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Abstract

Graduate course in Quantum Mechanics and Strings taught by Paul Aspinwall at Duke.
Notes are handwritten during lecture then typeset later. Any comments, concerns, ques-
tions, corrections, or communications of any type are encouraged to be directed to my
email. This is not a politness request: if you have any feedback about these notes, I re-
ally want to hear it. These notes are primarily a documentation of my personal learning
journey while following along with the class: There is a lot of material in this document
that did not come from the lecture, and some of the lecture material may not have been
included in these notes. As such, any errors found in this document are assumed to be
introduced by me. Nevertheless this should provide some non-zero utility for any and
all readers, primarily my future self. This is a math class, but it is meant to be accessi-
ble to math undergrads, as well as physics students, so we don’t get to treat things as
generally or as rigorously as possible at all times. Since rigor and generality are my in-
terest, I will try to provide some generalizations and mathematically rigorous statements
for some of the things we are covering, when I am able. These statements will be in the
gray-ish boxes, and none of the content in these boxes comes from the course itself, but
are sourced mainly from my brain, but also the internet, and the various mathematical
physics textbooks I’ve managed to collect over the years. As such, they are especially
susceptible to contain mistakes.
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CHAPTER 1

I. Roadmap and the Classical String

Lecture 1, Aug 29.
The jumping off point of string theory comes in the form of a question. What if the fun-
damental building blocks of physics is not point particles? The next best guess is instead
of a 0-dimensional point, it should be some kind of 1-dimensional object, which could
be a string. But how do we describe the motion of such a string? The first guess is to
approximate a string as a series of finitely many point particles, which are bound in some
sort of potential to each other. But this is not “fundamental”. So we may want to start
with such a model, then “get rid of the points”1, and we must do so in a way which is
“invariant under reparameterization”. This is a difficult constraint to meet, and we will
see that it will only work in 26 dimensions, a famous fact.

The usual roadmap to learn string theory for a physicist is to study basic mechanics, in the
style of Newton, then classical mechanics via the Lagrangian formulation, then quantum
mechanics, quantum field theory, general relativity, and then you are ready to begin your
string theory journey2. However, this is a very time consuming prospect, as you could be
a second or third year PhD student by the time you finish3 We will follow a somewhat
streamlined version of this path, learning only what is absolutely necessary. For example,
every undergrad physics students learns about the hydrogen atom in a quantum mechan-
ics class. We will be skipping this completely.

Let’s begin with classical mechanics: We have the singular defining equation from New-
ton, F⃗ = m ¨⃗x. Consider the special case when F⃗ is a conservative vector field4, i.e. F⃗ =
−∇V, for V(xi, t) a scalar field which we think of as representing some sort of “potential
energy”. Define

E :=
1
2

m ˙⃗x2 + V

1I suspect this involves taking some kind of limit as the number of points goes to infinity?
2This is exactly what I did in my undergrad, though in a slightly different order, so I can attest this is

what people do.
3And this is assuming you are a physics student. You will have no time to do all of this if you are a math

PhD student.
4Some pertinent examples from physics would be gravitational force, Coulomb forces, etc. These forces

are characterized by the fact that it doesn’t matter what path you take to get to your position, the force
exerted on you is the same.
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where the square means dotted with itself. Then

dE
dt

= m ˙⃗x · ¨⃗x +
dV
dt

= ˙⃗x(m ¨⃗x +∇V)

But by Newton’s equations, the portion in the parenthesis is 0. So for F⃗ a conservative
force field, the “energy”, E, is a constant. For a suitable physical situation, we can con-
sider E as the sum of kinetic and potential energy.

In early physics classes, we usually phrase problems in terms of either forces (setting
up force diagrams and the like), or in terms of conservation of energy. This can quickly
become very complicated though. It is easy to devise some twisted construction of pul-
leys, weights, and levers which will become too difficult to analyze with these tools.

This is where the Lagrangian formulation of classical mechanics becomes useful.

Setting of Classical Mechanics: To understand this mathematically: We want to
work on a Riemannian manifold, M, equipped with the Levi Civita connection,
which serves as the congfiguation space for our system. From the manifold point of
view, the central objects are paths in the trajectory space γ : [a, b] → M which repre-
sent the evolution of the system. With the Riemannian metric, we may consider the
gradient as an element of the tangent bundle rather than cotangent, since any inner
product induces an isomorphism V ∼= V∗, and the Levi Civita connection allows us
to differentiate “along the path γ”. In this case, the equation F = ma takes the form

Fγ = m∇γ′γ′

For concreteness we can take Rn with the standard metric and trivial connec-
tion. From this viewpoint, locally, the generalized coordinates qi are those com-
ing from the base manifold, and the q̇i coordinates are those belonging to the tan-
gent vectors. In this way, we view a time-independent Lagrangian as being a func-
tion on the tangent bundle, i.e. L ∈ C∞(TM). If one desires time dependence,
L ∈ C∞(TM × R). For the example below, we consider the setting TR3 × R, with
coordinates (x1, x2, x3, ẋ1, ẋ2, ẋ3), and L : TR3 × R → R as described. The tech-
nical global definitions in the setting of a general tangent bundle are much more
involved. For example, how to globally define a derivative of L so that we may
write down Lagrange equations? It can be done, this is known as the fiber-wise
derivative. This is a certain transformation TM → T∗M, which we will see later,
called the Legendre transform. It is the transformation from Lagrangian to Hamil-
tonian mechanics. The natural setting for Lagrangian mechanics is TM, and the
natural setting for Hamiltonian mechanics is T∗M, leading to the study of symplec-
tic geometry. Mathematically, this explains why the momentum coordinates live in
the cotangent bundle, as they are the image of the velocities through the Legendre
transform. Details in the next section.
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We will use generalized coordinates qi. And if we are lucky, we can find some special
function

L(qi, q̇i, t)

called the Lagrangian, such that

d
dt

(
∂L
∂q̇i

)
=

∂L
∂qi

for all i

These equations are known as the Lagrangian equations.

Example: Let L = 1
2 m ˙⃗x2 − V. Note that this differs from the energy by a minus sign,

for i ∈ {1, 2, 3}. Then we can compute5

d
dt

∂L
∂ẋi

=
d
dt

mẋi = mẍi

∂L
∂xi

= −∂V
∂xi

Then applying the Lagrange equations:

mẍi +
∂V
∂xi

= 0

which is exactly the Newton equations.

The calculation above, while suggestive that the Lagrange equations are a good thing
to study, is very ad hoc. How did the people who wrote this down initially (probably
Lagrange) know it was a good thing to study? To answer this, consider the action

S :=
∫ t1

t0

Ldt

for a system evolving from time t = 0 to time t = 1. Suppose the action were to vary
slightly: That is, suppose the system took a slightly different path through the configu-
ration space, with coordinates qi, and suppose we forced the endpoints, t0 and t1, to stay

5For this calculation we are assuming that x and ẋ have no relation, and that V depends only on the
coordinates xi and t, not the ẋi. I believe this makes sense. For example, gravitational potential only knows
about position, not velocity. It just depends where you stand with respect to the massive object.
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fixed. This would correspond to an infinitesimal change in the action, given by6

δS =
∫ t1

t0

δLdt

= ∑
i

∫ t1

t0

((
∂L
∂q̇i

)
δq̇i +

(
∂L
∂qi

)
δqi

)
dt

=

�
���

���

∑
i

∂L
∂q̇i

δqi

∣∣∣t=1

t=0
− ∑

i

∫ t1

t0

(
d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi

)
δqidt

⇒ ∂S = 0 ⇐⇒ The Lagrangian equations are satisfied

where the cancellation occurs because the boundary is fixed, so there is no variation at
the boundary, and the third equality (the same line as the cancellation) is obtained via in-
tegration by parts, whatever that may mean in this variational setting. To verify the other
direction of implication: This ∂S = 0 holds for all variations. If the above sum of integrals
is 0, then we have something of the form

∫
f · g = 0 for all g, where f is the Lagrange

equations and g is the variation δqi. This implies f = 0 (think of the non-degeneracy of
the inner product in L2)7.

So a trajectory through the configuration space satisfies the Lagrangian equations iff it
is an extrema of the action, usually a minimum.

