
Internet Appendix: Supplemental Proofs
Notes on the Proof of Lemma 2. Division managers determine

(
q̂dd , q̂

d
d′
)
in (17). We will focus on two cases: we

start with the case where γd ≥ 0, and then we consider the case γd < 0. Consider q̃dd = qd + δ, for δ > 0. Switching

to q̃d−d = qd − δ lowers ûd by 2βdadδ while leaving the constraint unchanged. Therefore, it must be that q̂dd ≤ qd.

Similarly, switching from q̃dd′ = qd′ + δ, for δ > 0 to q̃d−d′ = qd′ − δ lowers ûd by 2γdad′δ, leaving the constraint

unchanged. Therefore, it must also be that q̂dd′ ≤ qd′ . Thus, we can express the Lagrangian as

L ≡ −ûd − λ
[
gc − ηd

]
− τd

(
q̂dd − qd

)
− τd′

(
q̂dd′ − qd′

)
(B1)

where gc ≡ ln qd
q̂d
d

+ ln
qd′
q̂d
d′
. Because problem (17) admits corner solutions, we characterize its solution by use of the

full Kuhn-Tucker conditions:

∂L
∂q̂dd

= −∂ûd
∂q̂dd

− λ
∂gc
∂q̂dd

− τd = −βdad +
λ

q̂dd
− τd = 0, (B2)

∂L
∂q̂dd′

= − ∂ûd
∂q̂dd′

− λ
∂gc
∂q̂dd′

− τd′ = −γdad′ +
λ

q̂dd′
− τd′ = 0,

λ
(
gc − ηd

)
+ τd

(
q̂dd − qd

)
+ τd′

(
q̂dd′ − qd′

)
= 0,

λ ≥ 0, τd′ ≥ 0, τd ≥ 0, ηd − gc ≥ 0, qd − q̂dd ≥ 0, qd′ − q̂dd′ ≥ 0.

From the definition of gc, to satisfy the constraint ηd − gc ≥ 0 it must be q̂dd > 0 and q̂d′ > 0, which implies that
∂L
∂q̂d

d

= ∂L
∂q̂d

d′
= 0. Also, βdad > 0 implies λ > 0, and thus that gc − ηd = 0. In addition, it cannot be that both τd > 0

and τd′ > 0 because, if so, then q̂dd = qd and q̂dd′ = qd′ , which would imply that gc = 0 < ηd, which contradicts λ > 0.

This leaves us with three types of solutions: τd = τd′ = 0, τd > 0 = τd′ , and τd = 0 < τd′ .

If τd = τd′ = 0, then we have the case in the main appendix: ∂L
∂q̂d

d

= ∂L
∂q̂d

d′
= 0 together imply that λ = βdadq̂

d
d

and λ = γdad′ q̂
d
d′ , giving βdadq̂

d
d = γdad′ q̂

d
d′ . Because gc = ηd implies that q̂dd q̂

d
d′ = e−η

d

qdqd′ , after substitution

this implies that βdad
γdad′

(
q̂dd
)2

= e−η
d

qdqd′ , or equivalently, q̂dd =
[
e−η

d

Hd

] 1
2
qd, where Hd =

γdad′qd′
βdadqd

. Similarly,

q̂dd′ =
[
e−η

d 1
Hd

] 1
2
qd′ . In order for this to be feasible, however, it must be that q̂dd ≤ qd, or equivalently, Hd ≤ eη

d

,

and q̂dd′ ≤ qd′ , or equivalently, Hd ≥ e−η
d

, giving case (ii) when γd > 0. If τd > 0 = τd′ , then q̂dd = qd and, from

gc = ηd, also q̂dd′ = e−η
d

qd′ . Note that ∂L
∂q̂d

d′
= 0 implies that λ = γdad′e

−ηdqd′ and, from ∂L
∂q̂d

d

= 0, we have that

τd = −βdad +
γdad′e

−ηdqd′

qd
= βdad

(
Hde

−ηd − 1
)
> 0, (B3)

which requires Hd > eη
d

, giving case (i) when γd > 0. Finally, if τd = 0 < τd′ , then q̂
d
d′ = qd′ and, from gc = ηd, also

q̂dd = e−η
d

qd. Note that now ∂L
∂q̂d

d

= 0 implies that λ = βdade
−ηdqd, and, from

∂L
∂q̂d

d′
= 0, we have that

τd′ = −γdad′ +
βdade

−ηdqd
qd′

= γdad′
(
H−1
d e−η

d

− 1
)
≥ 0, (B4)

which requires 0 ≤ Hd < e−η
d

, giving case (iii) when γd ≥ 0.

