SEMESTER PROJECT

MBA 506 | Team 13

Reema Bhattacharya | Sten Swenson | Alanna Hurley | Colin Donahue

Executive Summary

Team 13 of MBA 506 was tasked with analyzing a multitude of data gathered from a survey given to students in Math and Portuguese courses. In this report, there were several questions that needed to be answered using confidence intervals and hypothesis testing.

We analyzed the following confidence intervals: 90\% confidence interval for the age of the students; 99\% confidence interval for the final grade; and a 95\% confidence interval for number of absences and workday alcohol consumption. We found the confidence intervals to be (16.3914, 16.8086), (10.1609, 12.1314), (2.7569, 6.2957), and (1.1848, 1.5309), respectively.

We also performed hypothesis testing on the following questions: do students whose parents live together get better grades (alpha $=0.05$)?; do students with internet access get better grades (alpha=0.01)?; are the math grades between the two schools different (alpha=0.1)?; do students who consume higher levels of alcohol on work days get worse grades?; and do students who attended nursery school get better grades?

To answer all of these hypotheses, we analyzed the data using a t-test using a sample of 95 data points out of the entire population. For the first hypothesis, we found that there is not sufficient evidence to suggest that students whose parents live together get better grades. For the second hypothesis there is a discrepancy between the sample and population t-tests-- the sample t-test indicated we fail to reject the null hypothesis and the population t-test indicates we reject the null hypothesis. Based on the population having more data points, we indicate that there is a significant difference and we conclude that those with internet access do indeed get better grades. This is a Type I error. For the third hypothesis, there is not sufficient evidence to suggest that the math grades between the two schools are different.

For the fourth hypothesis, there is a discrepancy between the sample and population t-tests-- the sample ttest shows that we fail to reject the null hypothesis but the population t-test indicates that we should reject the null hypothesis. Due to the population being larger than the sample, we conclude that we should reject the null hypothesis, confirming that those who drink more on workdays get worse grades. This is a Type II error. For the fifth hypothesis there is also a discrepancy-- the sample t-test indicates we should reject the null hypothesis, but the population t-test indicated we should fail to reject the null hypothesis. Again, due to the higher amount of data points, we will conclude that we fail to reject the null hypothesis and that there is no indication that students that attend nursery school get better grades. This is a Type I error.

Team 13 hopes that management finds this information, as well as the attached graphs, useful in their forthcoming assessment.

DATA ANALYTICS

IN THIS SECTION WE HAVE CREATED TEN GRAPHS OF AT LEAST
FOUR DIFFERENT TYPES THAT ILLUSTRATE USEFUL INFORMATION ABOUT THE DATA.

Graph details

\#	Graph Title	Graph TYpE
1	Schools serving urban and rural areas	Pie Chart
2	Student failures to study time grouped by gender	Bar graph
3	Effect of internet availability on student grades	Histogram
4	Effect of Nursery School Education on Student' Final Grades	Scatter plot
5	Effect of Weekday Alcohol Consumption on Mean Final Grade	Line Graph
6	Distribution of Grades for Math and Portuguese grouped by School	Box plot
7	Effect of Absences over Final Grades(G3)	Scatter plot
8	Distribution of Grades by Student Age	Bar Graph
9	Frequency Distribution of Grades and Relationship VS No Relationship	Histogram
10	Percentage of Internet Users	Bar graph

SCHOOL SERVING DEMOGRAHIC AREAS

RURAL VS. URBAN

In this graph we show how the two schools, 'GP' - Gabriel Pereira or 'MS' -
Mousinho da Silveira are serving the rural and the urband areas. Gabriel Pereira almost has a 50-50 distribution of students for rural and urban areas where as Mousinho da Silveira largely serves the urban area.

STUDENT FAILURES TO STUDYTIME GROUPED BY GENDER

This graph shows the relationship with study times and failures and how it effects the male and female demographics. Even though it shows more you study, less your chances of failing for both the groups but the rate of failure in males are higher than females.