The concept that the system’s time evolution should be determined by a stationary state
of the action functional is known as Hamilton’s principle of least action8. It is not guar-
anteed that we will always find a minimum, but it seems like those are the cases we will
be interested in for the most part.

Onto Hamiltonian mechanics. We want a sort of ‘coordinate change”:

pi :=
∂L
∂q̇i

6To make this calculation rigorous, one needs the machinery of variational calculus. But for us, we will
just follow our nose and trust things to be well defined and work how we might expect them to. We should
expect this concept to be difficult to define because we are trying to define the derivative with respect to a
“variation of paths”. But the space of paths is infinite dimensional, even for paths in one dimension, so we
need to specify what it means to differentiate in this context.

7I think this statement is somehow correct but I am still skeptical of my own reasoning. This doesn’t
hold for all functions g, this holds for all variations δqi. Maybe if I knew more calculus of variations I could
say something definitive.

8By the way, I still have no intuition for why this principle should be true. Nature should somehow
always choose the configuration which minimizes the action functional? Let’s say the action is given by the
K − V. Nature wants the kinetic energy to be close to the potential energy? Any physicists reading please
provide some insight.
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Legendre Transformation on Manifolds: There is a more general notion of the
Legendre transform between any vector bundle and its dual. In our case, we will
specialize to the (co)tangent bundle, but it should be clear how to generalize. The
Legendre transform is a smooth map of smooth manifolds TM → T∗M defined by
considering, for any x ∈ M, L|Tx M : Tx M → R. Then d(L|Tx M) : T(Tx M) → TR.
What exactly is T(Tx M)? Think of the simple example of f : M → R. We can think
of d f as a map M → T∗M by sending p 7→

(
v 7→ d fp(v)

)
, the directional derivative

at p in the direction v. Equivalently we are considering d f as a one-form on M, a
smooth section of Ω1(M). Thus we may consider d(L|Tx M) as a map

d(L|Tx M) : Tx M → T∗(Tx M)

A one-form is a section of this bundle T∗(Tx M) → Tx M, so the element d(L|Tx M)(v)
is an element of the fiber over v, T∗

v (Tx M) ∼= T∗
x M. Since it sends fiber to fiber, this

defines a bundle morphism TM → T∗M, denoted as FL, where L is the Lagrangian.

In the case of L = 1
2 m ˙⃗x2 − V, we have, if the system obeys the Lagrange equations,

pi = mẋi

which motivates these new coordinates being referred to as momenta9.

We define a new function
H = ∑

i
piq̇i − L

the Hamiltonian.

9Per our discussion before, we now view these pi as living in the cotangent bundle.
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The Legendre transform reduces to what we just defined: If we choose M = Rn

with coordinates (qi), or work locally in an arbitrary manifold with local coordi-
nates, and define L = 1

2 mẋ2 − V, then FL : TRn = R2n → T∗Rn = R2n and label
the coordinates on the domain R2n as (qi, q̇i) and the target as (qi, pi). Because FL
is a bundle morphism, it preserves the qi’s, and it sends q̇i 7→ pi := ∂L

∂q̇i
. Note that

on Rn, this derivative makes sense. This recovers the general formula given any
Lagrangian, and plugging in our particular Lagrangian immediately gives the par-
ticular case of pi = mqi. For this reason, we see the pi’s are coordinates on the
cotangent bundle, because they can be interpreted as one-forms.
Under certain nice analytic conditions on L, FL is a diffeomorphism. Define the
“Hamiltonian” H ∈ C∞(T∗M × R) as

H(q, p) = p · (FL)−1(p)− L
(
(FL)−1(p)

)
= p · q̇ − L(q̇)

Then (FL)−1 = FH.
This is a nice way to develop the concept on a manifold, but to actually calculate
these things, i.e. to actually compute the Legendre transform of a function and
verify the above equation, you need to work with the analytic definiton. Wikipedia
is a pretty good source for this, but I’m having some trouble connecting their story
on Rn with what we’ve developed here. CdA develops it, but over the course of
several chapters which I really don’t have time to go through right now.

Cannas da Silva’s “Lectures on Symplectic Geometry” dive more into the an-
alytic details of this, as well as a more general discussion on arbitrary vector
bundles.

Example: Again taking the standard Lagrangian L = 1
2 m ˙⃗q2 − V (⃗q), we have

H = ∑ piq̇i − L

= ∑(mq̇i)q̇i −
1
2

m ˙⃗q2 + V (⃗q)

=
1
2

m ˙⃗q2 + V (⃗q)

which we would recognize as K + V.

Suppose after plugging in L, we can rearrange H to write it as a function of qi and pi
10.

Then
dH = ∑

i
pidqi + ∑

i
dpiq̇i − ∑

i

∂L
∂qi

dqi − ∑
i

∂L
∂q̇i

dq̇i

10Why can we always do this?
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= ∑
i

q̇idpi −
∂L
∂qi

dqi

But also,

dH ≡ ∑
i

∂H
∂qi

dqi +
∂H
∂pi

dpi

⇒ ∂H
∂qi

= − ∂L
∂qi

Lagrange Eqns
= − ṗi,

∂H
∂pi

= q̇i

The two equations above are known as Hamilton’s equations.

The state of a system is given in terms of pi and qi, so a point in phase space has its
velocity determined by the Hamilton equations.

Let f , g(qi, pi, t). Define the Poisson bracket11 of f and g by

{ f , g} := ∑
i

∂ f
∂qi

∂g
∂pi

− ∂g
∂qi

∂ f
∂pi

TODO: turn the footnote into a section here.

Proposition:

{ f , H} =
d f
dt

− ∂ f
∂t

Proof:

d f
dt

≡ ∑
i

∂ f
∂qi

+
∂ f
∂t

Hamilton eqns
= ∑

i

∂ f
∂qi

∂H
∂pi

− ∂ f
∂pi

∂H
∂qi

+
∂ f
∂t

= { f , H}+ ∂ f
∂t

□
In particular, if H has no time dependence, then dH

dt = {H, H} = 0. The final equality
comes by inspecting from the definition12 of the Poisson bracket that for any f , { f , f } = 0.
We interpret this result as a statement about conservation of energy, in the case that

11Every symplectic manifold is canoncially a Poisson manifold: For any f , g, define { f , g} := ω(X f , Xg),
where X f is the unique vector field such that ιX f ω = d f . One can check that this indeed defines a Poisson
bracket on C∞(M). In fact, this bracket turns C∞(M) into a Lie algebra. One can work out that in local
coordinates, this turns out to give the definition we give subsequently. And this coordinate free definition
makes the next lemma much easier to verify.

12Or by observing that the symplectic form is a differential form, i.e. antisymmetric.
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H = K + V.

Let’s use the Hamiltonian formulation of mechanics to study the most important sys-
tem in all of physics, the simple harmonic oscillator, i.e. a system in which V ∼ x2. For
convenience, we will work in a single dimension, and fix the units so that

V =
1
2

mω2x2

Then the Hamiltonian is given by

H = E =
1
2

m ˙⃗q2 + V (⃗q) =
p2

2m
+

1
2

mω2x2

E =
1

2m

(
p2 + m2ω2x2

)
2E
m

= ẋ2 + ω2x2

ẋ =

√
2E
m

− ω2x2

⇒ x(t) =

√
2E

mω2 sin(ωt + φ)

where φ is the constant of integration. Alternatively, there exist constants C and C̃ such
that

= C cos(ωt) + C̃ sin(ωt)

where E = 1
2 mω2(C2 + C̃2). So this describes the simple harmonic oscillator. It oscillates

like a sine function, and the integration constant φ, which would be determined by initial
conditions, determines at which phase the oscillation begins.

Now let’s move on to our first approximation of a fundamental string, which will be a
“violin string”: a total of M weights, each of mass ν, a distance d apart, connected by
some Hooke’s law, and some constant tension when straight, T. If T = hz, where z is the
length of the string, then

V =
1
2

hz2 =
∫

Tdz

is the energy contained in the spring. When you pluck the string, denote xk as the ver-
tical displacement of the kth mass, and we assume that the displacement is solely in the
vertical direction, which will be the case if you pluck the string very lightly. We assume
that x0 and xM+1 are identically 0: The ends of our violin string are fixed, and we fix our
coordinate system so that they both are at the same height, and that height is 0. We will
also assume that the string’s natural/relaxed length is zero13.