The case with γd < 0 proceeds similarly, noting that q̂dd ≤ qd but q̂dd′ ≥ qd′ . Thus, we can express the Lagrangian

as

L ≡ −ûd − λ
[
gc − ηd

]
− τd

(
q̂dd − qd

)
− τd′

(
qd′ − q̂dd′

)
(B5)
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where gc ≡ ln qd
q̂d
d

+ ln
qd′

2qd′−q̂
d
d′
. Again, the full Kuhn-Tucker conditions are

∂L
∂q̂dd

= −∂ûd
∂q̂dd

− λ
∂gc
∂q̂dd

− τd = −βdad +
λ

q̂dd
− τd = 0, (B6)

∂L
∂q̂dd′

= − ∂ûd
∂q̂dd′

− λ
∂gc
∂q̂dd′

+ τd′ = −γdad′ −
λ

2qd′ − q̂dd′
+ τd′ = 0,

λ
(
gc − ηd

)
+ τd

(
q̂dd − qd

)
+ τd′

(
qd′ − q̂dd′

)
= 0,

λ ≥ 0, τd′ ≥ 0, τd ≥ 0, ηd − gc ≥ 0, qd − q̂dd ≥ 0, qd′ − q̂dd′ ≥ 0.

From the definition of gc, to satisfy the constraint ηd − gc ≥ 0 it must be q̂dd > 0 and q̂d′ > 0, which implies that
∂L
∂q̂d

d

= ∂L
∂q̂d

d′
= 0. Also, βdad > 0 implies λ > 0, and thus that gc − ηd = 0. In addition, it cannot be that both τd > 0

and τd′ > 0 because, if so, then q̂dd = qd and q̂dd′ = qd′ , which would imply that gc = 0 < ηd, which contradicts λ > 0.

This leaves us with three types of solutions: τd = τd′ = 0, τd > 0 = τd′ , and τd = 0 < τd′ .

If τd = τd′ = 0, ∂L
∂q̂d

d

= ∂L
∂q̂d

d′
= 0 together imply that λ = βdadq̂

d
d and λ = |γd| ad′

[
2qd′ − q̂dd′

]
, giving

βdadq̂
d
d = |γd| ad′

[
2qd′ − q̂dd′

]
. Because gc = ηd implies that q̂dd

[
2qd′ − q̂dd′

]
= e−η

d

qdqd′ , after substitution this

implies that βdad
|γd|ad′

(
q̂dd
)2

= e−η
d

qdqd′ , or equivalently, q̂dd =
[
e−η

d

Hd

] 1
2
qd, where Hd =

|γd|ad′qd′
βdadqd

. Similarly,

q̂dd′ =

[
2−

(
e−η

d 1
Hd

) 1
2

]
qd′ . In order for this to be feasible, however, it must be that q̂dd ≤ qd, or equivalently,

Hd ≤ eη
d

, and q̂dd′ ≥ qd′ , or equivalently, Hd ≥ e−η
d

, giving case (ii) when γd < 0. Alternatively, if τd > 0 = τd′ , then

q̂dd = qd and, from gc = ηd, also q̂dd′ =
(
2− e−η

d
)
qd′ . Note that ∂L

∂q̂d
d′

= 0 implies that λ = |γd| ad′e−η
d

qd′ and, from

∂L
∂q̂d

d

= 0, we have that

τd = −βdad +
|γd| ad′
qd

e−η
d

qd′ = βdad
[
Hde

−ηd − 1
]
> 0, (B7)

which requires Hd > eη
d

, giving case (i) when γd < 0. Finally, if τd = 0 < τd′ , then q̂
d
d′ = qd′ and, from gc = ηd, also

q̂dd = e−η
d

qd. Note that now ∂L
∂q̂d

d

= 0 implies that λ = βdade
−ηdqd, and, from

∂L
∂q̂d

d′
= 0, we have that

τd′ = −γdad′ +
βdade

−ηdqd
qd′

= |γd| ad′
(

1

Hd
e−η

d

− 1

)
≥ 0, (B8)

which requires 0 < Hd ≤ e−η
d

, giving case (iii) when γd < 0.

Proof of Lemma 3. The lemma is shown in two steps. First, we obtain division managers’ best response functions,

ad = θdβdq̂
d
d . Second, we characterize the Nash equilibrium in terms of log (ad) and we apply the contraction mapping

theorem, proving uniqueness.

