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10/1/2023 *Metaplectic representations

Mostly from the wikipedia and nLab pages for metaplectic group/representation and Heisen-
berg group.

The story begins with the representation theory of the Heisenberg group, which can be
defined as the matrix subgroup

1 a c
0 1 b
0 0 1

 ⊂Mat3×3(R)

for any commutative ring R. Higher dimensional Heisenberg groups can be defined as

H2n+1 =


1 a c
0 In b
0 0 1

 ⊂Mn+2×n+2(R)

For a chosen parameter ℏ > 0, H2n+1 has a unitary representation, Πℏ, on L
2(Rn) ≡ H by

the formula 1 a c
0 In b
0 0 1

 · ψ

 (x) := eiℏceib·xψ(x+ ℏa)

By varying the parameters a, b, c we can translate within position space and momentum
space and vary the overall phase of the state (I’m not sure I understand in what way this
representation is motivated by position and momentum operators, but anyway this is cer-
tainly a representation).

Theorem (Stone-Von Neumann): Every (adjective) unitary irrep of H with non-trivial
central action is equivalent to Πℏ for some ℏ.

The Heisenberg group is a (one dimensional) central extension of R2n:

0 → R → H2n+1 → R2n → 0

given by inclusion of t ↪→ {a = b = 0} ⊂ H2n+1 and projection onto coordinates (a,b). In
general, if G is a central extension of H,

0 → K → G→ H → 0

for K ↪→ Z(G), then given a linear representation of G, we can always consider the quotient
representation H ∼= G/K → GL(V ). In general, this is not well defined unless the action of
K on V is trivial, which is obviously not the case for arbitrary G and K. However in the
case of a central extension, by Schur lemma it is the case that K must act by scalar mul-
tiplication, since it is included into the center. Thus G/K → PGL(V ) is a valid projective
representation.
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In this example it means that linear representations of the Heisenberg group can be viewed
as projective representations of R2n and the action of the center is by eiℏc.

We can also consider the Heisenberg group of a symplectic VS, (V, ω) and H(V ), con-
structed in roughly the same way: Let {eα, fα} be a Darboux basis for the symplectic VS
and define H(V ) as V × R, so that elements have the form (p̄, q̄, u), admitting the faith-
ful matrix representation (meaning multiplication in H(V ) can also be realized as matrix
multiplication) 1 p⃗ u

0 In q⃗
0 0 1


There is a similar Stone-von Neumann statement in this setting, i.e. there exists a unique
irrep of H(V, ω) for each ℏ on H = L2(V ). Uniqueness implies that for any other repre-
sentation ρ′ : H(V, ω) → U(H), there exists a unitary transformation ψρ′ ∈ U(H) such
that

ρ′ = ψρ′ ◦ ρ ◦ (ψρ′)−1

It follows that this ψρ′ is unique up to multiplication by norm 1 constant: If ϕρ′ ∈ U(H) is
another such conjugation automorphism, then

ρ′ = ψρ′ ◦ ρ ◦ (ψρ′)−1 = ϕρ′ ◦ ρ ◦ (ϕρ′)−1

⇒ φ−1ψ ◦ ρ ◦ ψ−1φ = ρ

Thus ψϕ−1 is an intertwiner for the representation ρ to itself. ρ is an irrep, so by Schur
Lemma, ψϕ−1 = λId, so the conjugating automorphism ψ is projectively unique.

If F ∈ Aut(H(V, ω)) acts as the identity (stronger than just preserving) on Z(H(V, ω))1,
then ρ ◦ F is another irreducible representation ρ ◦ F : H(V, ω) → U(H), so by Stone-von
Neumann,

ρ ◦ F = AdψF ρ, ψF ∈ U(H)

Because ψF is only defined up to non-zero constant, this establishes a morphism

Symp(V, ω) → PU(H)

F 7→ [ψF ]

So the symplectic group on (V, ω) has a projective unitary representation on H. By the
correspondence discussed above, this unitary representation onH by Symp(V, ω) corresponds
to a linear representation of a central extension of Symp(V, ω).

FINISH This central extension must be a double cover 2, and we define the metaplectic
group to be this double cover, and we have constructed the (linear) Weil representation of
it.

1Is this required for this part? I know that restricting to only automorphisms which act as identity on
the center means the automorphism group is just the symplectic group, which is what we desire to construct
the metaplectic group, but is it necessary for this part?

2WHY
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10/3/2023 Ordinary quantization of classical field theory

From Dan Freed’s “5 Lectures in Supersymmetry”.

A classical field theory consists of the data:
i) A spacetime manifold M .
ii) A set of fields, F ≡ C∞(M,W ), where W is some target manifold of the theory.
iii) A set of equations of motion (conditions on the fields)
iv) A set of solutions to those equations of motion, M ⊂ F and a symplectic struture on
M.

Example: For a free particle in Rn, the spacetime manifold is just one dimension of time:
M = R and the target is theW = Rn in which the particle lives, so that the fields, C∞(R,Rm)
are paths in space. A free particle experiences no force, so the equations of motion are just

Newton’s laws, d2x(t)
dt2

≡ ẍ(t) = 0. The subspace of solutions, M ⊂ F , is the maps with

constant velocity, {ψ̇ = 0} ∼= W ⊕W ≡ TW , making the solution space a symplectic vector
space. On W ⊕W , the symplectic form is

ω
(
(v, w), (v′, w′)

)
= m

(
⟨w, v′⟩ − ⟨w′, v⟩

)
where ⟨·, ·⟩ is the standard inner product on W = Rn. From this formulation it is easy to
see that each W living in M is a Lagrangian subspace.

To quantize a classical field theory is to associate to the symplectic solution space a projec-
tive Hilbert space in a “functorial manner”, that is, sending symplectomorphisms to unitary
automorphisms. To do so, we note that the symplectic group of our symplectic vector space3

of solutions has a projective metaplectic representation Symp(M, ω) → PU(H) where H
the Hilbert space of the target L2(Rn). So the associated quantum Hilbert space is PL2(Rn),
and the metaplectic representation realizes the functoriality4.

10/9/2023 Generating Lagrangian submanifolds with graphs (sym-
plectomorphisms and one-forms)

The statement was briefly mentioned in lecture 1 of Lev Rozansky’s online mini course posted
to the YT channel Informal Mathematical Physics seminar, but this is pretty standard sym-
plectic geometry.

As a warm-up, let’s prove that the graph of a symplectomorphism is a Lagrangian sub-
manifold.

Proposition: Let (M,ω) be symplectic and ψ : M → M be a diffeomorphism. Then ψ
is a symplectomorphism iff Γψ ⊂M ×M is a Lagrangian submanifold

3I suppose this only works if the differential equation is nice enough to ensure the solution set is indeed
a vector space, but I don’t know enough about DEs to say more.

4I’m really not sure this is right.
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Proof: The product symplectic form on M × M is (−ω, ω). To check whether Γψ is
Lagrangian, we have to evaluate (−ω, ω)|TΓψ . For a point (p, ψ(p)) ∈M ×M , we have

T (M ×M)(p,ψ(p)) = TpM × Tψ(p)M

Let Ψ be the map M → M ×M sending x 7→ (x, ψ(x)). Note that Ψ is a diffeomorphism
from M onto Γψ ⊂ M ×M , so that dΨ : TM → TΓψ is an isomorphism. Thus TΓψ is the
image of the differential dΨ = d(IdX , ψ) = (IdTM , dψ). The image of the differential of Ψ is
exactly the graph of the differential of ψ:

Γdψ = {(v, dψ(v)) | v ∈ TpM,dψ(v) ∈ Tψ(p)M} = TΓψ

In fact this statement is really obvious from a calculus perspective. Then Γψ is Lagrangian
iff

(−ω, ω)|TΓψ = 0

⇐⇒ ∀(ξ, dψ(ξ)), (η, dψ(η)) ∈ Γdψ × Γdψ, −ω(ξ, η) + ω(dψ(ξ), dψ(η)) = 0

⇐⇒ −ω(ξ, η) + ψ∗ω(ξ, η) = 0

⇐⇒ ψ is a symplectomorphism

□
In the setting above, W is called the “generating function” for the Lagrangian submanifold,
ΓdW .