13I forget, why do we need to do this? Is this just to emphasize that the thing we really want to think about
is the string with infinitely many particles? Anyway this corresponds to having large Hooke’s constant, h.
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If we imagine the right triangle with points given by the xi and xi−1, along with the
horizontal distance d, then the length of the hypotenuse (which is the length of the string
in that portion) is given by

ℓ2
i =

√
d2 + (xi − xi−1)2

Thus the total length of the string is

M+1

∑
i=1

√
d2 + (xi − xi−1)2

You can substitute this length into the equation E = 1
2 hz2, and after some simplification

and approximation14, you will get

E =
T
2d

M+1

∑
i=1

(xi − xi−1)
2

Then we can write the Hamiltonian as

M

∑
k=1

p2
k

2ν
+

T
2d

M+1

∑
k=1

(xk − xk−1)
2

=
M

∑
k=1

p2
k

2ν
+

T
2d

(x1x2 . . . xM)



2 −1 0
−1 2 −1
0 −1 2 −1

. . .
2 −1
−1 2




x1
x2
...

xM


Denote this scary looking matrix as A. Then, as any mathematician hopes to do when
confronted with a matrix, we hope to diagonalize it. Let’s compute the characteristic
polynomial:

cA(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣



2 − λ −1 0
−1 2 − λ −1
0 −1 2 − λ −1

. . .
2 − λ −1
−1 2 − λ



∣∣∣∣∣∣∣∣∣∣∣∣∣
14More details on this simplification can be found in Paul’s notes. I like doing math but algebraic symbol

pushing is something I’m happy to skip.
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Make the coordinate change 2 − λ = 2z. Then the matrix becomes

UM(z) :=



2z −1 0
−1 2z −1
0 −1 2z −1

. . .
−2z −1
−1 2z


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CHAPTER 2

II. The Dynamics of Classical Strings and Continuum
Limit

Lecture 2, Aug 31.
We are returning to our discussion of the dynamics of the violin string. Through some
analysis, one can show that the eigenvalues of UM have the form

λn = 2(1 − cos θ) = 4 sin2(θ/2) ≡ 4 sin2
(

nπ

2(M + 1)

)
for n = 1, 2, . . . , M. Corresponding to the modes of vibration. The eigenvectors can be
computed by letting the nth eigenvector bevn,1

...
vn,m

 ∈ Ker(UM − λn I)

⇒ vn,k−1 + vn,k+1 = 2 cos
(

nπ

M + 1

)
vn,k

Choose vn,1 = An sin
( nπ

M+1

)
, by fixing a normalization. Then vn,k = An sin

(
knπ
M+1

)
. We

want to use Graham-Schmidt to obtain an orthonormal basis, i.e. one which obeys

M

∑
k=1

vm,kvn,k = δm,n

⇒ An =

√
2

M + 1
Change basis into the eigenbasis:

xk = ∑
n

√
2

M + 1
sin

(
knπ

M + 1

)
x̃n

pk = ∑
n

√
2

M + 1
sin

(
knπ

M + 1

)
p̃n
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Now the Hamiltonian can be written nicely:

H =
m

∑
k=1

1
2ν

p̃2
k +

2T
d

+ sin2
(

kπ

2M + 2

)
x̃2

k

with the Hamilton equations unchanged

∂H
∂q̃n

= − ˙̃pn,
∂H
∂ p̃n

= ˙̃qn

So
x̃n = Cn sin ωnt + c̃n cos ωnt

where ωn = 2
√

T
νd sin

( nπ
2M+2

)
is the frequency over 2π.

Now to approximate the “fundamental string” we need to take the limit M → ∞. In
order for the string to not have infinite mass, then we must also let ν → 0 and we should
also let d → 0. If n << M, then

ωn ≈ nπ

M + 1

√
T
νd

The position on this string is given by kd, k ∈ {0, . . . , M + 1}. A sine wave of wavelength
λ is thus sin

(
2πkd

λ

)
.

xk = ∑
n

2
M + 1

sin
(

knπ

M + 1

)
x̃n

λn =
2(M + 1)d

n
and the velocity of sound is

v =
ωn

2π
λn =

√
T
µ

where µ = ν/d is the mass per unit length. Assume we have picked materials such that
the velocity of sound is 1 and the length of the string is π, so that d = π

M+1 .

Let σ = kd denote the location on a spring. We have ωn = n, so x(σ, t) = ∑n Ane−int cos(nσ).
If you want x to be real, you need to require that An = A∗

n
1.

Now we want to consider a closed string. There’s a couple problems in doing so. If we
clamp it down attached to itself, then the natural length of the springs being 0 implies that
this entire loop will contract to 0. And because the two sides are no longer clamped down
to something external, the closed loop string can float around in space, so we should keep

1I don’t think I understand this comment. Doesn’t the exponential term make this not real, independent
of whatever A does?
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track of something like a center of mass motion. If we carry out a similar analysis to the
open string, we will find

H =
M

∑
n=1

p2
k

2ν
+

T
2d

(x1 . . . xM)



2 −1 0 −1
−1 2 −1
0 −1 2 −1

. . .
−2 −1

−1 −1 2




x1
x2
...

xM



where now the −1’s join the join the ends of the string together. We again define

TM(z) =
1
2

det



2z −1 0 −1
−1 2z −1
0 −1 2z −1

. . .
−2z −1

−1 −1 2z


It turns out that

TM(z) =
1
2
(UM(z)− UM−2(z))

The TM’s are referred to as the Chebyshev polynomials of the first kind. They also obey
the relation

TM(cos θ) = cos(Mθ)

The characteristic polynomial of the matrix appearing in the Hamiltonian is given by

cA = 2
(

TM

(
1 − λ

2

)
− 1

)
So the eigenvalues are

θ =
2nπ

M
, cos θ = 1 − λ

2

⇒ λ = 2
(

1 − cos(2nπ)

M

)
= 4 sin2 nπ

M

for n = 0, . . . , M − 1. Now we have a λ = 0 eigenvalue. Notice

λM−n ≡ 4 sin2 (M − n)π
M

= 4 sin2
(

Mπ

M
− nπ

M

)
= 4 sin2

(
π − nπ

M

)
= 4 sin2 nπ

M
≡ λn

where we have used the fact that sin2(x − π) = (sin(x − π))2 = (− sin(x))2 = sin2(x).
This implies that the eigenspaces will be 2-dim2. Noting this, it is convenient to assume

2We found two eigenvectors, but you should also show they are linearly independent. We know from
LA that eigenvectors corresponding to distinct eigenvalues are linearly independent, but we just showed
these eigenvalues are not distinct. This comes because sin and cos are orthogonal.
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M is odd, and let the eigenvalues be indexed by |n| < M/2, so that the eigenvalues for
±n coincide. When n ̸= 0, we have the two normalized eigenvectors√

2
M

sin
(

2nkπ

M

)
,

√
2
M

cos
(

2nkπ

M

)
with wavelength given by Md/n, where d is the distance between two neighboring molecules.
When n = 0, this is interpreted as the string moving with no potential, so it moves as a
free particle with constant velocity along its center of mass.

The general solution can be written

xk = x⃗ + v⃗t + ∑
|n|<M/2,n ̸=0

Cnexp
(

iωnt +
2nkπi

M

)
+ C̃nexp

(
iωnt − 2nkπi

M

)
where x⃗ is the center of mass at t = 0 and v⃗ is the velocity of the COM. Again taking the
continuum limit and letting the length of the string be 2π, we get

x(σ, t) = x⃗ + v⃗t + ∑
n ̸=0

(
Ane−in(t+σ) + Bne−in(t−σ)

)
The difference between the closed loop string and the violin string are the presence of the
n = 0 mode and the existence of left and right movers3. The An term moves left and the
Bn term moves to the right. There is also an open string, which is not clamped at all, and
the DN (Dirichlet-Neumann) string, which is clamped at one end. We will not study these
as closely, so we don’t engage with them here, but Paul’s notes have a detailed account of
their dynamics.

