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Abstract

Graduate course in Commutative Algebra taught by Prakash Belkale at UNC-CH. Notes
are handwritten during lecture then typeset later. Any comments, concerns, questions,
corrections, or communications of any type are encouraged to be directed to my email.
These notes are primarily a documentation of my personal learning journey while follow-
ing along with the class: There is material in this document that did not come from the
lecture, and some of the lecture material may not have been included in these notes. Any
errors found in the text are assumed to be introduced by me. Nevertheless this should
provide some non-zero utility for any and all readers, primarily my future self.
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CHAPTER 1

I. Overview and Ring Theory

Lecture 1, Aug 15.

We will primarily be following 2 books, Aatiyah-Macdonald and Reed’s Undergraduate
Commutative Algebra. The exercises will be coming from these two books. For further,
more advanced reading, consult Eisenbud.

Definition: A ring is a set A with two operations, +, · such that (A,+) is an abelian
group and · is associative and distributes over the sum.

If R has a 1, a multiplicative identity, we call it unital. If · is commutative and R has a
1, we call the ring R commutative.

Example: The set of n× n matrices is a non-commutative ring.

Example: The set {0} is a commutative ring with 0 = 1.

Example: The set of integers, Z, and the Gaussian integers, Z[i], are commutative rings.

Example: Given a smooth manifold, we get a commutative ring, C∞(M), the smooth
functions on M. This is commutative because the ring structure is pointwise multiplica-
tion, and multiplication in the ground field R is commutative.

Example: An algebraic variety similarly gives rise to a commutative ring of algebraic/regular
functions, but we will see more about this later. We associate the algebraic variety C ⇝
C[x], polynomials with complex coefficients. We can also consider the affine variety
x2 + y2 = 1.. The associated commutative ring is C[x, y]/(x2 + y2 − 1).

Example: If k is an arbitrary commutative field, then k[x1, . . . , xn] is commutative.

Example: The group ring of a group G is defined as set {∑ eg · g}, formal expressions with
the condition that g · h = gh, as defined by the group multiplication law and enforcing
distribution rules. If the group G is non-abelian, the group ring need not be commuta-

3



tive1.

Example: Lie algebras, that is vector spaces equipped with a Lie bracket, are not asso-
ciative. The Jacobi identity measures the failure of the bracket to be associative.

I think from this point on we assume all rings to be commutative.

Definition: A map f : A → B is a ring homomorphism if f (x + y) = f (x) + f (y),
f (1) = 1, and f (xy) = f (x) f (y) for all x, y ∈ A.

Example: Fix a ∈ k. Then eva : k[x] → k is a ring homomorphism, sending p(x) 7→
p(a) ∈ k. Check ring hom axioms:

eva(p(x) + q(x)) = p(a) + q(a) = eva(p(x)) + eva(q(a))
eva(1) = 1(a) = 1

eva(p(x)q(x)) ≡ p(a)q(a) = eva(p(x))eva(q(x))

Definition: S ⊂ A is called a subring if it is closed under +, · and contains 1.

Example: The inclusion Z ↪→ C is a ring homomorphism and identifies Z as a subring of
C.

Definition: I ⊂ A is an ideal if it is closed under + and absorbs under ·: for any
x ∈ I, y ∈ A, xy ∈ I. The second condition can be written as I · A ⊂ I.

Proposition: If f : A→ B is a ring homomorphism, ker f is an ideal of A.

Proof: First we claim 0 · a = 0 for any a ∈ A. Note this was not one of our ring axioms, it
is a consequence of the distributive law:

0 · a = (0 + 0) · a = 0 · a + 0 · a⇒ 0 · a = 0

Then for any a ∈ ker f and b ∈ A,

f (ab) = f (a) f (b) = 0 · f (b) = 0

For any a, b ∈ ker f ,
f (a + b) = f (a) + f (b) = 0 + 0 = 0

□
Example: {0}, A ⊂ A are ideals.

1I’d like to explore what statements you can make. Is it that the group ring is commutative iff the group
is abelian? Perhaps modulo some pathological counterexamples. Come back to this when I have time.
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Definition: If xα is a collection of elements in A, where α is indexed by some set I,
then the ideal generated by xα, denoted by (xα), is the ideal{

f inite

∑ cαxα | cα ∈ A

}

Note the indexing set I could be infinite, but we still require all sums to be finite, since
there are no notions of convergence here.

Example: There is an ideal (x) ⊂ k[x] for any field k. This is equal to ker ev0. Simi-
larly, (x− a) = ker eva.

Definition: If I ⊂ A is an ideal, then A/I is an abelian group, where the quotient is taken
wrt +. The quotient ring A/I is formed with the group law of the abelian group A/I and
equipped with multiplication law āb̄ = ab, where ā denotes the image of a through the
quotient map.
To see this is well defined, take any other representative: (a + i)b̄ ≡ (a + i)b = ab + ib =
ab + īb̄ = ab, and similarly for b.

Example: k[x]/(x2). This quotient kills all the powers of x greater than or equal to 2.
So the resulting ring is

k[x]/(x2) ∼= {a + bx a, b ∈ k}
In general, A/I is a ring and A → A/I is a surjective ring homomorphism with kernel
equal to I.