Example: If X = T ∗C ∼= C2, and W1 = xn+1

n+1
as a map C → C, with differential

dW1 = xn : C → C2, then ΓdW1 ⊂ C2 is a Lagrangian submanifold. Similarly taking
W2 = 0, we have dW2 as a Lagrangian submanifold. In the case of n = 2, that picture looks
like the graph y = x2 and y = 0, and the intersection is the “fat point” (x, y) = (0, 0). It is
a fat point because it is non-reduced as a scheme.

So we know that the graph of an exact form is a Lagrangian submanifold. One may ask if
this is a necessary and sufficient condition:
If M is a cotangent bundle, M = T ∗X, with the canonical symplectic form, ω = −dλ,

Proposition: If α : X →M = T ∗X is a one-form, then α∗(λ) = α.

Proof: Note that this equation makes sense as λ is a one-form over T ∗X and α is a one-form
over X. To compute the pullback, we choose local coordinates (q1, . . . , qn) around p ∈ X
and coordinates (q1, . . . , qn, p1, . . . , pn) around α(p) ∈ T ∗X. Then if α̂ is the coordinate
representation of α, ie α̂ = (q1, q2, . . . , qn, α

1, α2, . . . , αn) (recall the function on the points
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must be the identity function, since α must be a section),

α∗(λ)(∂qj) = λ(α∗(∂qj))

= λ
(
∂qj α̂

i∂qi + ∂qj α̂
i∂pi
)

= λ(∂qj + ∂qjα
i∂pi)

=
∑

(pkdqk)(∂qj) +(((((((((((∑
(pkdqk)(∂qjα

i∂pi)

=
∑

pk(σ(p))dqk(∂qj)

= pj(σ(p)) = αj(p)

= α(∂qj)

□
Throughout we have suppressed the point at which vector fields are evaluated, but it is clear
from context.

Then we know that the graph Γα ⊂ X × T ∗X is Lagrangian iff Γα is half dimensional
and α∗(dλ) = 0 ⇐⇒ d(α∗λ) = 0 ⇐⇒ dα = 0, so the graph of α is Lagrangian iff α is
closed as a one-form (half-dimensional comes for free).

*10/14/2023 Hamiltonian reduction as critical locus

If Xs is a symplectic variety with Hamiltonian G action and moment map µ, then we
can consider its Hamiltonian reduction µ−1(0) � G. We may also consider the function
W : Xs × g → g, defined by (x,X) 7→ Tr(µ(x)X). The critical locus of W is isomorphic to
the zero set of µ, so one may think of Hamiltonian reduction as a quotient on the critical
locus of W .

Example: Let Xs be the symplectic variety Rep(Q, n) where Q is the quiver of a sin-
gle vertex and two edges. This variety is acted on by GL(n), where n is the framing of that
vertex. Then Rep(Q, n) ∼= End(Cn)2. The moment map µ : End(Cn)2 → gln(C) is

(A,B) 7→ AB −BA

So the zero level set is the “commuting variety”, {(A,B) ∈ End(Cn)2 | [A,B] = 0}. The
function W : End(Cn)2 × gln(C) → gln(C) is

((A,B), X) 7→ Tr
(
(AB −BA)X

)
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To compute the differential, we choose a path in the space
(
(A+ tA′, B+ tB′), X + tV

)
and

compute

d

dt

∣∣∣
t=0
Tr
(
((A+ tA′)(B + tB′)− (B + tB′)(A+ tA′))(X + tV )

)
= Tr

(
(AB −BA)X

)
· d
dt

∣∣∣
t=0

(
((A+ tA′)(B + tB′)− (B + tB′)(A+ tA′))(X + tV )

)
= Tr

(
(AB −BA)X

)
·
(
AB′X + A′BX −BA′X −B′AX + ABV −BAV )

= Tr(
(
[A,B]X

)
·
(
(AB′ −B′A+ A′B −BA′)X + [A,B]V

)
= Tr(

(
[A,B]X

)
·
(
([A,B′] + [A′, B])X + [A,B]V

)
which is equal to 0 for all A′, B′, V iff AB−BA = 0 andX = 0 (I’m not convinced this is true,
but it is what is supposed to be true. Am I missing something? Eg, what if Tr((AB−BA)X)
is 0.). Thus the critical locus is isomorphic to the zero set of µ under projection.

ADDRESS PARENTHETICAL.

10/15/2023 First Koszul complex

From wikipedia page for Koszul complex, Eisenbud, and Tiger Cheng helped me work out
some of the details in person. We omit all instances of the phrase “co”, as in cohomology,
cochain complex, codifferential, etc.

Let R be a mmutative ring, x ∈ R and M an R-module. Then ·x : M → M is a mor-
phism of R-modules and trivially extends to a chain complex

0 →M
·x→M → 0

This is the Koszul complex of x ∈ R. The homology of this chain complex is

H0 = ker(·x) = AnnM(x), H1 =M/xM

which encodes important data about multiplication by x.

For a pair (x, y) ∈ R2 we define the sequence of free R-modules and morphisms

0 → R → R2 → R → 0

Where the first nontrivial arrow is the matrix

(
y
x

)
and the second arrow is the matrix(

−x y
)
. This is a chain complex, because

r 7→ (ry, rx) 7→ −(ry)x+ (rx)y = 0

This is the Koszul complex of a pair (x, y). The Koszul homology in this case is

H0 = ker

(
y
x

)
= {r ∈ R | rx = ry = 0} = AnnR(x) ∩ AnnR(y)
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in particular if x or y is a nonzerodivisor, then H0 = 0.

H1 = ker
(
−x y

)/
im

(
y
x

)
If (a, b) ∈ ker, then −ax+ by = 0 ⇐⇒ b ∈ (x : y). For the rest of this entry, assume x is a
nonzerodivisor. Then a is uniquely determined by b: If (a, b), (a′, b) ∈ ker then

ax = by = ax′ ⇒ a = a′

thus in this case, ker ∼= (x : y), via the projection onto the coordinate b. The image of the
left map is all elements of the form (ry, rx). Under the above isomorphism, {(ry, rx)} ∼= (x),
so that

H1 ∼= (x : y)/(x)

If [r] ∈ H1, then there exists b ∈ R such that

ry = bx = 0

which implies r = 0 exactly if y is a nonzerodivisor in R/(x). In other words, if (x, y) is a
regular sequence in R, then H1(K(x, y)) = 0. This is a general phenomenon.

Example: Let R = k[x, y, z]/(x − 1)z, and consider the Koszul complex K(x, (x − 1)y).
The sequence (x, (x − 1)y) is a regular sequence since x is a nonzerodivisor in R and
R/(x) = k[z, y]/(z), so y is a nonzerodivisor in R/(x), thus

H1(K(x, (x− 1)y)) = 0

However if we consider the reversed sequence (x− 1)y, x, this is not regular because (x− 1)y
is a zero divisor in R, thus H1(K((x− 1)y, x) may be nonzero.

10/20/2023 Residues at infinity

I need to remember how residues work for the next entry.

Let f be analytic apart from finitely many points, zi, and let C be a circle at the origin
of radius R such that all zi ⊂ int(C). The residue at infinity of f is the integral

Res(f,∞) := − 1

2πi

∫
C

f(z)dz

by the residue theorem, this implies

Res(f,∞) = −
∑

Res(f)

Theorem:

Res(f,∞) = −Res
(

1

w2
f(1/w), 0

)
9



This amounts to choosing the other affine chart on P1.

Example: Let f(z) = (5z − 2)/z(z − 1). Then∫
|z|=2

f(z)dz = 2πi
(
Res(f, 0) +Res(f, 1)

)
= 2πi(2 + 3) = 10πi

⇒ Res(f,∞) = −5

We may also compute

Res(f,∞) = −Res
(

1

w2
f(1/w), 0

)
= −Res

(
(2w − 5)

w(w − 1)
, 0

)
= −5

As desired.

10/23/2023 Equivariant Localization as Residues at infinity

Here is an interesting way to think about equivariant localization, as read in “Integration
over homogenous spaces for classical Lie groups using iterated residues at infinity” by Mag-
dalena Zielenkiewicz.