3I’m a bit confused here. Now that I think about it, shouldn’t there also be left and right movers in the
violin string, since a right mover would reflect off the other end and become a left mover. Maybe the idea
is it would destructively interfere with the right mover?
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CHAPTER 3

III. Intro to QM

Lecture 3, Sept 5.
To start off with Quantum Mechanics, we need to assume some physically motivated
“postulates”. A mathematician may refer to these as axioms.

Definition: A Hilbert Space is a vector space with an inner product, ⟨·, ·⟩, which is com-
plete1 with respect to that inner product.

Typically our Hilbert spaces are infinite dimensional, but that is not necessary. Further,
we take our Hilbert spaces to be complex inner product spaces, meaning the underlying
VS is complex, and the inner product is conjugate symmetric rather than symmetric, and
it is not bilinear anymore, but linear in only the second term.

Details about Hilbert Spaces: Note that if a Hilbert space (H , ⟨·, ·⟩) is finite di-
mensional, then the completeness condition is automatic: Choose an orthonormal
basis of V, {vi}, with respect to ⟨·, ·⟩, which we may do via Graham-Schmidt, and
because the inner product is always non-degenerate. Then define T : V → Cn, with
T(vi) = ei. Denoting the standard inner product on Cn as ⟨u, v⟩Cn , we have

⟨T(vi), T(vj)⟩Cn ≡ ⟨ei, ej⟩Cn = δij = ⟨vi, vj⟩

So T is an isometry, and thus preserves completness, so V is complete.

Another intuitive way (which I believe can be made rigorous) to see this re-
sult is that every f.d. VS is isomorphic to Cn, with a possibly different inner
product. But all norms on f.d. VS are equivalent, so both norms must be complete,
since the standard norm is.

1All Cauchy sequences in the space converge to a point in the space. In other words, there are no “holes”
in the space.
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The key example we will use in quantum mechanics is L2, the space of square
integrable functions:

Definition: The Lp space of a measurable space (X, Σ, µ) is defined as the
space of µ-measurable functions such that(∫

X
| f |pdµ

) 1
p
< ∞

One can check that this is a vector space, and the definition ∥ f ∥p :=
(∫

X | f |pdµ
) 1

p

turns Lp(X) into a normed space. Due to the Born rule, we will want to consider
p = 2 usually. This is the only p so that the norm actually comes from an inner
product: for f , g ∈ L2(X),

⟨ f , g⟩ :=
∫

X
f (x)g(x)dµ(x)

But the details of that entire sentence are quite involved to verify.
In QM we also require our Hilbert spaces to be separable, which means they admit
a countable orthonormal basis, as opposed to uncountable. For example, L2(R) is
separable, with countable basis given by einx. But it turns out most spaces we could
consider are separable anyway, so often this is not a concern.

Now we introduce the Dirac notation: A vector v ∈ H is denoted as |v⟩, and an element
of the dual w ∈ H ∗ is denoted ⟨w|. We drop the parenthesis so that ⟨w|v⟩ ∈ C.

Given v ∈ H , we may consider its image through the dual map ∗⟨·,·⟩ : V → V∗,
u 7→ ⟨u, ·⟩. We then denote ⟨u|v⟩ ≡ ⟨u, v⟩.

TODO: natural isomorphism ∗∗ ∼= Id on the category of vector spaces (maybe)

Note that a|u⟩ 7→ ā⟨u|, since we have a complex inner product space. So this map is not
linear but anti-linear. For real vector spaces it is linear.

Given a basis of H , we can think of a vector/ket as a column vector and a covector/bra
as a row vector with conjugated components.

Postulate 1 (State Space): Given a physical system with some Hilbert space H , a “state”
of the system is given by a ray in the Hilbert space:
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Definition: A ray2 in H is an equivalence class of non-zero vectors under the equiv-
alence relation

|v⟩ ∼ |w⟩ ⇐⇒ |v⟩ = λ|w⟩, λ ∈ C∗

In other words, a state is an element of CPdim H . We will see why this is the appropriate
definition shortly.

Definition: Let A be an operator on H . A† is the adjoint to A if

⟨A†u, v⟩ = ⟨u, Av⟩ ∀ u, v

The dagger induces a right action of H on H ∗:

⟨u| A := ⟨A†u|

So that
(⟨u| A) |v⟩ = ⟨A†u| |v⟩ ≡ ⟨A†u, v⟩ = u, Av⟩ ≡ ⟨u| (A |v⟩)

thus writing
⟨u| A |v⟩

is unambiguous. In terms of a basis, A† is the conjugate transpose of A, as we showed on
the homework. Further,

⟨u| A |v⟩ = (ū1 ū2 . . . )A

v1
v2
...


Definition: A linear operator A on H is called self-adjoint if A = A†. It is called unitary
if A† = A−1.

Theorem3 (Spectral Theorem): If A is a self-adjoint operator on a finite dimensional vector
space, then there is an orthonormal basis of eigenvectors and all eigenvalues are real.

Postulate 2 (Observables): An observable, as in something you would measure in a lab,
corresponds to a self adjoint operator on the Hilbert space.

2Be careful about using your intuition for what this would look like. If the field is complex numbers, a
ray in this sense of the word will not just be a straight line, since multiplication by a complex number can
rotate the plane.

3State the more general version of spectral theorem for normal matrices? Also should discuss inf dim
since that’s what we need.
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Some Functional Analysis: Definition: Given a bounded linear operator T on a
(possibly infinite dimensional) vector space, the spectrum of T is the set of all λ ∈ k
such that the linear operator T − λI is not a bijection, denoted σ(T). Note that if V
is finite dimensional, σ(T) corresponds exactly to the set of eigenvalues.

In the infinite dimensional case, it is not guaranteed that any linear operator
will have an eigenvalue, even when the field is algebraically closed. This is because
the fundamental theorem of algebra holds only for finite degree polynomials.

As an example, consider a countably infinite dimensional vector space, with
basis {ei} and consider the operator A sending

ei 7→ e2i

Clearly this map does not have any eigenvalues. However, the map (A − I) sends

∞

∑
i=1

aiei 7→
∞

∑
i=1

aie2i −
∞

∑
i=1

aiei

which is not surjective. For example, it doesn’t hit e1: To get e1, you must have
a1 = −1. So you get sent to e1 − e2. You need to kill the e2 term, which you can
do by letting a2 = −1. Then you get mapped to e1 − e2 − (e4 − e2) = e1 − e4. To
kill e4, you let a4 = −1, which is mapped to e1 − e8, and so on. You must have
infinitely many ai’s nonzero to map onto e1, which is not allowed. So this map is
not surjective, and 1 ∈ σ(A). In general, if you have a linear operator which you
know has no eigenvalues, then the only way for λ to be in the spectrum is if A − λI
fails to be surjective. It cannot fail to be injective.

Though A may not have eigenvalues, there is a nice result which generalizes
the concept for infinite dimensional spaces over C:

Proposition: If A is a bounded (with respect to the norm on C) linear operator on
an infinite dimensional vector space over C, then σ(A) is always non-empty.

Proof: Define the resolvent of A, ρ(A) := σ(A)C ⊂ k. This is the set of λ for
which A − λI is invertible. We also define the resolvent function

R : ρ(A) → End(V)

λ 7→ (A − λI)−1

If σ(A) is empty, then R is defined on all of C and is bounded. It can also be shown
to be holomorphic and thus entire (I’m not even sure I know what this means in
this setting), so by a generalized Liouville theorem, R is constant. But R(∞) = 0
(non-trivial to show), so R ≡ 0, which is a contradiction.

□
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Postulate 3: The allowed values of the observable correspond to elements of the spectrum
of its corresponding self-adjoint operator.

Some More Functional Analysis: This discussion actually matters, it is not just
generalization for the sake of it. In QM classes it is often stated that the allowed
values of an observable are the eigenvalues of the corresponding self-adjoint
operator. But for example, the position operator on L2(R) sending f (x) 7→ x f (x)
does not have any eigenvalues. There are no functions such that x f (x) = f (x)
except for 0. One would be tempted to say that the Dirac delta function satisfies
this property, but such a thing does not live in L2(R), as it is not a function at all,
but a distribution. Clearly this cannot be the case because that implies that you can
not measure anything for position. Instead we must consider its spectrum, and
what is that? We hope to get R in the end. Note that the discussion and definitions
above were only for bounded operators, but it is intuitively clear that position and
momentum operators are not bounded, since their range is infinite. So we need to
expand our definitions from even what we considered above. But the above was
included to guide where we are headed.