Recall if H ≤ G is a subgroup there is a correspondence

{subgroups of G/H} ↔ {subgroups of G containing H}

Induced by the quotient map G → G/H. Similarly for rings, we have

{ideals of A/I} ↔ {ideals of A containing I}
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CHAPTER 2

II. Ring Theory II

Lecture 2, Aug 17.

Definition: a ∈ A is a 0-divisor if a | 0.

Example: In Z/7Z, 0 is the only 0 divisor. But in Z/6Z, 2 and 3 are 0 divisors.

Definition: A ring with no 0 divisors is called an integral domain.

Example: In k[x, y]/(x2 − y2), (x + y) and (x − y) are 0 divisors, so it is not an integral
domain.

Definition: a ∈ A is nilpotent if ∃n ∈N such that an = 0.

Example: 6 ∈ Z/12Z is nilpotent.

Proposition: a ∈ Z/mZ is nilpotent iff m | an for some n.

Note in general, m | an ̸⇒ m | a. For example, you can always choose m to be an. For
this to hold, you need m to be “square-free”.

Definition: a ∈ A is a unit if ∃b ∈ A s.t. ab = 1.

Definition: a ∈ A is irreducible if a = bc⇒ b or c is a unit.

Definition: A principal ideal domain (PID) is an integral domain such that all ideals are
principal, i.e. generated by one element.

Proposition: Z is a PID.

Proof: Let I be an ideal, and n the smallest positive integer in I. Then claim I = (n).
Suppose not. Then by the division algorithm, ∃a ∈ I s.t.

a = bn + r 0 < r < n
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a− bn = r

But a ∈ I and bn ∈ I, so r ∈ I. But r < n is a contradiction. So I = (a).
□

Definition: A unique factorization domain (UFD) is a ring such that every a ∈ A factors
as a product of irreducibles elements of A, unique up to multiplication by units and per-
mutation.

Proposition: All PIDs are UFDs.

Example: k[x] is a Euclidean domain (long division).

In general,
Euclidean Domain ⊂ PID ⊂ UFD

Example: k[x, y] is a UFD but not a PID, because of (x, y). So the second containment is
not strict. The first is also not strict, but is a little more involved to show.

Theorem: A UFD⇒ A[x] is a UFD

Remark: The same is not true when you replace UFD with PID.

Definition: An ideal P ⊂ A is prime if ab ∈ P⇒ a ∈ P or b ∈ P.

Proposition: P is prime iff A/P is an integral domain.

Definition: An ideal M is maximal if M ⊊ P ⊂ A⇒ P = A.

Proposition: M is maximal iff A/M is a field.

Proof: ⇒:If M is maximal, then for any [x] ̸= 0 ∈ A/M, consider x ∈ A. We know
x ̸∈ M since [x] ̸= 0. Then consider the ideal M + (x). This is strictly larger than M, and
so must be equal to A⇒ 1 ∈ M + (x)⇒ ∃m ∈ M, a ∈ A such that

m + ax = 1⇒ [m + ax] = [1]⇒ [ax] = [a][x] = 1

So [x] is a unit in A/M. [x] is arbitrary so every element in A/M is invertible, so A/M is
a field.
⇐: If A/M is a field, and we want to show M is maximal, then consider any M ⊊ I ⊂ A.
Then I + M is an ideal of A/M by the correspondence. But A/M is a field and so there
are only two ideals, 0 and A/M, corresponding to I = M and I = A, respectively.

□
Corollary: A maximal ideal is also prime.

Proof: A field is always an integral domain.
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Remark: The opposite implication does not hold, for example k[x, y]/(y) ∼= k[x], by the
map f (x, y) 7→ f (x, 0). k[x] is an integral domain but not a field, so (y) is a prime but not
maximal ideal.

Remark: A is an integral domain iff (0) ⊂ A is prime.

So if A is an integral domain but not a field, then (0) is prime but not maximal. This
occurs, for example, in Z.

Proposition: If A is a UFD, then (a) is prime iff a is irreducible.

Proposition: In an integral domain, (a) prime implies a irreducible.

Proof: Let a = bc. Then bc ∈ (a) ⇒ b ∈ (a) or c ∈ (a). WLOG assume b ∈ (a).
Then b = ℓa for some ℓ ∈ A. Then

a = bc = ℓac⇒ ℓc = 1

noting that we can cancel because we assumed A is an integral domain. This shows c is a
unit.

□
Example: (x2 − y2) is prime in k[x, y].

Example: Ker ev(a,b,c) : C[x, y, z] → C is a maximal ideal, since the quotient is isomor-
phic to C. In fact, Ker ev(a,b,c) = (x− a, y− b, z− c). Also in fact, these are all the maximal
ideals, and we will see that later.
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CHAPTER 3

III. Maximal and Prime Ideals

Lecture 3, Aug 19.

Example: (0) ⊂ Z is a prime but not maximal ideal.

Example: Ker evp is a maximal ideal.

Proposition: φ : A → B a ring homomorphism. Then φ−1 J is an ideal of A if J is an ideal
of B.

Remark: The image of an ideal is not an ideal. Take for example Z ↪→ C.

Proposition: With the same setup as above, if P is a prime ideal of B, φ−1P is a prime ideal
of A.