Effect of internet availability on student grades

The Histogram compares effects of internet availability on student grades. They are skewed left with outliers.

Effect of Nursery School Education on Student' Final Grades

This Scatter Plot above represents students' final grades, separating them into those that did and did not attend nursery school. At a glance you can see that nursery school appears to have no impact on the final grade distribution.

Effect of Weekday Alcohol Consumption on Mean Final Grade

The Line Graph above represents students' average final grades, based on their workday alcohol consumption, 1 being very low and 5 being very high. Judging from this visualization, it appears that higher levels of workday alcohol consumption are correlated with lower average grades.

Distribution of Grades for Math and Portuguese grouped by School

The above box plot shows the distribution of grades between the two school for each subject. The distributions are relatively similar, with the means hovering around 10-13 for each school in each subject.

Effect of Absences over Final Grades(G3)

The scatter plot above shows the relationship between the number of absences a student has and the final grade they receive. The data is generally random but there is a there is a correlation between grades and the absences. The correlation is negative as the absences increases the grades decreases. $R^{2}: 0.0002$

Distribution of Grades by Student Age

The above bar chart depicts the mean grade of each age group. As shown, 20-year-olds performed the best on average while 22-year-olds performed the worst.

Frequency Distribution of Grades and Relationship VS No Relationship

Frequency Distribution of Grades and Relationship VS No Relationship

The Histogram compares the frequency distributions of
Relationship and grade distribution and No Relationship and grade distribution. They are skewed left with outliers.

Percentage of Internet Users

The box plot shows a little over 80% students does have internet and about 20% do not have access to internet

CONFIDENCE INTERVAL

THE CONFIDENCE INTERVALS BELOW WERE CALCULATED BY FIRST CREATING A RANDOM SAMPLE IN JMP PRO 14.1.0. THE SAMPLE SIZE IS 95 OBSERVATIONS.

A 90\% confidence interval for the age of the students

Distributions																		
age																		
									Quantiles			Summary Statistics		Confidence Intervals				
									100.0\%	maximum	20	Mean 16.6		Parameter Estimate Lower CI Upper CI 1-Alpha				
									99.5\%		20	Std Dev	1.2238759	Mean Std Dev	$\begin{array}{r} 16.6 \\ 1.223876 \end{array}$	$\begin{array}{r} 16.3914 \\ 1.094055 \end{array}$	$\begin{aligned} & 16.8086 \\ & 1.39224 \end{aligned}$	$\begin{aligned} & 0.900 \\ & 0.900 \end{aligned}$
									97.5\%		19	Std Err Mean	0.125567					
									90.0\%		18	Upper 95\% Mean	16.849316					
									75.0\%	quartile	18	Lower 95\% Mean	16.350684					
									50.0\%	median	16	N	95					
									25.0\%	quartile	16							
									10.0\%		15							
									2.5\%		15							
	15	16	17	18	19	20	21	22	0.5\%		15							
									0.0\%	minimum	15							

The 90% confidence interval for a sample size of 95 is (16.3914, 16.8086).

Population mean $=16.72$ Sample mean $=16.66$
Sampling error $=16.66-16.72=-0.06$

A 99\% confidence interval for the final grade (G3)

The 99\% confidence interval for a sample size of 95 is (10.1609, 12.1314).

Population mean $=11.34$ Sampling mean $=11.14$
Sampling Error $=11.14-11.34=-0.2$

A 95\% confidence interval for the number of absences students have.

The 95\% confidence interval for a sample size of 95 is (2.7569, 6.2957).