Technically an unbounded operator on a Hilbert space H is just an operator
L : Dom(L) → H , where Dom(L) is the domain of L, a subspace of H . There
is nothing in this definition referencing boundedness. One should think of
“unbounded” to mean “not necessarily bounded”. We will frequently consider
cases where Dom(L) is a dense subspace of H , called densely defined. This is
an equivalent condition to the existence of an adjoint operator, so we now see
why that should be important in QM. In particular, operators which are defined
on all of L2(R) are densely defined. I’ve read some conflicting things on the
internet about whether the position operator is defined over all of L2(R) or not.
For instance this stack exchange post claims it is only defined on the subspace such
that x f (x) ∈ L2(R), while this pdf claims it is defined on all of L2(R). I thought it
should be the former case, since multiplying by x could take you out of L2(R), but
I don’t know anymore. Perhaps these definitions are subtly different.

TODO: Finish the spectrum of an unbounded operator and calculate what
the spectrum of position and momentum are.

This postulate tells us that we mainly will be interested in infinite dimensional Hilbert
spaces: If we have an observable represented by a linear operator on a finite dimensional
VS, then its spectrum is a finite set, since each distinct eigenvalue eats up at least one
dimension of the VS. But values that we would want to measure in real life are often rep-
resented by real numbers4, such as position and momentum.

4Depending on your philosophical feelings towards spacetime
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Suppose we have an orthonormal basis of H 5 and let A represent an observable which is
diagonalized in this basis. Any state can be expanded uniquely as |ψ⟩ = ∑ ci |ai⟩.

Definition: We say a vector ψ ∈ H is normalized if ⟨ψ| |ψ⟩ = 1, i.e. ∑i |ci|2 = 1. Note
that it doesn’t make sense to ask if a state of a system is normalized, but you may always
pick a normalized representative of the state by choosing any representative and dividing
it by its magnitude. By the definition of the equivalence relation, this will be an element
of the same equivalence class. However this choice of normalized representative is not
unique, as multiplying it by any other phase, eiθ, preserves the norm. In fact any two
normalized representatives of the same state must be related by a multiplicative factor of
eiθ.

Example (Qubit): A qubit is an element of H = C2. Any observable of this system
has only two possible values, since the Hilbert space is 2 dimensional, thus there can be
at most 2 distinct eigenvalues of any linear operator. In their respective basis, these are 1

and 0, and |1⟩ =
(

1
0

)
and |0⟩ =

(
0
1

)
.

Postulate 4 (Born rule): If a state is represented by a normalized vector |ψ⟩, and we have
an operator A corresponding to an observable, with orthonormal eigenbasis |ai⟩, then the
probability of “measuring A” and getting the value λi is

|⟨ai|ψ⟩|2

The elements of the eigenbasis are also normalized, and thus represent physical states of
the system. These are known as “stationary states”, states where you know the value of A
measured on these states with 100% certainty: you will get λi. If your state is a non-trivial
linear combination of eigenstates, then the outcome is uncertain. For the qubit:

|ψ⟩ = |0⟩ ⇒ You will measure 0
|ψ⟩ = |1⟩ ⇒ You will measure 1

|ψ⟩ = 1√
2
(|0⟩+ |1⟩) ⇒ You will measure either 1 or 0 with 50% probability

|ψ⟩ = 1√
2
(|0⟩+ eiθ |1⟩) ⇒ You will measure either 1 or 0 with 50% probability

These are all trivial to check. The general pattern is clear as well: |ψ⟩ = c0 |0⟩ + c1 |1⟩,
then the probability of measuring 0 is |c0|2 and similarly for 1. This was obvious from the
moment we stated the Born rule, though, for those used to linear algebra.

If H = C2 = R4, then you can quotient out by the equivalence relation of rays, i.e.
consider the space of rays in C2 rather than all of the individual points. We killed scaling

5this can be done in infinite dimensions as well via Graham-Schmidt, but I don’t know the details of
how.
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by complex numbers, so we deleted a complex dimension. The resulting space has com-
plex dimension 1, and real dimension 2. It turns out to be S2, the unit sphere. Then you
can track the basis vectors through this transformation and draw a nice picture known as
the Bloch sphere. This representation is used very frequently in quantum computation.

What is the space of rays? More generally, if we have a Hilbert space of dimension
n, then the space of rays in H is a well known mathematical construction known as
CPn. This is a complex manifold of complex dimension n − 1, constructed more or
less how we described before. Start with H . Take away the point 0⃗. Then quotient
by the equivalence relation v ∼ w ⇐⇒ v = λw for some λ ∈ C∗. To see the
manifold structure, CPn is covered by sets Ui = {⃗z ∈ CPn | zi ̸= 0}, viewing z⃗ as an
element of H . This covers because 0⃗ ̸∈ CPn, so every element must have at least
one non-zero entry. But each Ui is just another copy of Cn: define

φi : Ui → CPn

(z1, . . . , zn+1) 7→
1
zi
(z0, . . . , ẑj, . . . , zn+1)

where the hat denotes that zj has been omitted. As an exercise, show that this map
is a homeomorphism: write down the inverse (and make sure it is well defined) and
observe that they are both continuous. One must also compute the transition charts
and observe that they are smooth, as maps between R2n and R2n. There is a lot of
things to check, but all of them are routine. An even more general construction one
could investigate is the Grassmannian, Gr(n, k). Then CPn = Gr(n, 1), and there are
similar manifold constructions for Gr(n, k), but I don’t believe the Grassmannian
has any use in quantum mechanics specifically, but it does appear frequently in
other realms of mathematical physics, particularly the Affine Grassmannian. I do
not understand this object yet, though. I have not put in any effort on this front
because I am very busy.

Canonical quantization is the assumption of all of the above postulates along with the pre-
scription [p, q] = ih̄, where p and q are momentum and position operators, respectively.
The bracket indicates the commutator, [A, B] := AB − BA. Note that this prescription
only makes sense in an infinite dimensional Hilbert space. If you were to try to define
it for a finite dim Hilbert space, you could take trace of both sides, yielding nih̄ = 0,
which is false. How could you motivate such a prescription? Notice that if A and B are
self-adjoint (as will be the case for us), this implies

[A, B]† = −[A, B]

So that if [A, B] is a constant, c, then c must contain a factor of i. This explains the inclu-
sion of i, and h̄ is a constant which corrects units. In natural units, we usually set h̄ = 1,
among other things.
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Note that

[A, BC] = ABC − BCA
= ABC − BAC + BAC − BCA

= [A, B]C + B[A, C]

which is a kind of Leibniz rule. This implies

[q, pn] = npn−1[q, p]

and more generally, for any f analytic,

[q, f (p)] =
∂ f
∂p

[q, p]

and
[g(q), p] =

∂g
∂q

[q, p]

It is also “sort of”6 true that

[A, B] = {A, B}[q, p] = {A, B}ih̄

This the Dirac formulation of canonical quantization.