Proof: Examine the homomorphism

A B B/P
f

g

We see that Ker g = f−1(P). So you get

A/ f−1(P) ↪→ B/P

which identifies A/ f−1(P) as a subring of B/P. But B/P is an integral domain, and any
subring of an integral domain is an integral domain.

□

The same result does not hold for maximal ideals, though. As intuition, we may try
to replicate the proof above and conclude that

A/ f−1(M) ↪→ B/M

identifying A/ f−1(M) as a subring of the field B/M. But a subring of a field need not be
a field itself, again taking Z ↪→ C.
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To see concretely why this does not hold, one can consider the usual counterexample
of (0) under the inclusion Z ↪→ C.

Example: Z[x] ↪→ C[x]. If you think about it, (x) ↔ (x). But (x) is maximal in C

and not in Z.

Theorem: Every ring has a maximal ideal.

Corollary: If I ⊂ A is a proper ideal, then I is contained in a unique maximal ideal.

These proofs rely on Zorn’s lemma.

Corollary: x is not a unit iff x is contained in a maximal ideal.

Proof: ⇐: If x is contained in a maximal ideal, then x must not be a unit, otherwise
the ideal which contains it will also contain 1, and thus not be maximal since it will equal
the whole ring.
⇒: Consider the ideal (x) ⊊ A, which is proper because x is not a unit. Then apply the
above corollary to (x).

□

Definition: A ring A is called a local ring If it has exactly one maximal ideal.

Example: Any field has only two ideals, (0) and F, but F is not proper so there is only one
maximal ideal, (0).

Example: Let p be a prime and define1

Z(p) :=
{ a

b
| a, b ̸= 0 ∈ Z, p ̸ | b

}
Claim that Z(p) is a ring. This is an example of an operation on a ring called localization.
And (p) = { non-units in Z(p)} is the unique maximal ideal.

Lemma: If the non-units of a ring form an ideal, then A is a local ring.

Proof: First we observe that if the non-units form an ideal, then that ideal must be maxi-
mal: If there is an ideal which contains it, it must have come from adding in units, which
makes the ideal equal to A. So the non-units form a maximal ideal, and denote this as I.
Suppose there is another maximal ideal, J which is not given by the set of all non-units.

1This concept tripped me up for quite some time. If you are familiar with the general notion of a local-
ization of a ring, the definition of a localization at a prime ideal, is the general localization of a ring with
respect to the compliment of the prime ideal, which is automatically a multiplicative set. In this ring, ele-
ments of (p) are not invertible, while for a general multiplicative set S ⊂ A, elements of S in AS ≡ S−1 A
are invertible.
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But every element of J must not be a unit, as we have argued before. Therefore J ⊂ I, a
contradiction.

□

Definition: For a ring A, denote Spec A as the set of all of its prime ideals.

Example: The ring of dual numbers, C[ϵ]/ϵ2 is an important ring in which one can do
calculus from an algebraic perspective: The important object in calculus is a differential,
something so small that its square is 0. This is the idea behind the taylor expansion. Such
an object lives in the dual numbers.

Definition: The nilradical of A, nilrad(A) or rad(A), is the set of nilpotent elements of
A.

Theorem:
rad(A) =

⋂
i

Pi

where Pi is a prime ideal of A.
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CHAPTER 4

IV. Spectrum of a Ring

Lecture 4, Aug 22.

We will prove the theorem from last class:
Theorem:

rad(A) =
⋂

i

Pi

Proof: We will do double containment: ⊂:

p ∈ rad(A)⇒ pk = 0

0 ∈ Pi∀i⇒ 0 ∈
⋂

i

Pi

⇒ pk ∈
⋂

i

Pi

⇒ pk ∈ Pi ∀ i
⇒ p ∈ Pi ∀ i

⇒ p ∈
⋂

i

Pi

⇒ rad(A) ⊂
⋂

i

Pi

⊃: We will show the contrapositive: If a ̸∈ rad(A), then a ̸∈ ⋂
i Pi. If a ̸∈ rad(A), then

an ̸= 0 for any n. We need to find a prime ideal P which does not contain a. We will again
need Zorn’s lemma, since we have to create an ideal. Consider

Σ := set of ideals that do not contain an for all n

paritally ordered by inclusion. There exists a maximal element I by Zorn’s lemma. Claim
I is prime: If x, y ̸∈ I, then I + (x), I + (y) ∈ Σ ⇒ ∃n, m such that an ∈ I + (x), am ∈
I + (y)⇒ anm ∈ I + (xy)⇒ xy ̸∈ I. Thus I is prime, and an is not in I for any n.

□

Definition: Denote the spectrum of a ring A, Spec(A), as the set of all prime ideals
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of A. Similarly the max spectrum, mSpec(A) as the set of all maximal ideals. Clearly
mSpec(A) ⊂ Spec(A).

Example: Spec(Z) is the set of prime ideals of Z, which are all ideals of the form (p)
for p a prime.

Proposition: In a PID, all prime ideals different from (0) are maximal.