Population mean $=4.43$ Sample Mean $=4.52$

$$
\text { Sampling error }=4.52-4.43=0.09
$$

A 95\% Confidence interval for the Workday Alcohol Consumption of Students (Dalc)

Distributions																
Dalc																
$1 \diamond 1$		1	'	8		Quantiles			Summary Statistics		Confidence Intervals					
					100.0\% maximum		5	Mean 1.3578947		Parameter Mean	Estimate Lower Cl 1.3578951 .184847 0.8494780 .743476		Upper Cl 1.530942 0.991011	$\begin{array}{r} \text { 1-Alpha } \\ 0.950 \\ 0.950 \end{array}$		
						99.5\%			Std Dev				0.8494778			
							97.5\%		4.6	Std Err Mean			0.0871546		Std Dev	
						90.0\%		2.4	Upper 95\% Mean	1.5309422						
						75.0\%	quartile	1	Lower 95\% Mean	1.1848473						
						50.0\%	median	1	N	95						
						25.0\%	quartile	1								
						10.0\%		1								
			7			2.5\%		1								
12	2	3	4	5	6	0.5\%		1								
						0.0\%	minimum	1								

The confidence interval for a sample size 95 at 95% is (1.1848, 1.5309)

Population mean $=$ 1.49 Sample mean $=1.36$
Sampling Error $=1.36-1.49=-0.13$

HYPOTHESIS TESTING

DO STUDENTS WHOSE PARENTS LIVE TOGETHER

 (PSTATUS) GET BETTER GRADES?| Grades based on Pstatus:
 u1 = Parents Together (T); u2 = Parents Apart (A) | | Alpha $=0.05$ |
| :---: | :---: | :---: |
| Ho: u1 = u2 | | |
| Ha: u1 > u2 | | |
| Alpha $=0.05$ | | |
| Random sample size=95 | | |
| t-Test: Two-Sample Assuming Unequal Variances | | |
| | Pstatus $=T$ | Pstatus = A |
| Mean | 11.09638554 | 11.5 |
| Variance | 14.5271819 | 5.90909091 |
| Observations | 83 | 12 |
| Hypothesized Mean Difference | 0 | |
| df | 20 | |
| t Stat | -0.494034381 | |
| $P(T<=t)$ one-tail | 0.313332065 | |
| t Critical one-tail | 1.724718243 | |
| $\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail | 0.62666413 | |
| t Critical two-tail | 2.085963447 | |
| Decision: Failed to Reject the Null Hypothesis | | |
| | | |
| Entire Population | | |
| t-Test: Two-Sample Assuming Unequal Variances | | |
| | Pstatus = T | Pstatus = A |
| Mean | 11.2990 | 11.6694 |
| Variance | 15.1773 | 13.0898 |
| Observations | 923.0000 | 121.0000 |
| Hypothesized Mean Difference | 0.0000 | |
| df | 159.0000 | |
| t Stat | -1.0492 | |
| $\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail | 0.1478 | |
| t Critical one-tail | 1.6545 | |
| $\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail | 0.2957 | |
| t Critical two-tail | 1.9750 | |
| Decision: Failed to Reject the Null Hypothesis | | |
| The T Test for the sample data and the entire population indicates that there is not enough evidence to prove students whose parents live together performed better on their final grades than students who did not. | | |

	Internet = Yes	Internet = No
Mean	11.26760563	10.79167
Variance	14.1416499	11.47645
Observations	71	
Hypothesized Mean Difference	0	
df	44	
t Stat	0.578282901	
P(T<=t) one-tail	0.283010696	
t Critical one-tail	2.414134368	
P(T<=t) two-tail	0.566021392	
t Critical two-tail	2.692278266	
Decision: Failed to Reject the Null Hypothesis		

Entire Population

t-Test: Two-Sample Assuming Unequal Variances

	Internet = Yes	Internet = No
Mean	11.55380895	10.53456
Variance	14.75829964	14.86107
Observations	827	217
Hypothesized Mean Difference	0	
df	337	
t Stat	3.468957918	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.0003	
t Critical one-tail	2.337463916	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.0006	
t Critical two-tail	2.590496576	
Decision: Reject the Null Hypothesis		
The T-test for the sample data fails to reject the null whereas the T-test on the entire the population shows suggested to reject the hypothesis that students with internet access get better grades than students without internet access. This is a Type I error or false positive.		