TODO: Groenewold’s Theorem, which basically says that quantization is a scam

Classically, we saw
dA
dt

= {A, H}+ ∂t A

time translation was generated by bracketing with the Hamiltonian. Thus in QM,

ih̄
dA
dt

= [A, H] + ∂t A

So we think of operators as evolving in time. This is the Heisenberg picture, so the ob-
servables change and the states stay the same. The opposite POV should give the same
physics. This leads to the Schrodinger equation and Schrodinger POV: Everything should
be determined by “matrix elements”

⟨u| A |v⟩
6I’d like to find out exactly what this means.
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In the Schrodinger picture, the states |v⟩ evolve in time. Let’s suppose we want the inner
product to remain constant7:

d
dt

⟨u| v⟩ = 0

= ⟨u̇| v⟩+ ⟨u |v̇⟩

⇒
(

d
dt

)†

= − d
dt

⇒ d
dt

⟨u| A |v⟩ = ⟨u|
[

A,
d
dt

]
|v⟩

⇒ ih̄ ⟨u| A |v⟩ = ⟨u|
[

A, ih̄
d
dt

]
|v⟩

From the Heisenberg picture, we derived

ih̄
d
dt

⟨u| A |v⟩ = ⟨u| ih̄
d
dt

A |v⟩ = ⟨u| [A, H] |v⟩

Comparing this with the above line, we find the Schrodinger equation:

H = ih̄
d
dt

7Why should we want that? If the states can evolve in time, doesn’t it make sense for the probability of
transmission from one state to another to also change in time?
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CHAPTER 4

IV. Missed lecture.

Lecture 4, Sept 7.
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CHAPTER 5

V. Quantization of the Classical String

Lecture 5, Sept 12.
My own brief summary of the lecture I missed:
Last time we had the Hamiltonian for a simple harmonic oscillator, which by definition is

H =
p2

2m
+

1
2

mω2x2

By the clever introduction of operators u, u†, we could rewrite H as

H =

(
u†u +

1
2

)
h̄ω

If |ψ⟩ is a normalized eigenstate of H, then we found that u and u† are raising and lower-
ing operators, the sense that they bump up or down eigenvalues of H. There is a ground
state, a state which is annihilated by the lowering operator, and a highest energy state, one
which is annihilated by the raising operator. In this way, the energy levels of a SHO are
quantized. This can be generalized to our violin string situation, which we approximate
as having M SHO’s. Then the Hamiltonian is of course

H =
M

∑
n=1

(
u†

nun +
1
2

)
ωn

After some analysis, this leads to solutions1 of the form

x̂n = ∑
n=1

1√
nπ

(
une−int + u†

neint
)

sin(nσ)

it is convenient to normalize the raising and lowering opeartors as

αn =
√

nun, α−n =
√

nu†
n

for n ≥ 1. Then the commutation relations are

[αm, αn] = mδm+n

1TODO: solutions of what?
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We will use this a lot. Then the solutions can be written more succintly in terms of the α’s,
and letting M → ∞,

x̂(σ, t) =
1√
πT

∑
n ̸=0

1
n

αne−int sin(nσ)

We had to leave 0 out because it is not clear what α0 should mean yet. We can then
calculate directly the brackets at the same time

[x̂(σ, t), x̂(σ′, t)] = 0

We could also consider the same time but with a derivative in one place:

[ ˙̂x(σ, t), x̂(σ′, t)]

Just expanding the definitions, one gets

=
1
iT

(δ(σ − σ′)− δ(σ + σ′))

with δ taken mod 2π. Then

δ(σ + σ′) = 1 ⇐⇒ σ = σ′ = 0 or σ = σ′ = 2π

i.e. it only contributes at the ends of the string. At the ends of the strings, δ(σ − σ′) = 0,
so only one delta will ever appear. Define p̂ = T ˙̂x. Then away from the ends of the string,

[x̂(σ, t), p̂(σ′, t)] = iδ(σ − σ′)

We could also consider the commutator at different times2. So the story of the quantized
is mostly done. But what about our ground state? We want a state with αn |0⟩ = 0. This
would imply

H |0⟩ = ∑
n>0

(
α−nαn +

n
2

)
|0⟩

= ∑
n>0

(
α−nαn

n
+

1
2

)
n |0⟩

= ∑
n>0

1
n

α−nαn |0⟩+
1
2 ∑

n>0
n |0⟩

= 0 +
1
2 ∑

n>0
n |0⟩ = ∞ |0⟩

So our ground state has infinite energy! That’s not good. Physics is invariant under global
shift, so rescale H so that

H |0⟩ = 0

2Spin-statistics theorem is relevant here.
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by setting3

H = ∑
n>0

α−nαn

and this fixes our problem. However, we have changed the energy of the vacuum, which
really matters for certain subjects in physics, particularly GR. So we are actually changing
physics. This is one of the ways in which ST appears to be incompatible with GR. So we
now have a vacuum state with 0 energy, denoted |0⟩. We also have α−1 |0⟩ is the first
excited state, with energy E = 1 (recall the energy is its H-eigenvalue). We could apply
α−1 again, or apply α−2 to the vacuum. These are not the same thing, but they do have
the same energy of 2.

We can do a similar analysis for the closed string. Let the COM coordinate be x̄ with
momentum p⃗. The

x(σ, t) = x̄ +
pt

2πT
+

1
2
√

πT
∑
n ̸=0

1
n

(
αne−in(t+σ) + α̃ne−in(t−σ)

)
with [x̄, p] = i, [αm, αn] = mδm+n, [α̃n, α̃m] = mδm+n, so the α’s represent quantized left-
movers and α̃’s represent quantized right-movers.

We can also consider displacements in multiple dimensions. But this just corresponds
to replacing the displacement x with a vector displacement xµ. Then

H =
D

∑
µ=1

(pµ)2

2ν
+

1
2

νω2(xµ)2

with
[α

µ
m, αν

n] = mδµνδm+n

So ignoring the problem of the vacuum renormalization, this completes the story of the
quantization of the classical string. Now we want to incorporate relativity. But this just
corresponds to increasing the dimension of our space and calling the new dimension
“time”. Remember one key postulate of relativity is that space and time should be treated
as equal, so we treat time as just adding another dimension, which we just discussed how
to do. We let x0 = “time” and xµ be spatial coordinates for µ = 1, . . . , D − 1.

If we want to take this prescription of treating the time dimension as the same as space,
then just as our string is allowed to oscillate back and forth in space, it must also be al-
lowed to oscillate back and forth in time. We want to eliminate t from the Hamiltonian.

Note every string defines a world sheet surface, Σ in spacetime by tracking its time evo-
lution. As a 2-manifold, equip Σ with local coordinates τ, σ, and let xµ serve as the local

3I think what is happening is we are rescaling each individual SHO by a finite amount, specifically
shifting the potential energy down by 1

2 h̄ω, which is perfectly allowed, and if we do it before we take the
limit, this only needs to be done finitely many times, which should be kosher.
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chart4 from R2
σ,τ → U ⊂ Σ.

In our definition of H, we used an inner product to write, for example, p2. but this has
the wrong signature. To be compatible with SR, we know we must use the Minkowski
metric,

x · y = −x0y0 + ∑ xiyi

Now we introduce the Einstein notation, which is the convention that repeated up and
down indices are implicitly summed over, omitting the summation notation. So define
the metric ηµν = diag(−1, 1, 1, . . . ). Then we can raise and lower indices:

xµ = ηµνxν

Note
η2

µν = 1 ⇒ xµ = ηµνxν

where ηµν is the matrix inverse of ηµν, i.e.

ηµνηγβ = δµ,γδν,β

Ultimately, this means
[α

µ
m, αν

n] = mδm+nηµν

⇒ [α0
m, α0

n] = −mδm+n

Also ∥α0
−1 |0⟩∥2 = −1? this inner product is not positive definite. It is maybe not clear

exactly how, but this problem arises because we allowed the string to vibrate forwards
and backwards in time. To fix this, we need to address our time definitions. We could
assert x0 = τ. This is bad, though, because now we are distinguishing time from space.
So maybe we could define x0 = f (τ). But then we need to ignore reparameterizations.
But then we must also ignore spatial reparameterizations, since we treat space and time
equally. This means there is now no meaning to “position” on the string. This is what
we mean by “fundamental string”. There should be no way to distinguish ones position
on the string. So to incorporate SR into our quantized string, we need to account for its
symmetries.

This begins our discussion of Lie groups, Lie algebras and representation theory. This
is a bit more math-y than before.

Definition: A group is a one-object groupoid. I don’t want to write out the full defi-
nition.

There are levels to how bad a group can be: i) finite is not so bad. ii) countably5 infi-
nite groups. iii) uncountably infinite groups (but still finite dimensional, such as R. iv)

4I’m not sure I understood this part correctly. In class Paul said that this map xµ need not have any
restraints. So it must not be a local chart then, which is required to be a homeomorphism?

5As everyone knows, the Monster group is much more tame than Z.
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the worst, infinite dimensional groups.

String theory symmetry groups will be of type iv). Consider the Lie group S1.