Proof: Let A be a PID, (a) a prime ideal, and suppose (a) ⊂ (b) ⊂ A. Then a = rb
for some b ∈ R ⇒ rb ∈ (a) ⇒ r ∈ (a) or b ∈ (a). If b ∈ (a), we are done. If r ∈ (a), then
r = ax for some x. then r = rbx ⇒ bx = 1⇒ b is a unit. We can cancel because we are in
an ID.

□

Thus if ( f ) ⊂ A is prime, for A a PID, then f must be an irreducible element, (non-
unit).

Example: Spec(C[x]) = C. C[x] is a PID, so all primes look like (0) and ( f ) for f irre-
ducible. But an irreducible complex polynomial must be degree one, by FTA. So all the
primes are of the form (x− b), for b ∈ C, which contains all the polynomials which vanish
at b.

Example: Spec(R[x]). Primes still have the form (0) and ( f ), but now irreducible polyno-
mials could be nonlinear, since R is not algebraically closed. We know f must have one
complex root, c. If c is real, then f ∈ (x− c). If c is not real, then (x− c) | f , and because
complex roots of real polynomials come in pairs, (x− c̄) | f . Thus

(x− c)(x− c̄) | f

x2 − (c + c̄)x + cc̄ | f

The above is a real polynoial, and f irreducible implies f = x2 − (c + c̄)x + cc̄. So
Spec(R[x]) contains two types of prime ideals (x − c) and (axs + bx + c), where D ≡
b2 − 4ac < 0.

Theorem (Nullstellensatz):

mSpec
(
C[x1, . . . , xn]

)
= Cn

(x1 − a1, . . . , xn − an)← [ (a1, . . . , an)

Note that the inclusion ⊃ is obvious. The work of the theorem is to prove all such maxi-
mal ideals have this form.

We would like to make Spec(A) into a topological space1 By Demorgan’s law, it suffices

1This is laying the groundwork to define a scheme, although I don’t believe we will be getting to this
topic in this course.
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to define a topology of closed subsets, and ensure that finite unions are closed, arbitrary
intersections are closed, and the empty set and full space are closed. Define a subset of
Spec(A) to be closed if it can be written as V(S) = {P | P ⊃ S}, for S some ideal of A.

Exercise: Check that this does indeed define a topology.

Note the open sets of Spec(A) are of the form Spec(A)−V(I) = {P | P ⊋ I} = ⋃
f∈I{P | f ̸∈

P}. The sets being union’d over are referred to as the basic open sets.

Example: In Spec(Z), closed sets have the form V(m), for m ∈ Z. Note that P = (p) ⊃
(m)→ m ∈ (p)⇒ p | m. So for example V(30) = {(2), (3), (5)} and V(21) = {(3), (7)}.
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CHAPTER 5

V. Modules and Nakayama Lemma

Lecture 5, Aug 24.

Given an A-module M, there is a map A → End(M) given by a 7→
(
m 7→ am

)
. One

defn of M as an A-module is equivalent to saying that this map is a ring homomorphism
for every a, where the ring structure on the right hand side is given by pointwise addition
and composition.

Example: If I ⊂ A is an ideal, then I and A/I are A-modules.

Remark: There is a category A-mod whose objects are A-modules and whose morphisms
are module morphisms:

Definition: Given two A-modules M, N, an A-module homomorphism M → N is a
group homomorphism such that φ(am) = aφ(m). Note HomA−Mod(A, B) is an abelian
group.

Remark: The composition of A-module homomorphisms is an A-module homomor-
phism.

Definition: N ⊂ M, for M an A-module, is a submodule of M if N is a subgroup of
M and closed under the action by A.

Lemma: If φ : M → N is an A-module homomrphism, then Imφ and Kerφ are submodules
of the appropriate A-module.

□

Definition: If N ⊂ M is a submodule, M/N is naturally an A-module, and a submodule
of M. A priori it is an abelian group, and we equip it with the multiplication:

[a][b] = [ab]

Example: Every abelian group is a Z-module.
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Lemma: If φ : M→ N is an A-module homomorphism,

M/Kerφ ∼= Imφ

Proof: This statement already holds as abelian groups, and it is routine to check that the
isomorphism used is also a ring isomorphism.

□

Theorem (Isomorphism Theorems): Let L ⊂ M ⊂ N be submodules. Then

i)
(N

L
)(M

L
) ∼= N

M

ii) M + L ⊂ N is a submodule, and

(M + L)/L ∼= M/M ∩ L

Proof: The key here is to consider the right homomorphism, calculate the kernel, and
apply the above lemma.
i): Consider the homomorphism N → N/L→ (N/L)/(M/L).
ii) : Consider the homomorphism M→ M + L→ M + L/L.

□

Remark: If Mλ is a collection of A-modules, for λ ∈ Λ, then⊕
λ

Mλ, ∏
λ

Mλ

are also A-modules, with Mλ as a submodule for each λ. When Λ is finite, the two are
isomorphic to each other: Each can be thought of as |Λ|-tuples of elements, with the λ
component containing an element of Mλ. However the direct sum by definition requires
cofinitely1 many terms to be 0, while the direct product does not. For example, if Mλ is
some fixed A-module M, and Λ = Z, then for any m ∈ M, (m, m, . . . ) is in the direct
product, but not the direct sum. In fact, the direct sum is a proper submodule of the
direct product. This definition of direct sum and product of A-modules generalizes the
definition of a direct sum of vector spaces and abelian groups by taking A to be a field or
A = Z, respectively.