We just do the case of projective space for now. Let ϕ(R) be some characteristic class
of the tautological bundle over X = Pn. Then by Berline-Vergne localization formula (I
think we now consider this a specific case of the general phenomena known as Atiyah-Bott
localization) ∫

X

ϕ(R) =
n∑
i=0

V (ti)∏
j ̸=i(tj − ti)

the denominator is given by the euler class of the fixed point, and V is some polynomial
representing that class. V only depends on ti because the ϕ(R) is specifically a characteristic
class of the tautological bundle. Note that for a fixed i,

−Res

(
V (z)∏n

j=0(tj − z)
, z = ti

)

= − lim
z→ti

(z − ti)
V (z)∏n

j=0(tj − z)

= lim
z→ti

V (z)∏
j ̸=i(tj − z)

=
V (ti)∏

j ̸=i(tj − ti)
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Therefore the summation over all such i gives∫
X

ϕ(R) =
∑ V (z)∏

j ̸=i(tj − ti)
= −

∑
Res

(
V (z)∏n

j=0(tj − z)
, z = ti

)

= Res

(
V (z)∏n

j=0(tj − z)
, z = ∞

)
by the residue theorem.

10/29/2023 Matrix Derivatives

Richard Rimanyi taught me this.

Consider the function F (A,B,C) = Tr(ABC). Then

∂F

∂Bαβ

=
∂

∂Bαβ

(∑
i

(ABC)ii

)

=
∂

∂Bαβ

(∑
i,j,k

AijBjkCki

)
= 0 + · · ·+ 0 +

∑
i

AiαCβi + 0 + · · ·+ 0

≡ (CA)βα

⇒ ∂F

∂B
= ATCT

A more elegant solution from “user357269” on stack exchange is to observe that the above
expression doesn’t really make sense. When we take a partial derivative with respect to a
variable B, we are really considering the function of a single variable,

F (B) = Tr(ABC)

for some fixed, arbitrary A,C. The trace is a linear map in this single variable, so it is its
own differential, so what we have written is something like

F (B) = Tr(ABC) = ATCT

which is false. Consider the Frobenius pairing ⟨A,B⟩ = Tr(ATB), which is always non-
degenerate. Then we are saying that Tr(ABC) = ⟨ATCT , B⟩, which is obviously true.

One might ask why we are so interested in taking the derivative with respect to the middle
matrix and not the others. The answer is that it allows one to compute all other possible
derivatives:

∂Tr(ABC)

∂A
=
∂Tr

(
Id · A · (BC)

)
∂A

= IDT (BC)T = CTBT

and so on.
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11/10/2023 Affine Grassmannian for GL1

This example was mentioned in a conference talk from Gurbir Dhillon.

The most concrete construction of the affine Grassmannian is as a coset space: For a
reductive group G, consider the arc and loop5 functors O, F where GO = G(C[[t]]) and
GF = G(C((t))). The affine Grassmannian is the coset space GrG = GF/GO. In the case
G = GL1, this means the affine Grassmannian is

GrGL1 = C((t))×
/
C[[t]]×

To be a unit the Laurent series ring is just to be non-zero. To be a unit in a power series
ring (when the coefficients are a field, i.e. no zero divisors), is just to have non-zero constant
term. For any formal Laurent series, we can factor it as

∞∑
i=i0

ait
i = ti0g(t)

where g(t) is a power series with non-zero constant term (otherwise just shift the i0 until it
is non-zero). In the quotient, then g(t) dies while ti0 does not, as its constant term is zero,
so an element of the quotient is characterized only by its starting index:

GrGL1
∼= Z

I think swapping C with any field shouldn’t be a problem, but replacing it with a ring makes
this problem more complicated.

11/20/2023 Canonical basis functions on algebraic tori

I learned this example from Sean Keel’s talk “Mirror Symmetry Made Easy”, available on
Youtube.

If U = (C×)r is a torus, we can consider the characters, that is morphisms of algebraic
groups U → C×. All such must be of the form

f(t1, . . . , tr) = ta11 t
a2
2 · · · tarr

for ai ∈ Z. In other words, the characters are the monomials living in Γ(U,OU) ∼= k[t±1 , . . . , t
±
n ],

and they form a basis of this ring. Similarly, the monomials in Γ(Cr,OCr) also form a basis
of the coordinate ring. However, again in the case of C (r = 1), while the basis 1, T, T 2, . . .
is a basis of k[T ], so is 1, (T −3), (T −3)2, . . . , and this basis is just as good. We do not have
a canonical basis in this case, because it depended on our choice of basis for C. However the
characters for the torus are actually canonical: they can be identified without reference to
any choice.

5What does this have to do with arc and loop spaces?
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Lemma: f ∈ Γ(U,OU) is invertible iff f is (proportional to) a character.

This is basically just saying that the only functions with no zeros or poles on the torus
is monomials (these have no zeros because we removed 0).

So the coordinate ring of the torus has a canonical basis given by characters. Generaliz-
ing this phenomena to some classes of CY varieties is the goal of Sean Keel’s talk.

11/23/2023 Fun with theta functions

I should try to learn about elliptic things soon for research so here’s some of the background
info. Mostly from the wiki page on theta functions, also drawing from Paul Aspinwall’s
unpublished (at the time of writing) textbook on string theory.

For z, τ ∈ C, Im(τ) > 0, we define the Jacobi Theta function

ϑ(z; τ) =
∞∑

n=−∞

exp(πin2τ + 2πinz)

First of all this is a convergent sum on any compact subset6 of C×H: if we write z = x+ iy
and τ = u+ iv with v > 0, then

|eπin2τe2πinz| = |ei(πn2+2πnx)−(2πny+πn2v)|

= e−πn(2y+nv)

which is less than one as long as 2y + nv ≥ 0. v is always positive, and n will eventually
become positive, and the magnitude of y is bounded because we consider z valued in a com-
pact set, so the terms in this series will eventually start to die exponentially fast.

Observe

ϑ(z + 1; τ) =
∞∑

n=−∞

exp
(
πin2τ + 2πin(z + 1)

)
=

∞∑
n=−∞

exp(πin2τ + 2πinz +���2πin) = ϑ(z; τ)

so ϑ is 1-periodic in z, and

ϑ(z + τ ; τ) =
∞∑

n=−∞

exp
(
πin2τ + 2πin(z + τ)

)

=
∞∑

n=−∞

exp
(
πin2τ + 2πinz + 2πinτ

)
6Wikipedia doesn’t mention compact subset, but the only proofs I could (easily) find were for compact

subsets.
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by completing the square

=
∞∑

n=−∞

exp
(
πi(n+ 1)2τ − πiτ + 2πinz

)

=
∞∑

n=−∞

exp
(
πi(n+ 1)2τ − πiτ + 2πi(n+ 1)z − 2πiz

)
= exp(−πiτ − 2πiz)ϑ(z; τ)

So that ϑ is quasi τ -periodic in z. Indeed it could not actually be τ -periodic in z, since it
was already 1-periodic. This would imply that, for fixed τ , ϑ would descend to a holomor-
phic function on the torus C/(Z + τZ), which is compact, therefore ϑ must be constant by
Liouville theorem.

In τ , we have

ϑ(z; τ + 1) =
∞∑

n=−∞

exp
(
πin2(τ + 1) + 2πinz

)
=

∞∑
n=−∞

exp
(
πin2τ + πin2 + 2πinz

)
If n is an integer, then eπin depends only on the parity of n: If n is even then its value is
1, if n is odd then its value is −1. Therefore in the summation over “exp”, we may always
replace any individual n term with n2 and vice versa, because n ≡ n2 mod 2.

=
∞∑

n=−∞

exp
(
πin2τ + πin+ 2πinz

)

=
∞∑

n=−∞

exp

(
πin2τ + πin+ 2πin

(
z +

1

2

))

= ϑ(z +
1

2
; τ)

So translating by one in τ translates by a half in z. Inspired by this translation we may also
define the other theta functions

θ1(z; τ) = e−πi(z+1/2+τ/4)ϑ(z +
1

2
τ +

1

2
; z)

θ2(z; τ) = eπi(z+τ/4)ϑ(z +
1

2
τ ; τ)

θ3 = ϑ(z; τ)

θ4 = ϑ(z +
1

2
; τ) = ϑ(z; τ + 1)
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If we introduce the nome7, q = exp(πiτ), then the original definition of the Jacobi theta
function can be rewritten

ϑ(z; τ) = 1 + 2
∞∑
n=1

qn
2

cos(2πnz)

(the sin terms cancel because they are odd).