t-Test: Two-Sample Assuming Unequal Variances

	Math Grade GP	Math Grade MS			
Mean	10.48997135	9.847826			
Variance	21.39429569	17.95411			
Observations	349	46			
Hypothesized Mean Difference	0				
df	60				
t Stat	0.955547525				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.171567561				
t Critical one-tail	1.295821094				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.343135123				
t Critical two-tail	1.670648865				
Decision: Failed Reject the Null Hypothesis					
The T-test for the sample data and the entire population shows there is not enough					

Grades based on Dalc: u1 = Levels 1-2; u2 = Levels 3-5
Alpha $=0.05$
Ho: $u 1=u 2$
Ha: u1 > u2

Random sample size= 95
t-Test: Two-Sample Assuming Unequal Variances

	Levels 1-2	Levels 3-5
Mean	11.1627907	11
Variance	14.5378933	2.75
Observations	86	
Hypothesized Mean Difference	0	
df	19	
t Stat	0.23630088	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.407863956	
t Critical one-tail	1.729132812	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.815727913	
t Critical two-tail	2.093024054	
Decision: Fail to Reject the Null Hypothesis		
Entire Population		
t -Test: Two-Sample Assuming Unequal Variances		

| | Levels 1-2 | Levels 3-5 |
| :--- | ---: | ---: | ---: |
| Mean | 11.46045504 | 10.43801653 |
| Variance | 15.42441064 | 10.3815427 |
| Observations | 923 | 121 |
| Hypothesized Mean Difference | 0 | |
| df | 170 | |
| t Stat | 3.193420478 | |
| $\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail | 0.000837779 | |
| t Critical one-tail | 1.653866317 | |
| $\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail | 0.001675559 | |
| t Critical two-tail | 1.974016708 | |
| Decision: Reject the Null Hypothesis | | |
| The T-Test for the sample data indicates that students who consume high levels of alcohol as defined
 by levels 3-5 performed the same on their final grades as students who did not. Interestingly, when the
 test is run for the entire population, a student who consumes high levels of alcohol as defined by levels
 3-5 did perform worse on their final grades than students who did not. We get a Type II error or false
 negative. | | |

5	DO STUDENTS, WHO ATTENDED NURSERY SCHOOL (NURSERY) GET BETTER GRADES?		
	Grades based on Nursery:u1 = Yes; u2 = No		Alpha $=0.05$
	Ho: $u 1=u 2$		
	Ha: u1 > u 2		
	Random sample size $=95$		
	t-Test: Two-Sample Assuming Unequal Variances		
		Nursery = Yes	Nursery = No
	Mean	11.6901	9.5417
	Variance	11.4455	16.2591
	Observations	71	24
	Hypothesized Mean Difference	0	
	df	35	
	t Stat	2.3460	
	$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.0124	
	t Critical one-tail	1.6896	
	$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.0248	
	t Critical two-tail	2.0301	
	Decision: Reject the Null Hypothesis		
	Entire Population		
	t-Test: Two-Sample Assuming Unequal Variances		
		Nursery = Yes	Nursery = No
	Mean	11.4192	11.0335
	Variance	15.0927	14.2633
	Observations	835	209
	Hypothesized Mean Difference	0	
	df	327	
	t Stat	1.3127	
	$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.0951	
	t Critical one-tail	1.6495	
	$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.1902	
	t Critical two-tail	1.9672	
	Decision: Fail to Reject the Null Hypothesis		
	The T-Test for the sample data indicates that students who attended Nursery schools performed better on their final grades than students who did not. Interestingly, when the test is run for the entire population, there is no significant difference in mean scores. The sample HT gave us a Type I error also called a false positive.		

