 061304(R) (2019)

exp: in Mainz, Ottermann et. al., Nucl. Phys. A 379, 396 (1982)

⁴⁰Ar Form Factors

C. Payne et al., Phys. Rev. C 100, 061304(R) (2019)

Small nuclear structure uncertainty in the cross section: 2% at q=50 MeV

Sonia Bacca

Neutrino Oscillations

Deep Underground Neutrino Experiment

Aims and challenges

Electrons and neutrinos

Recent Highlights on (e,e')

First ab-initio results for many-body system of 40 nucleons

Sobcyzk, Acharya, Bacca, Hagen, PRL 127 (2021) 7, 072501

Recent Highlights on (e,e')

Inelastic transverse response function

Acharya, Sobcyzk, Bacca, Hagen, in preparation

20

Recent Highlights on (e,e')

Access higher energies with Spectral Functions

Sobcyzk, SB, Hagen, Papenbrock, to appear on PRC (2022)

E=300 MeV; $\theta = 60^{\circ}$

SCGF: Rocco, Barbieri, PRC 98 (2018) 022501

Sobcyzk, SB et al., to be submitted (2022)

Outlook

- Remarkable progress in first principle calculations of electroweak reactions
- More work to be expected in the neutrino sector. Stay tuned!

Thanks to all my collaborators:

B. Acharya, W. Jiang, G. Hagen, T. Papenbrock, C.Payne, J.E.Sobczyk, et al.

Thanks for your attention!