11/20/2023 Free and Forget are adjoint functors

If F : C → D and G : D → C are functors, we say they are adjoints if for all X ∈ C and
Y ∈ D, we have a set bijection

homD(FX, Y ) ∼= homC(X,GY )

which is natural in X and Y , ie there is a natural isomorphism of functors from D to
Set, homC(G−, X) ∼= homD(−, FX) and a natural isomorphism of functors from C to Set
homC(−, GY ) ∼= homD(F−, Y ).

Example: We have two categories Grp and Set, and the functors F = Free : Set → Grp
and G = Forget : Grp → Set, where Free sends a set to the free group on that set and
forget sends a group to its underlying set. If G is a group and X is a set, we have to show a
bijection

homGrp(Free(X), G) ∼= homSet(X,Forget(G))

Given such an X and G, define a set function

homGrp(Free(X), G)) → homSet(X,Forget(G))

by observing that for f in the LHS, we can define the set function f̃ by sending an element
in X to its image under f . That is to say, for x ∈ X, there is a generator in Free(X) which
is also labelled x, so define f̃(x) := f(x). This is injective because if two group homomor-
phisms from Free(X) to G map to the same set function, then they must must coincide
on the generators of Free(X). Because they are group homomorphisms, that means they
coincide on all of Free(X), so they are the same group homomorphism. It is surjective
because if you have a set function X → Forget(G) then you can just define a group homo-
morphism Free(X) → G by defining the images of the generators by the given set function,
then extending to all of Free(X) by imposing that it be a group homomorphism. We decline
to check naturality.

The universal property of free groups is essentially defined so that this relation holds by
definition, i.e. it puts set functions in bijection with group homomorphisms.

7What an unpleasant name.

15



11/30/2023 Representability of schemes

We will sometimes blur distinctions between (thing) and (co-thing).

For a scheme X, we have a functor H(−, X) : AffSch → Set given by sending Y 7→
HomAffSch(Y,X), and sending morphisms to their composite. Such a functor is called the
functor of points for the scheme X.

The Yoneda lemma states that the Yoneda embedding Sch → [Schop, Set] is fully faith-
ful, i.e. furnishes an isomorphism of categories Sch ∼= {hS | S ∈ Sch}, where hS is the
typical hom-functor. However a stronger statement is true: A scheme X is determined
by its functor of points, i.e. the “functor of points” functor is also a fully faithful functor
Sch → [AffSchop, Set]. Intuitively, Yoneda lemma tells us that in order to understand a
scheme, X, we need to understand all scheme morphisms into X, while the functor of points
approach says that to understand a scheme, it suffices to understand only affine scheme mor-
phisms into X, which is desirable because it means we need to understand a much simpler
class of morphisms.

Example: X = Ar = Spec(Z[x1, . . . , xn]). If we interpret the functor of points as eating
commutative rings instead of affine schemes (which we are allowed to do because the cate-
gories are isomorphic), then the functor of points is Hom(Z[x1, . . . , xr],−) : CommRng →
Set. It sends an affine scheme Spec(A) to the hom-set Hom(Z[x1, . . . , xr], A). Any mor-
phism is determined by the image of x1, . . . , xn, and so this hom-set is equal to the set
of r-element subsets of A. Then the functor of points for Ar is the functor sending a ring
A to the set of r-element subsets of A, as a set. When r = 1, this is just the forgetful functor.

The pedagogically precise statement is to first consider the functor CommRng → Set
which sends a ring to the set of r element subsets, Ar. The claim is that this functor
is representable, and further is represented by the ring Z[x1, . . . , xr], furnishing a natu-
ral transformation of functors CommRng → Set, Ar ≃ HomCommRng(−,Z[x1, . . . , xr]) ∼=
HomAffSch(−, Spec(Z[x1, . . . , xr]). Thus we say the “classical affine space” Ar = Spec(Z[x1, . . . , xr])
represents the functor of points Ar.

Example: Gm = Spec(Z[x, x−1]). The functor of points is the functorA 7→ Hom(A,Z[x, x−1]) ∼=
A×. Ring morphisms send units to units so this indeed defines a functor. Therefore the func-
tor is the “units” functor. There is a similar “pedagogically correct” modification as in the
previous example.

Example: Pn.

12/2/2023 *Functor of points of the line with two origins

TODO
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12/6/2023 2× 3 = 4 + 2

I learned this in Paul Aspinwall’s Quantum mechanics and string theory course at Duke a
year(ish) ago.

Recall that because SU(2) is simply connected, there is a bijection between its group rep-
resentations and the Lie algebra representations of its lie algebra, su(2) = Lie(SU(2)), so
we may blur the distinction between these two. If we complexify, suC(2) ∼= sl(2;C) is gen-
erated by 3 elements, H,X, Y satisfying the commutation relations [H,X] = 2X, [H,Y ] =
−2Y, [X, Y ] = H. Given an suC(2) representation, we refer to the eigenvalues of the opera-
tor H as the weights of the representation.

Theorem: For each non-negative integer m, there is a unique irrep with highest weight
m. Each irrep is equivalent to one of these. The representation with highest weight m has
dimension m+ 1 with weights −m,−m+ 2,−m+ 4, . . . ,m− 4,m− 2,m, each having mul-
tiplicity one.

Using physicists notation, let n denote the irrep of dimension n. To describe the repre-
sentation, we only need to say how the 3 generators act on the weight spaces. H of course
acts by scaling and X and Y are known as ladder operators, i.e. X sends the weight α
eigenspace to the weight α + 2 eigenspace, and Y sends the weight α eigenspace to the
weight α− 2 eigenspace. These facts are immediate from the commutation relations.

Given any two irreps a, b, we can tensor to get the representation a⊗ b, which will usually
be reducible 8, so we may ask how to decompose it into a direct sum of irreducibles.

The key to analyze how to break up the reps into irreps is to examine the spectrum of
H on both sides using the observation: If v1, v2 are eigenvectors of H with eigenvalues λ1, λ2
in some representations, n1, n2, then in the tensor product, v1 ⊗ v2 is an eigenvector with
eigenvalue λ1+λ2. Therefore if X is the spectrum of H in the representation n1 and Y is the
spectrum of H in the representation n2, then all the pairwise sums of eigenvalues, X + Y ,
will be contained in the spectrum of H in the representation n1 ⊗ n2, but this is also the
right number of eigenvalues, so X + Y is the spectrum of H in the tensor product. Similar
analysis shows that the spectrum of H in the direct sum corresponds to X ⊔Y . Clearly from
the theorem, the spectrum of H determines the representation.

Example: 2⊗ 3 ∼= 2⊕ 4. The weights for 2 are ±1 and the weights for 3 are −2, 0, 2. For
posterity we also note that the eigenvalues for 4 are −3,−1, 1, 3. Then the spectrum of H
in the tensor product is

−3,−1,−1, 1, 1, 3

which is the spectrum of 2 disjoint unioned with the spectrum of 4, so this representation
must be 2⊕ 4.

8I’m pretty sure it will always be reducible, but I don’t care to investigate that right now.
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Example: 2 ⊗ n ∼= (n + 1) ⊕ (n − 1). The eigenvalues of H in 2 are ±1. The eigen-
values of H in n are −n + 1,−n + 3, . . . , n − 3, n − 1. So the eigenvalues of H in 2⊗n
are {

− n,−n+ 2,−n+ 2, . . . , n− 2, n− 2, n
}

which are also the eigenvalues of H in (n− 1)⊕ (n+ 1). Thus

2⊗ n = (n− 1)⊕ (n+ 1)

12/7/2023 Fusion-categorical interpretation of 2× 3 = 4 + 2

To interpret the above, the category FdRep(suC(2)) is (almost) a fusion category: All objects
have duals, it is C-linear, semisimple (all direct sums exist and each object is a direct sum
of simple objects), monoidal, and endomorphisms of a 1-dimensional vector space is just C.
This category does fail one criteria, which is that it has infinitely many isomorphism classes
of simple objects, since we have an irreducible representation for every natural number, but
let’s ignore that.

Fusion categories are categories where one can nicely “fuse” (tensor) objects in the cate-
gory. The conditions in the definition allow one to write down things like

V ⊗ V ′ ∼=
N∑
i=0

ciVi

where Vi are the simple objects in the category. The ci’s are called structure constants. (in
our case the sum is a priori infinite, due to the infinitely many simple objects, but in practice
the sums are always finite since, for example, we know the ci for Vi whose dimensions are
higher than the product of dimensions will all be 0. This is the reasoning for disregarding
missing one of the conditions. Experts may take exception to that.). In the case of sln, the
structure constants are provided by the Littlewood-Richardson rule.