Basics of Lie theory: A Lie group is a group object in the category of smooth
manifolds. Maybe more usefully:

Definition: A Lie group is a group G, which is also a smooth manifold, such
that the maps i : G → G sending g 7→ g−1 and µ : G × G → G sending
(g1, g2) 7→ g1g2, are smooth maps, in the sense of smooth manifold theory.

Lie groups are often considered as “symmetry groups” in physics.

Example: S1 can be considered as a group with elements θ ∈ [0, 2π] with ends identified.
The group law is given by addition of angles mod 2π. S1 also has a smooth 1-dimensional
manifold structure. We will not go through the details here, but the gist is that around
any point, a neighborhood just “looks like” R. This can all be made precise without much
difficulty. There’s many things to check but they are all routine. In fact, Sn for every n ≥ 0
is a smooth manifold, through a very straightforward generalization of the techniques
used in n = 1.

Fun fact: Though every sphere is a smooth manifold, not every sphere is a Lie
group. One way to see this is to observe that every Lie group is parallelizable, i.e.
has trivial tangent bundle. Intuitively this is because each tangent space can be
canonically identified with the tangent space at the identity by the push forward of
left multiplication, Lg∗, which is a diffeomorphism because Lg is a diffeomorphism,
by definition of a Lie group. So in order for Sn to be a Lie group, we must have TSn

is a trivial vector bundle. Equivalently, it requires admitting n linearly independent
vector fields on Sn. In a talk I gave at UNC last year (2021), I proved constructively
that this can be done for n = 0, 1, 3, and 7 by constructing Clifford algebra repre-
sentations corresponding to linearly independent vector fields on Sn. In reality, this
result, while highly suggestive, and a very fun calculation, doesn’t prove anything.
Having parallelizable tangent bundle does not, as we will show in a second, imply
that the manifold is a Lie group, and my calculation does not show that this can’t
be done on any other spheres (although I cited a theorem which does say that the
strategy I presented is optimal, but the techniques to prove the theorem are more
sophisticated.). In fact, it turns out even though n = 7 satisfies this criteria, S7 is not
a Lie group, but the other 3 are, and they are the only such. Considering that talk
employs only linear algebra and representation theory, that is a pretty good result
in my eyes. Notes for this talk can be found in the “Notes” section of my website,
which I’m presuming is where you found this document as well.
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This group can act on R2 as rotations about the origin.This is formalized with the lan-
guage of a group representation, which we will see later. In this case, we have

S1 → End(R2)

θ 7→ Rθ :=
(

cos θ − sin θ
sin θ cos θ

)
We could take a Taylor series expansion

Rθ ≈ 1 + ϵX + O(ϵ2)

where X =

(
0 −1
1 0

)
.

Definition: Given a Lie group G, define the Lie algebra *of G* as the tangent space of
G at the identity, TeG, usually denoted g.
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The Lie algebra of a Lie group: We defined the Lie algebra as TeG, which by
elementary differential geometry is a vector space.

Definition: A vector field on a Lie group, X ∈ X(G), is called left-invariant
if, for all g ∈ G,

dLg(X) = X ◦ Lg

where
Lg : G → G

h 7→ gh

The above definition is an equality of vector fields. (sanity check for the reader:
make sure you know how to plug in a point to both sides of that equation and get
out a vector in the tangent space over that point.)

One can check that the above is a vector space. Denote it as X(G)Lg .

Theorem: There is an isomorphism of vector spaces TeG ∼= X(G)Lg .

Proof: Define a map
TeG → X(G)Lg

v 7→ Xv

where (Xv)g ≡ (dLg)e(v) ∈ TgG. We defined a vector field, but we need to check it
is left-invariant:

dLh(Xv)(w)

= (dLh)w(Xv(w))

= (dLh)w
(
(dLw)e(v)

)
= d(Lh ◦ Lw)e(v)
= (dLhw)e(v)
≡ Xv ◦ Lh(w)

So it is left-invariant.
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Now define a map the other way:

X(G)Lg → TeG

X 7→ Xe

Exercise: Check that these two maps are inverses.
□

So far, we have only seen that the Lie algebra of a Lie group is a vector space. Later
when we meet abstract Lie algebras, we will establish more structure on this vector
space, so that the sentence “The Lie algebra of a Lie group is, in fact, a Lie algebra”
is correct.

Definition: Given a matrix M, the exponential of the matrix is given by

exp(M) =
∞

∑
n=1

Mn

n!

The convergence of this series is a standard analysis exercise, which we leave for the
reader.

Note Rθ = exp(θX), so d
dθ |θ=0 goes from G → g and exp : g → G. These maps are

not necessarily inverses.

Functoriality: There is a category of Lie groups. The objects are Lie groups, and
the morphisms are smooth group homomorphisms. This is a (not full) subcat-
egory of the category of smooth manifoldsa There is also a category of vector
spaces, whose objects are vector spaces over R and morphisms are R-linear maps.
We now describe the “Lie functor” Lie : LieGrp → VectR. On objects, it sends
G 7→ TeG ≡ g ≡ Lie(G). Given a morphism φ : G1 → G2, we can induce a map
g1 → g2 by

dφe : Te1 G1 → Tφ(e1)
G2 = Te2 G2

We can differentiate φ because it is required to be smooth, and φ(e1) = e2 because it
is required to be a group homomorphism. That Lie respects compositions is exactly
given by the chain rule, and clearly the identity morphism is sent to the identity
morphism. Thus Lie is a functor.

TODO: is exp a functor? I think I read somewhere it can be regarded as a
natural transformation between Lie and forget?

aI suppose you could also define it as a subcategory of Grp, but for some reason this way seems
more natural.
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Consider rotations in 3 dimensions now, corresponding to the Lie group SO(3).

Matrix Lie groups: Generally, every matrix group which we will encounter in this
class will be a Lie group.

Consider the set Mn(R), the set of n × n matrices with entries in R. There is
an inclusion Mn → Rn2

, given by sending a matrix Aij to (a11, a12, a13, . . . , ann).
Rn2

has a trivial manifold structure, when equipped with the standard topology
(open balls). The subset GL(n, R) ⊂ Mn(R) ⊂ Rn2

is an open subset: The map
det : Rn2 → R is continuous: it is a polynomial in each coordinate. GL(n, R) is the
set det−1(R \ 0), thus it is the preimage of an open set under a continuous function,
and is thus continuous. So GL(n, R) is an open subset of the smooth manifold Rn2

,
and thus inherits a smooth manifold structure. One can check it is also a Lie group:
matrix multiplication is also polynomial. Inversion is a little trickier, but I believe
one can cite the Cramer inverse formula. For the particular Lie groups such as
SLn(R) and O(n), we need to make other arguments.

For example, for SLn(R), we can employ the regular level set theorem, which says
that the preimage of a regular value under a smooth map is a smooth manifold.
Again we use the determinant map, but now consider the preimage of 1. So one
must compute the derivative and actually show it is surjective. We leave this as an
exercise.

Elements of SO(3) look like

Rx,θ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


and there are similar formulas for rotations about y and z axes. These 3 generate the Lie
group SO(3). If we apply the Lie functor to SO(3), we can see (by Taylor expanding), that
the corresponding generators of the Lie algebra Lie(SO(3)) ≡ so(3), are given by

X =

0 0 0
0 0 −1
0 1 0


and similarly for Y and Z. In general, we often denote the Lie algebra of a Lie group as
the same characters, but written lowercase in gothic font, as above.

As we saw in the definition, the Lie algebra is meant to be a sort of “zoomed in” approx-
imation of the Lie group at the identity. But as we see, the operation on the Lie algebra,
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which is a vector space, is always commutative. But the Lie group itself may not be. So
we should introduce some kind of non-commutative structure to keep track of that fact.
In this case, we define the commutator on so(3),

[A, B] = AB − BA

where the product here is just given by matrix multiplication. Multiplying out, one can
see that

[X, Y] = Z
[Y, Z] = X
[Z, X] = Y

Theorem (Baker-Campbell-Hausdorff):

exp(A)exp(B) = exp
(

A + B +
1
2
[A, B] +

1
12

([A[A, B]] + [B, [B, A]])− . . .
)

□
So the expansion is given in terms of commutators. In particular, if A and B commute,
then it reduces to the usual formula which we know for numbers. In particular, if we
know all of the commutators in the Lie algebra, then in principle, we can work out the
multiplciation in the group itself, because the exponentials are the Lie group elements6.