Definition: For mα ∈ M, the set {mα} generates M as an A-module if every m ∈ M
can be written as a finite sum m = ∑α aαmα, where aα ∈ A.

Remark: A⊕ · · · ⊕ A︸ ︷︷ ︸
n times

is generated by the set {eα}, where eα is the element of the di-

rect sum with a 1 in position α and 0 else.

1All but finitely many
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Definition: An A-module M is finitely generated if it admits a finite set of generators.

Remark: By the above remark, A⊕ · · · ⊕ A︸ ︷︷ ︸
n times

is finitely generated for all n. We sometimes

also denote this module as A⊕n for brevity.

If M is a finitely generated A-module, then let {mi} be a finite set of generators. Then

A⊕ n → M

(ai) 7→∑ aimi

is surjective. It need not be injective, though.

Theorem (Nakayama Lemma):If M is a finitely generated A-module and I is an ideal of A,
then M = IM⇒ ∃ x ≡ 1 mod I such that xM = 0.

Example: If A = Z and M = Z/nZ, then I must have the form (m) for some m ∈ Z.
The condition (m)M = M implies that gcd(m, n) = 1, so there exists a, b such that
am + bn = 1⇒ bn ≡ 1 mod m and (bn)(Z/nZ) = 0.

To think about what the Nakayama lemma means, observe that the condition M = IM⇒
M = IM = I(IM) = I(I(IM)) = . . . . If we recall that maximal ideals of polynomial rings
correspond to vanishing sets of functions, then we can think of the condition above as de-
scribing some functions which vanish to all orders. The only such function which should
do that is the 0 function, and that is something like what happens here2.

The above didn’t really make sense to me, so let’s do a different example and follow
the wiki page for Nakayama lemma:

BEGIN ASIDE:

Recall we found that the nilradical of A is the intersection over all prime ideals

Definition: For a ring A, the Jacobson radical, J(A), is defined as the intersection over
all maximal ideals of A:

J(A) :=
⋂

m∈mSpec(A)

m

Note that for a local ring this is just the maximal ideal itself.

Example: J(Z) is the intersection over all (p), where p is prime, so an element is in the
intersection over all such if it is divisible by every prime. But such a number must be 0:

J(Z) = (0)

2I’m not sure I understood/transcribed this intuition correctly. In the case of polynomials over a field,
there are no non-trivial ideals I, so Nakayama lemma doesn’t seem to have much to say.
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Observe that this is equal to the nilradical because Z is a PID and thus mSpec(Z) =
Spec(Z).

Proposition: For any ring A, J(A[x]) = nilrad(A[x]).

Proof: The inclusion J(A[x]) ⊂ nilrad(A[x]) is immediate and holds for any ring. Let
f ∈ nilrad(A[x]), so that f k = 0. Then if f is not in J(A[x]), there must exist some maxi-
mal ideal m0 which does not contain f . Then m0 + ( f ) = A[x], so that there exist m ∈ m0
and r ∈ A[x] such that m− r f = 1 ⇒ 1 + r f ∈ m0 ⇒ 1 + r f must not be a unit. But the
sum of a unit and a nilpotent is again a unit.

□

Something about the above proof must be wrong, but I can’t figure out what it is. I didn’t
use anything about the ring A[x] itself, and this result doesn’t hold generally. If anyone
reading this can figure it out let me know.

A corollary of Nakayama’s lemma is:

Corollary: If M is a f.g. module over A, then J(A)M = M⇒ M = 0.

Proof: For any x as in the statement of Nakayama, x − 1 ∈ J(A) so x is invertible3 so
M = 0.

□
For N a submodule of M, M/N is also an A-module. So we can apply the above to this
module, and get

Corollary: If M is a f.g. module over A and N is a submodule, then J(A)M + N = M ⇒
M = N.

Proof: Apply the above corollary to M/N. Then J(A)(M/N) = J(A){m+ N} = {J(A)m+
N} = J(A)M + N, which equals M4 iff M/N = 0 ⇐⇒ M = N.

□
Finally we arrive at a statement useful in terms of geometry:

Corollary (Nakayama in terms of generators): If M is a f.g. module over A and the im-
ages of the elements m1, . . . , mn of M in M/J(A)M generate M/J(A)M as an R-module, then
m1, . . . , mn also generate M as an A-module.

Proof: Consider the submodule of M generated by the mi’s, call this N. The condition
J(A)M + N = M is exactly equivalent to [mi] generating M/J(A)M. Then M is equal to
the module generated by the mi’s.

3This is the converse of the statement that if x is nilpotent then 1− x is a unit, which comes from the
truncated Taylor series argument.

4Are we subtracting an N from the RHS?
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□
Now we can actually apply this to say something about geometry: Given a module M
over a local ring R, M/mM is a vector space over R/m. Thus by Nakayama, any basis
of M/mM lift to a minimal set of generators of M. This is helpful because geometry is
concerned with local rings: If M is a coherent sheaf of OX-modules over a scheme X,
then the stalk at a point p ∈ X,Mp, is a module over the local ring (OX,p,m).