The conditions on a fusion category also imply that the Grothendieck ring is generated
by (isomorphism classes of) the irreps n, and the way to multiply is given by the Little-
Richardson coefficients, and addition is direct sum. The rigidity condition implies that the
Grothendieck ring is a fusion ring. In this context, the Littlewood-Richardson rule is known
as a fusion rule.

The Clebsch Gordon coefficients from quantum mechanics are another example of a fusion
rule.

12/9/2023 Alternating tensor representations of SO(m).

From Knapp’s “Representation Theory of Semisimple Groups”.

Let Rm have the standard basis e1, . . . , em. SO(m) acts on this by matrix multiplication.
By imposing i-linearity, SO(m) acts on Cm. Suppose m = 2n. Then a basis for the Cartan
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subalgebra can be given by H1, . . . , Hn where Hi has the 2 x 2 block

(
0 1
−1 0

)
in the ith di-

agonal 2 x 2 block (of which there are n), and 0 elsewhere. Then for example, e1+ie2 ∈ Cm is
acted on by H1 with weight −i and e1− ie2 is acted on by +i, therefore they are both weight
vectors with weights w1, w2, where w1(H1) = i and w2(H1) = −i, while w1(Hi) = w2(Hi) = 0
for i ̸= 1. Continuing in this manner, there is a pair of weight vectors for each Hi, ei± iei+1,
with weights wi and wi+1, satisfying wi(Hi) = wi+1(Hi+1) = ±i, wi(Hj) = 0 for i ̸= j, j + 1.
If m is odd, then there are still H1, . . . , Hn basis vectors for the Cartan, described in the
same way, but with an extra row and column of all 0’s appended to the right and bottom.
There is thus an additional weight, 0, corresponding to the weight vector e2n+1.

There is an induced action on
∧k Cm for all k ≤ m by Leibniz rule. For example, if we

consider a simple 2-vector, and vi are weight vectors of weights wi, then

H1(v1 ∧ v2) = H1(v1 ⊗ v2 − v2 ⊗ v1)

= H1(v1 ⊗ v2)−H1(v2 ⊗ v1)

= H1(v1)⊗ v2 + v1 ⊗H1(v2)−H1(v2)⊗ v1 − v2 ⊗H1(v1)

= w1(H1)v1 ⊗ v2 + v1 ⊗ w2(H1)v2 − w2(H1)v2 ⊗ v1 − v2 ⊗ w1(H1)v1

≡ w1(H1)v1 ∧ v2 + v1 ∧ w2(H1)v2

= (w1(H1)− w2(H1))v1 ∧ v2

So that in general, the weights of
∧k Cm are all possible sums of ±wi’s in increasing order

of size k, and the highest weight is the sum over the first k wi’s, with positive signs.

Theorem: Each
∧k C2n representation of SO(2n) is irreducible, for k < n. When k = n,

this representation is reducible.

Theorem: Each
∧k C2n+1 representation of SO(2n+ 1) is irreducible, for k ≤ n.

Once we pass the halfway point, we are looking at the same representation, since
∧k Cm ∼=∧m−k Cm. So all the exterior reps of SO(2n+1) are irreducible, while SO(2n) has one half-

dimensional representation which splits as two irreps. Viewed as representations of so(m),
these are all fundamental representations, that is reps whose highest weight is a fundamen-
tal weight, (not a sum of any other weights), and these cover almost all of the fundamental
representations.

12/9/2023 Spin representations

The notation in this section is a complete mess and I will not fix it.

If V is a vector space (here we will only consider over C and R) with non-degenerate quadratic
form Q, Spin(V,Q) is the unique double cover of SO(V,Q). As a result, any representation of
SO(V,Q) induces a representation of Spin(V,Q). In particular, the irreps above of SO(V,Q)
induce irreps of Spin(V,Q). As Spin(V,Q) is a covering of SO(V,Q), they are locally home-
omorphic and thus have the same lie algebra, so(V,Q). Therefore first we study the Lie
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algebra spin representations. These are representations of the Lie algebra so(V,Q), but as
SO(V,Q) is not simply connected, they do not necessarily integrate to representations of
SO(V,Q). In the case of spin reps, they do not, and instead have to pass to the universal
cover.

Up to isomorphism, we may consider V = Cn and Q to be the standard quadratic form,
inducing the standard symmetric bilinear form ⟨−,−⟩ (dot product), so that so(V,Q) ∼=
so(n,C), the Lie algebra of skew symmetric complex matrices. If m = 2n, choose a splitting
V = W ⊕W ∗ of maximal isotropic subspaces of V . When m = 2n + 1, choose a splitting
V = W ⊕ W ∗ ⊕ U , where U is a one-dimensional subspace, orthogonal to W ⊕ W ∗. In
general, we can always construct a basis of V so that ⟨ei, ej⟩ = 0 unless j = n+ i, in which
case you get 1. In such a setting, we can let the first n basis vectors be a basis of W and
the final n be a basis of W ∗. When m is odd, there will be an extra vector left over, and let
that span U . Because ⟨−,−⟩ is non-degenerate, it induces a perfect pairing W ×W ∗ → R,
so W ∗ is canonically linear dual to W . Let S =

∧•W , and for every v ∈ V , split v uniquely
into v = w + w∗ if n is even and v = w + w∗ + u if n is odd. For every ψ ∈ S, define9

v · ψ :=
√
2(w ∧ ψ + ι(w∗)ψ)

and if n is odd, then define the action of u by identity if ψ ∈
∧evenW and by multiplication

by -1 if ψ ∈
∧oddW . w∗ acts on ψ by expanding it as an alternating tensor and using Leibniz

rule: In the case ψ = v1 ∧ · · · ∧ vk, then

ι(w∗)ψ =
k∑
i=1

(−1)iQ(wi, w
∗)w1 ∧ · · · ∧ ŵi ∧ · · · ∧ wk

where ŵi indicates the omission of the ith vector, so ι(w∗) is a degree -1 map on the exterior
algebra. We can check that the Clifford relation, v ⊗ v = Q(v)1 is respected:

(v ⊗ v)ψ ≡ v · (v · ψ) =
√
2
(
w ∧ (

√
2(w ∧ ψ + ι(w∗)ψ)) + ι(w∗)(

√
2(w ∧ ψ + ι(w∗)ψ)

)
= 2
(
w ∧ ι(w∗)ψ + ι(w∗)(w ∧ ψ) + ι(w∗)ι(w∗)ψ

)
= 2
(
w ∧ ι(w∗)ψ + ι(w∗)w ∧ ψ + w ∧ ι(w∗)ψ + ι(w∗)ι(w∗)ψ

)
Of these, only one term remains:

= 2(ι(w∗)w ∧ ψ) = 2⟨w,w∗⟩ψ

By polarization,

= 2

(
1

2
Q(w + w∗)−���Q(w)−����Q(w∗)

)
ψ = Q(v)ψ

9This is known as the “geometric product” or “Clifford product”.

20



The cancellations occur because W,W ∗ are Lagrangian subspaces. This shows10 that v · v
acts as Q(v), so S is a Cl(V,Q) module, where Cl(V,Q) is the Clifford algebra of V,Q.

Now we give an alternate construction of the Spin group inside of the Clifford algebra,
and show that it coincides with the abstract double cover definition. Thus the Clifford mod-
ule S will become a spin module by restriction. The Clifford algebra, Cl(V,Q), inherits a
Z2-grading from the tensor algebra (but not the Z-grading: that is destroyed by the Clifford
relation. Instead it has a Z-filtration, since we are allowed to decrease the degree.). The Pin
group, Pinn(C), is the subgroup of the Clifford algebra consisting of products of vectors of
norm ±1. The Spin group, Spinn(C), is the even (wrt the Z2-grading) part of the Pin group.