6Modulo exp failing to be surjective, which happens sometimes.

36



CHAPTER 6

VI. Lie Theory

Lecture 6, Sept 14.
What is Lie(SO(3)) as a vector space? Well we know it is supposed to consist of tangent
vectors at the identity. Such a thing can be written in the form 1 + ϵX, for X ∈ Mn(R).
But we only want to consider those directions which stay in SO(3), in other words, we
want that det(1 + ϵX) = 1 and (1 + ϵX)(1 + ϵX)T = Id. These conditions together imply
that X + XT = 0. In general, det 1 always implies traceless, so it is worth it to write out
that one:

det(1 + ϵX) ≈ 1 + TrX + O(ϵ2)

so that
det(1 + ϵX) = 1 ⇒ TrX = 0

So “special” matrix Lie groups always have Lie algebras which consist of traceless matri-
ces, with some other conditions possibly. It just so happens that in this case, the “orthog-
onality” condition did not contribute any new constraints on the Lie algebra1

Definition: A Lie algebra is a vector space, g, equipped with a “Lie bracket” operation

[·, ·] : g× g → g

which is anti-symmetric, R-linear, and obeys the Jacobi Identity: for all X, Y, Z ∈ g

[[X, Y], Z] + [Y, [Z, X]] + [Z, [X, Y]] = 0

Example: One Lie group we will see often is SU(2), the special unitary group of 2x2
matrices. It is easy to show that any such matrix in SU(2) has the form(

a b
−b̄ ā

)
where a, b ∈ C such that a2 + b2 = 1. This is recognized as the unit sphere S3 ⊂ C2.

1Actually he said something at this point which made me believe this is not a coincidence, but I didn’t
quite catch what he meant. Something like near the identity, orthogonality implies special? I’m not really
sure.

37



Fact: det(exp(A)) = exp(TrA). So for A ∈ su(2), exp(A) ∈ SU(2), then Tr(A) = 2πik, for
some k ∈ Z. However, the trace function is continuous, so its image must be connected,
and thus constant. But which k? Well we know 0 ∈ su(2), since it is a vector space. Thus
Tr0 is in the image. But Tr0 = 0, so the trace is constant, and thus must be 0. So su(2) has
only traceless matrices2. To see what the unitarity condition implies, we must expand to
first order in ϵ,

(1 + ϵX)(1 + ϵX)T = Id ⇒ X = XT

So su(2) consists of traceless, symmetric matrices. A basis of such a space is given by

X̂ =
1
2i

σ1, Ŷ =
1
2i 2

, Ẑ =
1
2i

σ3

where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
These σi are known as the Pauli spin matrices. One can calculate

[X̂, Ŷ] = Ẑ

[Ŷ, Ẑ] = X̂

[Ẑ, X̂] = Ŷ

which we observe are the same relations as so(3). This implies they are isomorphic, where
an isomorphism of Lie algebras is just a vector space isomorphism which respects the Lie
bracket.

But SU(2) ̸∼= SO(3)3 One can see this by considering

exp(2πZ) = Id, exp(2πẐ) = −Id

It turns out the center4 of SO(3) = {1}, while the center of SU(2) is {±1}. And it turns
out, this is the only obstruction to the isomorphism, in the sense that

SU(2) ∼= SO(3)/{±1}

So that SU(2) is a double cover of SO(3). If one knows some algebraic topology, this
implies that SO(3) ∼= RP3.

Now we move onto representation theory:

Definition: A representation of a group G is a group homomorphism G → End(V). V is
often referred to as the representation space. The dimension of the representation is the

2Or one could apply the argument we made above, but this is actually a neat trick which I had not seen
before.

3For example, they have different fundamental groups.
4The set of all elements which commute with all other elements
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dimension of the representation space.

Example: Every group admits the trivial representation, sending g 7→ Id ∈ End(V),
for all g.

Definition: A Lie algebra representation is a Lie algebra morphism g → gl(V), the Lie
algebra of endomorphisms with commutator as the bracket.

One thing we would like to do is find a Lie algebra representation, then exponentiate
it to get a Lie group representation.

Consider SU(2) again. Choose a new basis:

H = −2iẐ

U+ = iX̂ + Ŷ

U− = iX̂ − Ŷ

⇒ [H, U+] = 2U†, [H, U−] = −2U−, [U+, U−] = H

Suppose you have a representation ρ : su(2) → gl(Cn), and suppose v ∈ V is an eigen-
vector of H, with eigenvalue k. Denote the k eigenspace of H as Hk. Then applying the
commutation relations,

H(U+v) = (U+H + [H, U+])v

= U+(H + 2)v

= (k + 2)U+v

⇒ U+v ∈ Hk+2

and similarly for U−. In other words, U+ sends k eigenvectors to k + 2 eigenvectors
(wrt H), and U− drops the eigenvalue by 2. But we recall that eigenvectors belonging to
distinct eigenvalues are linearly independent. Thus if we want this representation to be
finite dimensional, then this process of increasing and decreasing eigenvalues must both
terminate eventually, otherwise H has infinitely many distinct eigenvalues. Thus there
must exist a v, eigenvalue of H, say of eigenvalue w, such that

U+v = 0

and there must be an n ∈ N such that

(U−)nv = 0

with (U−)n−1v ̸= 0. So we have a collection of vectors,{
v, U−v, (U−)2v, . . . , (U−)n−1v

}
≡ W

which are all linearly independent. Thus they span an n-dimensional subspace of V.
Further, this subspace is invariant under the action of su(2), in the sense that, for any
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X ∈ su(2) and w ∈ W, Xw ∈ W. This can be checked by just writing w as a combination
of the spanning vectors, and applying H, U+ and U−. Thus W is an invariant subspace of
the representation space V.

Definition: A representation g → gl(V) is irreducible if it contains no non-trivial invari-
ant subspaces (the trivial subspaces are 0 and V). In particular, if there is a decomposition
V = V1 ⊕ V2 into invariant subspaces, then either V1 or V2 equals V, and thus the other is
0.

So we have been considering an arbitrary finite dimensional representation of SU(2),
and found that it has an n-dimensional invariant subspace. If we want to consider *irre-
ducible* such representations, then we must have the W above equal to V (it can’t be zero
because it contains v). So V has this basis given by the highest weight vector v, and is
n-dimensional.

As a result, we have identified what every finite dimensional irrep must look like. The
full situation is much better, though:

Theorem (Classificiation of Reps of su(2)): For every n ∈ N, there exists a unique irre-
ducible representation of su(2) with dimension n, of the form as above.

We didn’t use the fact that this is a Lie algebra representation yet. If one applies the
commutation relations from su(2), we get that for every m,

U+(U−)m(v) = m(w − m + 1)(U−)m−1v

In particular,
U+(U−)n(v) = n(w − n + 1)(U−)n−1v

But we know the left hand side must be zero, which implies n = w + 1. So w = n − 1 is
also an integer. Sometimes people classify the irreps of su(2) by w = n− 1, the eigenvalue
of the highest weight vector, sometimes referred to as the irrep of highest weight n − 1.
This often leads to confusion.

So the possible eigenvalues are5{
w, w − 2, w − 4, . . . , 2 − w,−w

}
Every Lie algebra comes with a canonical representation, the adjoint representation:

Definition: The adjoint representation of a Lie algebra g is defined as the map

ad : g → gl(g)

5I didn’t catch the argument for why must end at −w.
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X 7→ adX ≡ [X,−]

i.e. adX(Y) = [X, Y]. This is clearly an R-linear map, and the fact that this action respects
the Lie bracket structure is exactly equivalent to the Jacobi identity6

Given two representations, V1, V2, one can construct new representations V1 ⊕ V2 and
V1 ⊗ V2, where the group (or Lie algebra) acts on each component.

6It is often discussed that the Lie algebra rep condition follows from Jacobi, but the other implication is
also true. This is one of the better ways of internalizing the Jacobi identity, I feel, rather than a silly relation
among brackets. We will see another equivalent condition later as well.
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CHAPTER 7

VII. More Lie Theory

Lecture 7, Sept 19.
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