Definition: The residue field of a local ring (R,m) is the field R/m.

Given a scheme X, we know that around any point x, there is a neighborhood U ∋ x
such that U = Spec(A) for A some ring, equipped with the structure sheaf OU. Then we
can consider x as a prime ideal of A, and the stalk at x is the localization A(x) ≡ OU,x.

Proposition: For any ring A, the localization at a prime, Ap is a local ring with unique maximal
ideal pAp.

Proof:
Ap =

{ a
b
| a ∈ A, b ̸∈ p

}
Note that for any a

b ∈ Ap, a ̸∈ p ⇐⇒ b
a ∈ Ap ⇐⇒ a

b is invertible. a ̸∈ p ⇐⇒ a
b ̸∈ pAp.

So a fraction in Ap is a unit iff it is not contained in pAp, characterizing pAp as the set of
non-units in Ap. Thus pAp is the unique maximal ideal: Maximality is clear, and unique-
ness comes because any other maximal ideal must consist only of non-units. But then it
must be contained in pAp, and thus must be equal to it.

□
Definition: For x a point of a scheme X, the residue field of x, k(x), is the residue field of
A(x) ≡ OX,x.

Example: Letting X = Spec(k[t]), for k algebraically closed, say we want to compute
the residue field over some point x ∈ X. We know what all the non-zero prime ideals
look like: (t− a), for some a ∈ k. Then the residue field is

k[t](t−a)/(t− a)k[t](t−a)

To see what field this is, define the map

eva : k[t](t−a) → k

p(t)
q(t)

7→ p(a)
q(a)

Notice this is a ring homomorphism and is well defined because the denominator cannot
vanish. The kernel of this map is (t− a)k[t](t−a), so

k(x) = k
(
(t− a)

)
≡ k[t](t−a)/(t− a)k[t](t−a)

∼= k
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Note for a non-affine scheme, to define the residue field we had to choose a particular
affine neighborhood, but this definition is independent of that choice. It is easy to check
that k

(
(0)

)
= k(t).

Definition: For a coherent sheaf, F , on a scheme X, the (geometric?) fiber over a point
x ∈ X is defined as

F (p) := Fx ⊗OX,x k(x)

This makes sense because a coherent sheaf on a scheme is defined to be a sheaf of OX
modules, among other conditions, so the stalks are OX,x modules, and k(x) is a quotient
of OX,x. So this is a tensor product of rings.

Back in the affine scheme setting, we can rewrite k(x) = OX,x/(x)OX,x, so we are looking
at something of the form R/I ⊗M, for M an R-module. To see what this is, recall that the
tensor product of modules is right-exact, and examine the exact sequence

0→ I → R→ R/I

which implies
I ⊗M→ R⊗M = M→ R/I ⊗M→ 0

is exact, ⇒ R/I ⊗ M ∼= M/IM, since the image of I ⊗ M → M is IM. Thus the fiber
over p is given by Fx/mxFx. Let’s return to our original Nakayama setup, copied here
for convenience:5

IfM is a coherent sheaf of OX-modules over a scheme X, then the stalk at a point p ∈ X,
Mp, is a module over the local ring (OX,p,mp). We now understand that the fiber over p
is given byMp/mpMp, and Nakayama’s lemma (the final corollary in terms of genera-
tors) says that any basis ofMp/mpMp lifts to a minimal set of generators ofMp.

In terms of geometry, if M is a locally free sheaf of OX modules6, we may view it as
being associated to some vector bundle7. The fiber of M, we now know is the vector
spaceMp/mpMp. Nakayama’s lemma says that any basis of this vector space lifts to a
set of minimal generators of Mp, which in this case is interpreted as germs of sections
of the vector bundle associated to M around the point p. So in this way, any basis of
the fiber of a coherent sheaf comes from a basis of local sections of its associated vector
bundle.

5This aside took place over like an entire week, so even I am losing track of what’s happening.
6For all x ∈ X, there exists an open set U ∋ x such thatM|U ∼=

⊕
I OX |U , as anOX |U module, i.e.M(U)

is an OX(U) module, and the condition is it must be a free module. Note this impliesM is quasi-coherent.
Also note that OX is trivially free.

7This is in fact an equivalence, but it is not easy to see. One direction is clear, unfortunately the direction
we do not need: Given a vector bundle, define the sheaf of local sections. This is locally free, since the
sections over U are functions U → U×Rn, which is identified with a direct sum of n copies of functions on
U. The sheaf is free if the vector bundle is globally trivial. But the other direction, how to see every locally
free sheaf as the sections of a vector bundle, is not trivial.

20



One thing to note: In general, for a ringed space, locally free of finite rank does not imply
coherent. It holds iff the structure sheaf itself is coherent. In particular, for any scheme
this holds, hence the above exchange of locally free with coherent8

END ASIDE:

8I believe they left out the finite rank assumption.
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CHAPTER 6

VI. The Topology on Spec(A)

Lecture 6, Aug 24.

Definition: If I is an ideal of A,

rad(I) = {a ∈ A | An ∈ I for some n}

this is also sometimes denoted as
√

I.