The units (under tensor product) of Cl(V,Q), U , act on Cl(V,Q): For x ∈ U , define
y 7→ α(x) · y · x−1 where α is the main involution. Here product means tensor product.
The Lipschitz group, Γ, is the subgroup of the group of units which preserves the set of
vectors under this action, therefore Γ ↷ V by construction. When r ∈ Γ belongs to V , we
have the familiar reflection formula

α(r) · v · r−1 =
1

Q(r)
(−r · v · r)

=
1

Q(r)
− r(rv + 2⟨v, r⟩)

=
1

Q(r)
(r · r) · v − 2⟨v, r⟩r

Q(r)

= v − 2⟨v, r⟩
Q(r)

r

where the second equality is equivalent to the defining clifford relation apart from charac-
teristic 2. This action is orthogonal wrt Q, so we have a morphism

Γ → O(V,Q)

which is surjective (theorem), inducing the exact sequence

1 → C → Γ → O(V,Q) → 1

and also
1 → C× → Γ× → SO(V,Q) → 1

The Pin group sits inside Γ, so by restriction, we have a map

Pinn(C) → O(V,Q)

10I haven’t seen anywhere online covering this topic mention what is technically happening here (even I
could be more precise here by spelling out what “action” means in each context). Maybe it is totally obvious,
but it confused me for about an hour. We define the action of V on S. Then we consider an induced action
of TV , the tensor algebra on V , on S. It is defined by repeated action, so v ⊗ w · ψ := v · (w · ψ). This
is a not-often-mentioned intermediate step that makes all of these equations actually make sense. Then we
show that under this action by TV , any term of the form v ⊗ v −Q(v)1 ∈ TV acts trivially, so this action
descends to the quotient TV/(v2 −Q(v)) = Cl(V,Q).
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which is again surjective (in finite characteristic it is not so, but that is not my business),
and whose kernel is now just ±1:

1 → {±1} → Pinn(C) → O(V,Q) → 1

1 → {±1} → Spinn(C) → SO(V,Q) → 1

establishing Spin and Pin as double covers, and thus agreeing with our initial definition of
Spin as a double cover.

Because we have identified Spin and Pin as subgroups of the Clifford algebra, the Clif-
ford modules S and S ′ are also Spin and Pin modules. These modules are called the
spin representations, and they also induce Lie algebra representations on so(n,C).

To get some explicits formulas and to compute weights, we need to recall the algebra iso-
morphism11

∧2 V ∼= so(n,C) = so(V,Q) via the map

v ∧ w 7→
(
x 7→ 2

(
⟨w, x⟩v − ⟨v, x⟩w

))
If we present V with the Lagrangian splitting and basis as described at the start of the entry,
(again this depends on the parity of m), then the basis of so(m,C) of Eij − Eji is sent to
αi ∧ aj ∈

∧2 V . In this case, the Cartan subalgebra is sent to αi ∧ ai. We can also identify∧2 V ∼= Cl2(V ), the degree 2 vector space of the Clifford algebra, by the map12

v ∧ w 7→ 1

4
[v, w]

Then the action of h is by

(αi ∧ ai) · ψ =
1

4
(αiai − ai ∧ αi) · ψ

=
1

4
αi · (ai · ψ)−

1

4
ai · (αi · ψ)

=

√
2

4
αi · (ai ∧ ψ + 0)−

√
2

4
ai · (0 + ι(αi)ψ)

=
2

4
ι(αi)(ai ∧ ψ)−

2

4
ai ∧ ι(αi)ψ

=
1

2
ψ − ai ∧ ι(αi)ψ

If ψ = ai1 ∧ · · · ∧ aik ∈
∧•W , then if i ∈ {i1, . . . , ik}, the second term is equal to ψ, and

ai1 ∧ · · · ∧ aik is an eigenvector of eigenvalue -1/2 and if not, then the second term is just 0,
so we have an eigenvalue of 1

2
, so all such are weight vectors with weights (±1

2
, . . . ,±1

2
).

If n is even, then S+ =
∧evenW and S− =

∧oddW are invariant subspaces. These turn

11Let’s not get into the algebra structure on
∧2

V and proof of compatibility.
12But the second thing is not a subalgebra, so this must be only a linear identification. That’s weird.
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out to be irreps, and are called half-spin representations. Their elements are called Weyl
spinors, and highest weights are (1

2
, 1
2
, . . . , 1

2
) and (1

2
, 1
2
, . . . ,−1

2
).

If n is odd, these representations are all irreducible:
∧evenW and

∧oddW are not preserved
by the action of u∧w, (recall u always acts by scalar multiplication). The highest weight is
(1
2
, . . . , 1

2
). Elements of S are called Dirac spinors.

In both cases, note that −1 ∈ Spinn(C) does not act trivially, so this does not13 descend to
a representation of SO(n,C).

*Spin(3)-reps.

Consider C3 with the standard quadratic form Q(z1, z2, z3) = z21 + z22 + z23 . We can choose
a basis {e, f, u} of C3 so that ⟨e, f⟩ = ⟨u, u⟩ = 1, ⟨e, e⟩ = ⟨f, f⟩ = ⟨u, f⟩ = ⟨u, e⟩ = 0.
Then Cl(V,Q) is generated by 1, e, f, u in their appropriate degrees, with the relations e2 =
f 2 = 0, u2 = 1 and graded anti-symmetry. In particular, we can always consider the highest
homogeneous degree to be 3, which is a 1-dimensional space.

*12/10/2023 Spin of a particle

From Dan Freed’s Five Lectures on Supersymmetry.

In quantum mechanics, the Hilbert space of wavefunctions of a particle in Rm is modeled by
L2(Rm,W ) where W is some representation of Spin(m), the double cover of SO(m).

12/15/2023 Positive Grassmannian

From Youtube video “Lauren K. Williams: Cluster algebras and the amplituhedron - defi-
nition”.

Recall the identification of the Grassmannian Grk(n) with rectangular matrices of full rank,
quotiented by left multiplication action of GL(k). The identification is afforded by “row
span” function into Grk(n). Full rank implies the existence of at least one non-zero matrix

minor. There are

(
n
k

)
Plucker coordinates for Grk(n), corresponding to the choice of pos-

sible minors in the rectangular matrix representing a subspace. For example in Gr3(R5), we
have a subspace represented by  2 1 0 4 3

−1 0 3 2 1
3 2 1 7 5


So the corresponding subspace is the span of 2e1 + e2 + 4e4 + 3e5 and so on. The maximal
rank of such a matrix is 3, so we examine all 3 x 3 minors. For example, the [123] minor

13Does this really suffice as justification? I’m thinking that when we define the action by TV , the degree 0
portion, which is just C, should just act by scalar multiplication, in which case the action of -1 is non-trivial,
which it would need to be to factor through the covering projection.

23



(indicating the columns being chosen) is -2.

In contrast, the matrix  1 2 3 4 5
6 7 8 9 10
11 12 13 14 15


has rank 2, thus must have all zero 3 x 3 minors, and this is the case.

So we have coordinate functions to R(
n
k), which are not well-defined after quotient: If we

act by left multiplication, the minors can be changed by an overall constant: The minors of(
1 2 3
4 3 2

)
are -5,-10,-5, while the minors of

(
0 −1
2 3

)(
1 2 3
4 3 2

)
are -10,-20,-10. In fact the

minors will all change by a factor of the determinant of the acting matrix14. This means we
have really found projective coordinates (also because we know that full rank implies the 0
vector is not in the image), these are the Plucker coordinates.

Definition: The positive (or totally non-negative) Grassmannian, Gr≥0(k, n), is the sub-
set of points of the ordinary Grassmannian, Gr(k, n), whose Plucker coordinates are all
non-negative, up to sign.

For example, the matrix written above belongs to Gr≥0(2, 3), since its 3 coordinates have
the same sign.

*12/20/2023 Amplituhedron is a polyhedron

Continuation of above entry. Let Z be a n × k +m matrix with k +m ≤ n (so Z is like a
vertical triangle), whose k +m× k +m minors are all positive. Then define

Z̃ : Gr≥0(k, n) → Gr(k, k +m)

C 7→ [CZ]

The fact that Z has maximal minors positive implies that the resulting matrix is full rank,
so the map is well defined.

Definition: The Amplituhedron, An,k,m(Z) := Z̃(Gr≥0(k, n)).

Note this is not interesting if Z is square, because then Z̃ is an isomorphism, and the
amplituhedron reduces to the positive Grassmannian.

If k = 1,m = 2, then Z will be an n × 3 matrix with positive maximal minors, and
An,1,2(Z) ⊂ Gr(1, 3) = P2 is a polygon in P2: The map Z̃ is from Gr≥0(1, n) → Gr(1, 3).
If we represent C ∈ Gr≥0(1, n) by a matrix

(
a1 . . . an

)
where ai all have the same sign

(because each one is a minor), then Z̃(ei) = Zi, the ith row of Z. Because Z has positive

14Is there a geometric way to prove that?
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maximal minors, the Zi’s must be in convex position.