Observe that nilrad(A) = rad((0)). Then in general
√

I = {a ∈ A | ān = 0 ∈ A/I}
= f−1(nilrad(A/I)), f : A→ A/I

= f−1

 ⋂
P̄∈Spec(A/I)

P̄


=

⋂
P̄∈Spec(A/I)

f−1(P̄)

=
⋂

P∈Spec(A)

P, I ⊂ P

where we have applied the correspondence of prime ideals under A → A/I in the final
equality.

Definition: For f ∈ A, define the basic open sets

X f := {P ∈ Spec(A)| f ̸∈ P}

Note X f ∩ Xg = {P | f ̸∈ P, g ̸∈ P} ⇒ {P | f g ̸∈ P} ≡ X f g.

Definition: A topological space X is quasi-compact if any open cover of X admits a fi-
nite subcover. Note that from basic topology, it suffices to check that the basis admits a
finite subcover.
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Proposition: Every affine scheme is quasi-compact.

Proof: Suppose X = Spec(A) has an open cover by the basic open sets:

X =
⋃
q∈I

X fq =
⋃
q∈I
{P | fq ̸∈ P}

If P is a prime in A, then it belongs to this union, and thus does not contain some fq. So
each P misses some fq. If the ideal generated by all the fq’s does not equal A, then it is
contained in some maximal ideal m. But

( fq)q∈I ⊂ m

⇒ ( fq) ⊂ m ∀ q

⇒ m ̸∈
⋃
q∈I

X fq

The last implication holds because elements of
⋃

q∈I X fq must miss at least one of the fq’s.
Of course the last line is a contradiction because m ∈ X.

□

Example: The inclusion R[x] → C[x] induces a map Spec(C[x]) → Spec(R[x]) by tak-
ing the preimage. We’ve shown before that taking the preimage of a prime ideal is prime.
So in general, a map f : A→ B induces a map f ∗ : Spec(B)→ Spec(A). Under the above
example,

ma ∈ Spec(C[x]) = mSpec(C[x]) 7→ { f ∈ R[x] | f (a) = 0}
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CHAPTER 7

VII. Homological Algebra

Lecture 7, Aug 29.

Corollary of Nakayama’s Lemma: If (A,m) is a local ring then mM = 0⇒ M = 0.

This is because if x ̸∈ m, then it must be a unit, since it is not contained in any maxi-
mal ideal.

Proposition (Characterization of local rings): Let I be an ideal of A. Then I is the unique maximal
ideal of A iff the complement of I is exactly given by the set of units in A (iff the set of non-units
is given by I).

Proof: ⇒: trivial.
⇐: Clearly if all elements outside of I are units then I must be maximal. However, why
should it be the unique maximal ideal? If there is some other maximal ideal, it must
consist only of non-units, otherwise it is not proper. Therefore it is contained in I. By
maximality it is equal to I.

□

Example: Let k[[x]] be the ring of formal power series. To show it is local, guess a unique
maximal ideal of the form (x) = {a0 = 0}. Suffices to show any f (x) ̸∈ (x) is invertible.
WLOG let a0 = 1. Then the inverse is given by

f−1 = (1− xg(x))−1 = 1 + xg(x) + x2g2(x) + · · · ∈ k[[x]]

where
g(x) = a1 + a2x + a3x2 + . . .

There is something subtle going on here though. Note that the element

1 + (1 + x) + (1 + x)2 + (1 + x)3 + . . .

is not an element of k[[x]], since, for example, the constant term is infinite. The problem is
in each degree, the coefficient is adding up infinitely many positive terms. Elements of the
formal power series ring are allowed to have infinite degree, but the coefficients still need
to all be elements of k. However our choice of f−1 has only finitely many contributions in
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each degree, so each coefficient is finite. For example, the constant term is determined by
the first term in the sum, which is 1: all subsequent terms in the sum have degree at least
1. The linear term is determined by the first two terms in the sum: all subsequent terms
have degree at least 2, and so on. Thus k[[x]] is a local ring with unique maximal ideal (x).

We are now going to get into some homological algebra. Many of these proofs are quite
involved diagram chases. I’m not going to include these proofs as I don’t think there is
much value to gain from watching or reading someone else doing a diagram chase. This
is one of those things you really have to do yourself, and they are often very awkward or
unnecessarily long winded to write down.

Definition: Suppose you have a sequence of A-modules, Mi and A-module homomor-
phisms fi : Mi−1 → Mi. This sequence, presented as

· · · → Mi−1 → Mi → Mi+1 → . . .

is called a complex if f 2 = 0, where square means subsequent compositions. Note this
implies ker( fi+1) ⊂ im( fi).

Definition: The sequence above is exact at Mi if ker( fi+1) = im( fi). The sequence is
exact if it is exact at every Mi.

Example:
i)

0→ M′ → M

is exact at M′ iff M′ → M is injective.

ii)
M′ → M→ 0

is exact at M iff M′ → M is surjective.

iii)
0→ M′ → M→ 0

is exact if M′ ∼= M. To see this, combine i) and ii) to show that M′ → M is an isomor-
phism. It’s not an immediate application, since you don’t have an exact sequence of the
form i) or ii), so you can’t just say this holds by i) and ii). But you apply the exact same
arguments.

iv)
0→ M′ → M→ M′′ → 0

is exact iff M′ → M is injective, M→ M′′ is surjective and M′′ ∼= M/M′.