IM NOT SURE HOW TO SEE THIS

*1/10/2024 Slodowy Slice

Let g = sl(3), and consider the nilpotent element e =

0 0 1
0 0 0
0 0 0

. By Jacobson-Morosov,

we know that e can be included into an sl(2)-triple, e, f, h ⊂ g. Define S = e+ker[f,−] ⊂ g,
the Slodowy Slice of the pair (e, g). In this case we can take

f =

0 0 0
0 0 0
1 0 0

 , h =

1 0 0
0 0 0
0 0 −1


Let

X =

a b c
d e f
g h i

 ∈ sl(3)

so that a+ e+ i = 0. Then the action of ad(f) is

ad(f)(X) = [f,X] =

 −c 0 0
−f 0 0
a− i b c


So any X ∈ ker(ad(f)) has the form

X =

a 0 0
d e 0
g h a


and the traceless condition implies e = −2a, so

=

a 0 0
d −2a 0
g h a


Then the coset S := e+ ker(ad(f)) is all matrices of the forma 0 1

d −2a 0
g h a


which is our Slodowy slice. In this case, the G-orbit of e is transversal to “slice direction”,
ker(ad(f)): In the language of linear spaces it just means that they sum to the whole space:
The G-orbit of e looks like a b c

d e f
g h i

 , e

 =

g h i− a
0 0 −d
0 0 −g
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so we may obtain an arbitrary element of sl(3) by adding something from ker(ad(f)). Fur-
ther, the orbit of the Slodowy slice covers sl(3) HOW TO SHOW THIS.

These properties are enjoyed by Slodowy slices in general: They are transversal slices to
nilpotent orbits which cover the Lie algebra.

*Slodowy Slice as Hamiltonian reduction

From SURYA RAGHAVENDRAN’s notes.

*1/10/2024 Odd theta functions

From Felder, Rimanyi, Varchenko: “Elliptic Dynamical Quantum Groups and Equivariant
Elliptic Cohomology”.

Define the Jacobi odd theta function15

θ(z) =
sin(πz)

π

∞∏
j=1

(1− qjw)(1− qjw−1)

(1− qj)2

where q = e2πiτ is the elliptic nome and w = e2πiz. We can calculate

d

dz
θ(z)

= cos(πz)
∞∏
j=1

(1− qjw)(1− qjw−1)

(1− qj)2
+

sin(πz)

π

∞∏
j=1

1

(1− qj)2
d

dz

[
(1− qjw)(1− qjw−1)

]
= cos(πz)

∞∏
j=1

(1− qjw)(1− qjw−1)

(1− qj)2
+

sin(πz)

π

∞∏
j=1

1

(1− qj)2

[
(−2πiqjw)(1− qjw−1) + (1− qjw)(2πiqjw−1)

]
⇒ d

dz

∣∣∣∣∣
z=0

θ(z)

= 1
�����������∞∏
j=1

(1− qj)(1− qj)

(1− qj)2
+

((((((((((((((((((((((((
sin(πz)

π

∞∏
j=1

(−2πiqj)(1− qj) + (1− qj)(qj2πi)

(1− qj)2
= 1

Shifting z 7→ z + 1 preserves w and sends sin(πz) 7→ − sin(πz), so θ(z + 1) = −θ(z) (as
opposed to the theta functions defined in previous entries, which were 1-periodic in z), and

θ(z + τ) = −e−πiτe−2πizθ(z)

so it is also τ -quasi-periodic in z.

15Idk the exact relation of this defn to the theta functions defined in 11/23/2023. It is very close to the
formula which comes after applying the Jacobi triple product formula, but the versions I have seen don’t
have any denominators, so I’m not sure where this comes from.
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Definition (Spaces of theta functions):Let z ∈ Cn, y, λ ∈ C and define Θ∓
k (z, y, λ) to be

the set of entire, symmetric functions f(t1, . . . , tk), such that the meromorphic function

g−(t1, . . . , tk) :=
f(t1, . . . , tk)∏k

j=1

∏n
a=1 θ(tj − za)

g+(t1, . . . , tk) :=
f(t1, . . . , tk)∏k

j=1

∏n
a=1 θ(tj − za + y)

satisfies
g(t1, . . . , ti + r + sτ, . . . , tk) = e±2πis(λ−ky)g(t1, . . . , tk)

Example: For n = 1 (let’s just do -), z ∈ C, so

g− =
f(t1, . . . , tk)∏k
j=1 θ(tj − z)

Claim the function

φ−
k (t; z, y, λ) =

k∏
j=1

θ(λ− tj + z − ky)

is a solution. This is clear because

w±1(λ− (ti + r + sτ) + z − ky) = w±1(z)w±1(λ− (ti + r + sτ)− ky)

= w±1(z)w±1(λ− ky)w±1(ti + r + sτ)

while
w±1(ti + r + sτ − z) = w±1(ti + r + sτ)w∓(z)

so IDK HOW TO SHOW THIS

1/20/2024 Higher dimensional torus orbits on Gr(k, n).

If T = (C×)n ↷ Gr(k, n) (or one can take cotangent bundle also), with the standard scaling
of coordinate vectors, we know the fixed points are indexed by subsets of size k of the set
{1, . . . , n}, corresponding to the coordinate k-subspaces. Claim 1-dimensional orbits are of
the form {

⟨aei1 + bei2 , eℓ1 , . . . , eℓk−1
⟩
∣∣∣ a, b ∈ C×

}
so there are

(
n
2

)
·
(
n
k−1

)
of these, since to specify such an orbit, you first choose the 2 coordinate

vectors to be added together, of which you may choose from n, and then choose the remaining
k−1 coordinate vectors. This orbit is clearly fixed by T since all but the j coordinate vectors
spans are preserved, and aeij+bei′j 7→ a′eij+b

′ei′j , so the corresponding subspace still belongs

to the orbit. As a variety, this orbit’s closure (closure so we can get the points a = 0, b ̸= 0
and a ̸= 0, b = 0. I won’t say closure anymore throughout this entry.) is a copy of P1, since
scaling a and b by an overall constant doesn’t change the subspace. It can be shown that
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all 1-dimensional orbits are of this form. Following this, we obtain d-dimensional orbits in
Gr(k, n), for d ≤ n, of the form

(⋆)
{
a1ei1 + a2ei2 + · · ·+ ad+1eid+1

, eℓ1 , . . . , eℓk−1

}
These are similarly copies of Pd. But there are other higher dimensional orbits, namely for
2-dimensional orbits, we could split up the summation (let’s just consider Gr(2, n) to ease
the notation): {

aei + be′i, cej + de′j

}
This is also preserved under the action of T and is a 2-dimensional variety, but is isomorphic
to P1 × P1, since each individual coordinate is invariant under scaling. So all 1-dimensional
orbits are of the form (⋆), but for d > 1, we have these others. I think in general, each
d-dimensional orbit yields an integer partitions of d. For example, a 5-dimensional orbit
corresponding to 5 = 3 + 1 + 1, representing a bounded orbit isomorphic to P3 × P1 × P1, is{

aei1 + bei2 + cei3 + dei4 , fej1 + gej2 , hek1 + iek2
∣∣ a, b, c, d, f, g, h, i ∈ C×

}
Obviously this is not the full story though, since this orbit lies in Gr(3, n). If we apply the
same idea to Gr(4, n) then we consider the family{

aei1 + bei2 + cei3 + dei4 , fej1 + gej2 , hek1 + iek2 , eℓ1
∣∣ a, b, c, d, f, g, h, i ∈ C×

}
Because we look at a 4-dimensional subspace, we have an extra choice of the final coordinate
vector, there are n orbits corresponding to the partition 5 = 3 + 1 + 1 (also assuming n is
large enough). This is interesting, I should investigate these combinatorics more. I think it
would be interesting to have a complete description.

1/22/2024 Quiver Grassmannians

From Youtube video “Martina Lanini (Università di Roma Tor Vergata): GKM-Theory for
cyclic quiver Grassmannians”.

Let Ân be the affine type A quiver. Let (M, M⃗) be a quiver representation of Â, so M

is a Zn graded vector space and M⃗ is an endomorphism of M such that M⃗Mi ⊂Mi+1. Such
a representation is called nilpotent if M⃗ is nilpotent. We define the quiver Grassmannian

as a certain moduli space depending on a chosen Â-rep, (M, M⃗) and a dimension vector
d ∈ Zn≥0

Grd(M)
{
(Ni)i∈Zn

∣∣∣ Ni ∈ Gr(di,Mi), M⃗(Ni) ⊂ Ni+1

}
Really this definition can be given for any quiver, but in this entry we only focus on affine
type A. In English: at every vertex, choose a subspace of the vector space there of dimension
di, and make sure you can compose the maps (subrepresentation condition). This is just
the variety which parameterizes all d-dimensional subrepresentations of M (hence moduli
space). If di > dim(Mi) for any i, then this variety is empty.
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Example: Consider Â1 (Jordan quiver) and choose the representation M = Cn and M⃗ = 0
and dimension vector d. Then

Grd(M) =
{
V ∈ Gr(d,Cn)

∣∣∣ ∅} = Gr(d,Cn)

Consider Q = An, the non-affine type A quiver of length n. Choose Mi = Cn+1 for every i
and M⃗i = Id, and an increasing dimension vector d. Then

Grd(M) =
{
(Ni)i∈Zn

∣∣∣ Ni ∈ Gr(di,Cn+1), Ni ⊂ Ni+1

}
= F l(d,Cn+1)

We could have also let Q = Ân and choose every map to be identity except the map con-
necting the final vertex to the first, letting that one be 0, to get the same result.

1/25/2024 Rational/Trigonometric/Elliptic

From “ℏ-deformed Schubert Calculus in equivariant cohomology, K-theory, and elliptic co-
homology” by Richard Rimanyi. I’ll be reading more of this this semester.

Define yet another theta function

θ(x) = (x1/2 − x−1/2)
∞∏
s=1

(1− qsx)(1− qs/x)

on a double cover of C. The trigonometric limit is

lim
q→0

θ(x) = (x1/2 − x−1/2)

If we change variables
x1/2 = eiy

then
x1/2 − x−1/2 = cos(y) + i sin(y)− cos(−y)− i sin(−y)

= 2i sin(y)

hence the name. We often abuse notation and call the new variable x, so we say θ(x) → sin(x)
is the trigonometric limit. If we further approximate x → 0, we have θ(x) = x, which is
called the rational limit.

These functions can be used to define extraordinary cohomology theories through formal
group laws:

(θ(x), θ(y)) → θ(xy), (sin(x), sin(y)) 7→ sin(x+ y), (x, y) 7→ x+ y
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1/28/2024 Ell•T (P1).

From “ℏ-deformed Schubert Calculus in equivariant cohomology, K-theory, and elliptic co-
homology” by Richard Rimanyi.

For GKM spaces, the equivariant elliptic cohomology is identified via equivariant localization
with |XT |-tuples of sections of line bundles on ErkT , for E some elliptic curve, subject to
the GKM moment graph constraints. Let X = P1, so T = (C×)2. Then Ell•T (P1) consists

of pairs of functions on E2 =
(
C×/qZ

)2
(of course these cannot be holomorphic functions),

(f1, f2), subject to the single moment graph divisibility constraint, f1|z1=z2 = f2|z1=z2 . Let

θ(x) = (x1/2 − x−1/2)
∞∏
s=1

(1− qsx)(1− qs/x)

as in the entry above. Then

(θ(z2/z1), 0),

(
θ′(1)

θ(z1µ2/z1µ1)

θ(µ2/µ1)
, θ′(1)

θ(z1ℏ/z2)
θ(ℏ)

)
are two elements of the equivariant elliptic cohomology, as they obviously satisfy the divis-
ibility requirement. One can also guess elliptic weight functions which yield these classes
upon restriction:

θ(z1ℏµ2/tµ1)θ(z2/t)

θ(ℏµ2/µ1)
, θ′(1)

θ(z1ℏ/t)θ(z2µ2/tµ1)

θ(ℏ)θ(µ2/µ1)

and easily check that their restrictions yield the two pairs above. This fact obviates the need
to even check restrictions.

Hm that was not very satisfying though because we didn’t actually do any computation,
the divisibility is obvious and used nothing about theta functions. Also the formal setup is
not exactly clear: what are the line bundles in question?

*1/30/2024 XXX Spin chains

I learned this from Andrey Smirnov.

A(n XXX) spin chain of length n is an element of the vector space

H = C2 × · · · × C2︸ ︷︷ ︸
n times

These model length n chains of “spin up” and “spin down” particles living on a line. We call
e1 ∈ C2 the “spin up” basis vector and e2 the “spin down” vector. So we imagine a horizontal
line on which we have placed n particles, each of which is some (complex) linear combination
of spin up and spin down. Label the ith particle as ai. We can define a Hamiltonian at every
particle as measuring the where

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
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are the Pauli sigma matrices, so Hai ∈ End(C2 ⊗ C2). The Hamiltonian for the whole spin
chain is then

H :=
n∑
i=1

Hai

For example if we have three particles in the chain, then

2/8/2024 Hopf algebra representations can be canonically tensored

I learned this (partly) from Andrey Smirnov, who discussed this in the case of Uℏ(sl2), and
I figured it probably applies to all Hopf algebras.

For some examples of Hopf algebra computations, see entry 5/28/2023 and its antecedent.
In a Hopf algebra we have comultiplication, antipode, and counit k-algebra morphisms
∆ : U → U ⊗ U , S : U → U and ϵ : U → k satisfying some compatibility conditions.
Suppose we have a finite dimensional algebra representation of U , so a k vector space V
with a homomorphism of k-algebras φ : U → End(V ), where End(V ) is equipped with com-
position. Then the claim is that V ⊗ V is canonically equipped with a U -module structure.
In particular we must exhibit a k-algebra map

U → End(V ⊗ V ) ∼= End(V )⊗ End(V )

this isomorphism doesn’t always hold, but it does in our case. Then we can compose

U
∆−→ U ⊗ U

φ⊗φ−→ End(V )⊗ End(V )

which is a composition of k-algebra homomorphisms as desired. So far we did not need any
compatability conditions. But to define an action of U on, for example, V ⊗ V ⊗ V , there is
a choice to be made: We have to first apply ∆ of course, but then there is a choice of which
factor to act on in order to obtain something which can act on a 3-tensor:

U ⊗ U

U U ⊗ U ⊗ U

U ⊗ U

∆⊗1∆

∆ 1⊗∆

But the coassociativity of comultiplication condition implies that these choices are the same
(we have also implicitly identified (U⊗U)⊗U with U⊗(U⊗U), which is canonical.). In this
fashion, we can continually just apply comultiplication to induce representations on V ⊗n (I
think technically you would need to show that 1⊗∆ makes U ⊗ U into a Hopf algebra and
so on in order to show this, but let’s not get into that.)
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2/10/2024 Tensor powers of Uℏ(sl2)

I also learned this from Andrey Smirnov. This entry can be thought of as a continuation of
the above. The quantized enveloping algebra of sl2(C) is an algebra generated by E,F,H
subject to the relations

[H,E] = 2E [H,F ] = −2F, [E,F ] =
H −H−1

ℏ− ℏ−1

There is a 2-dimensional representation, V ,

E =

(
1
)
, F =

(
1

)
, H =

(
ℏ

ℏ−1

)
With this assignment, we can calculate

H −H−1 =

(ℏ2−1
ℏ

1−ℏ2
ℏ

)
H −H−1

ℏ− ℏ−1
=

(
1

−1

)
= [E,F ]

sometimes called the tautological representation. In this case, the Hopf algebra structure
deforms to:

∆(E) = E ⊗ 1 +H ⊗ E, ∆(F ) = F ⊗H−1 + 1⊗ F, ∆(H) = H ⊗H

I’m not sure how to see this as a deformation of the usual relations though. Anyway, it means
that for example, we can calculate the action of, e.g., E on the basis vector e1 ⊗ e2 ∈ V ⊗2

as:
E(e1 ⊗ e2) ≡ ∆(E)(e1 ⊗ e2) = (E ⊗ 1 +H ⊗ E)(e1 ⊗ e2)

= E(e1)⊗ e2 +H(e1)⊗ E(e2)

= 0 + ℏe1 ⊗ e1

and so on. We have thus constructed an action of Uℏ(sl2) on the space of XXX spin chains,
and the significance of this will be made clear in a subsequent entry.
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