Definition: An exact sequence which has only 5 terms, the first and last being 0, is called
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a short exact sequence (SES).

Example:
0→ M′ → M′ ⊕M′′ → M′ → 0

is exact. An SES of this type1 is referred to as a split exact sequence. There is a section
(right inverse) M′′ → M′ ⊕M′′. In general, this is equivalent to being split.

Example:
0→ Z→ Z→ Z/2Z→ 0

is exact, where the map Z → Z is given by multiplication by 2. But it is not split: If it
was, then Z ∼= Z⊕Z/2Z, which is obviously not possible because the right hand side
has torsion while the left hand side does not.

Example: If A = k, then any sequence of A-modules (vector spaces) splits. This is just the
rank-nullity theorem from linear algebra.

Lemma: If
0→ N′ → N → N′′

is an exact sequence, then

0→ HomA(M, N′)→ HomA(M, N)→ HomA(M, N′′)

is exact. In such a case, we say the functor HomA(M,−) is left exact.

Proof: Exercise (diagram chase). If you need the proof and can’t get it, look it up or
email me.

From a similar argument, HomA(−, M) is right exact.

Example: But HomA(M,−) may not be exact. Take the sequence

0→ Z→ Z→ Z/2Z→ 0

Then apply HomZ(Z/2Z,−):

0→ 0→ 0→ Z/2Z→ 0

which is not exact, since the kernel of the third map is 0, while the image of the 4th map
is Z/2Z.

Note that in general, if we have an additive functor F : A→ B between abelian categories,

1I believe “of this type” is supposed to mean isomorphic as a chain complex, which is given by the
obvious commutative diagram condition.
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there is a canonically induced functor from chain complexes in A to chain complexes in B
by applying F to each object and morphism:

Ch(F) : Ch(A)→ Ch(B)

The only thing to check is that this sequence of objects and morphisms satisfies d2 = 0,
which follows from F being an additive functor.

So given an exact sequence, applying any additive functor will return a chain complex,
but it does not necessarily preserve exactness.

Definition: In the category R-mod, for a morphism g : M→ N, define coker g := N/im g.
For example, if g is surjective, coker g = 0.

Lemma (Snake): Given a commutative diagram

0 M′ M M′′ 0

0 N′ N N′′ 0

f g h

with exact rows, there is an exact sequence

0 ker f ker g ker h

coker f coker g coker h 0
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CHAPTER 8

VIII. Tensor product on A-Mod

Lecture 8, Aug 31.

Definition: If M, N, P are A-modules, a bilinear map M × N → P is a map which is
linear in both components.

Example: M× A→ M with (m, a) 7→ am is bilinear.

Theorem1 (Tensor product): For M, N ∈ A − Mod, there exists a pair (T, g) with T ∈
A − Mod and g : M × N → T bilinear which satisfies the universal property: If (T′, g′) is
another pair satisfying the above conditions, then there is a unique A-linear map T → T′ such
that

M× N T

T′
g′

g

∃!

commutes.

Remark: As always, an object characterized by a universal property is unique up to
unique isomorphism.

Proof: We will construct such a pair (T, g). Define

T := FrA−Mod((m, n))
/
{tensor product relations}

So we consider the cartesian product M × N and the free A-module generated by all
such. Then we quotient by the ideal generated by the tensor product relations, which is

1In this course, we bypassed all the involvement of the A-balanced maps rather than A-bilinear, which
is something I still have never read about. Is it necessary to consider to construct the tensor product of
modules? Maybe the need is eliminated when A is commutative, as in our case? I have no idea what that
whole story is about.
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the ideal generated by elements of the form

(m1 + m2, n)− (m1, n)− (m2, n)
(m, n1 + n2)− (m, n1)− (m, n2)

(rm, n)− r(m, n)
(m, rn)− r(m, n)

which can be thought of as the appropriate things to quotient in order to make the tensor
product in the quotient bilinear. The image of (m, n) through this quotient map is denoted
as m⊗ n. Then we define the map

g : M× N → T

by first defining a map g : M× N → FrA−Mod((m, n)). Send

(m, n) 7→ 1 · (m, n)

the trivial sum. Then the induced map (m, n) 7→ 1 · [m, n] ≡ m⊗ n is bilinear: respect-
ing the quotient is the same as killing the tensor relations, which is the same as g being
bilinear. This shows why this construction is the “right one”: We kill exactly the relations
necessary to force g to be bilinear, and no more, making T the “most general target for
a bilinear map”. So (T, g) is a pair. Now we need to show that it satisfies the universal
property. If (T′, g′) is another such pair, define a map

T → T′

by sending m ⊗ n 7→ g′(m, n). That this map is well defined wrt the quotient on T is
exactly equivalent to the bilinearity of g′. Clearly this uniquely defines the map as well,
since any other such map would agree on the generators of T.

□

Example: i) M⊗A A ∼= M
ii) (M⊕N)⊗ P ∼= (M⊗ P)⊕ (N⊗ P) These isomorphisms are shown using the universal
property.
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CHAPTER 9

VIII.

Lecture 8, Sept 2.
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