Division manager d ∈ {A,B} chooses effort level ad to solve (19) by setting

d

dad
ûd(a, q̂

d
d(a,w)) =

∂ûd
∂ad

+
∂ûd
∂q̂dd

∂q̂dd
∂ad

+
∂ûd
∂q̂dd′

∂q̂dd′

∂ad
=
∂ûd
∂ad

= 0, (B9)

where the second equality holds by the envelope theorem, as follows. For case (ii) of Lemma 2, we have that
∂ûd

∂q̂d
d

= λ ∂g
∂q̂d

and ∂ûd

∂q̂d
d′

= λ ∂g
∂q̂d′

, giving

∂ûd
∂q̂dd

∂q̂dd
∂ad

+
∂ûd
∂q̂dd′

∂q̂dd′

∂ad
= λ

(
∂g

∂q̂d

∂q̂dd
∂ad

+
∂g

∂q̂d′

∂q̂dd′

∂ad

)
= λ

dg

dad
= 0 (B10)

because g = e−η
d

. In cases (i) & (iii), q̂dd and q̂dd′ do not depend on ad,
∂q̂dd
∂ad

=
∂q̂d

d′
∂ad

= 0, so dûd
dad

= ∂ûd
∂ad

= βdq̂
d
d− ad

θd
= 0.

Thus, the best response functions are ad = θdβdq̂
d
d , where beliefs q̂dd are from Lemma 2. If γd = 0, we have that

Hd = 0, giving ad = θdβde
−ηdqd. If γd ̸= 0, the best response depends on the effort by the other division manager,

ad′ . If the other division manager, d′ ̸= d, exerts low effort ad′ < aLd′ ≡ θdβ
2
de

−2ηd
q2d

|γd|qd′
, we have that Hd < e−η

d

and

division manager d holds pessimistic belief as in case (i) of Lemma 2, q̂dd = e−η
d

qd, giving ad = a1∗d ≡ θdβde
−ηdqd.

If division manager d′ exerts moderate level of effort, aLd′ ≤ ad′ < aHd′ ≡ θdβ
2
de

ηd
q2d

|γd|qd′
, division manager d hold beliefs
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as in case (ii) of Lemma 2; thus Hd ∈
[
e−η

d

, eη
d
]
and ad =

[
θ2d |γd| ad′βde−η

d

qd′qd
] 1

3
. Finally, if division manager d′

exerts a high level of effort, ad′ > aHd′ , division manager d hold beliefs as in case (iii) of Lemma 2; thus |Hd| > eη
d

and ad = θdβdqd. The best response function for DM d is therefore given by

a∗d (ad′) =


a1∗d ≡ θdβde

−ηdqd

ã∗d (ad′) ≡
[
θ2d |γd| ad′βde−η

d

qd′qd
] 1

3

a2∗d ≡ θdβdqd

ad′ < aLd′

aLd′ ≤ ad′ ≤ aHd′

ad′ > aHd′

. (B11)

A Nash equilibrium is a pair {aA, aB} such that ad = a∗d (ad′), d ∈ {A,B}, d ̸= d′. Note that a∗d (ad′) is a positive,

continuous, and increasing function of ad′ . Expressing the best response in logs, we obtain

ln a∗d (ln ad′) =


ln θdβde

−ηdqd

ln
[
θ2d |γd|βde−η

d

qd′qd
] 1

3
+ 1

3
ln (ad′)

ln θdβdqd

ln ad′ < ln aLd′

ln aLd′ ≤ ln ad′ ≤ ln aHd′

ln ad′ > ln aHd′

. (B12)

Further, note
d ln a∗d
d ln ad′

= 0 for ad′ < aLd′ and ad′ > aHd′ , while
d ln a∗d
d ln ad′

= 1
3
for aLd′ < ad′ < aHd′ . Define F : R2 → R2

so that F ≡ (ln a∗A (ln aB) , ln a
∗
B (ln aA))

′, and let d (x, y) be the Euclidean distance. For x, y ∈ R2, define x̃d ≡
max

{
ln aLd ,min

{
xd, ln a

H
d

}}
and ỹd ≡ max

{
ln aLd ,min

{
yd, ln a

H
d

}}
, we have

d (F (x) , F (y)) =

√
(ln a∗A (xB)− ln a∗A (yB))

2 + (ln a∗B (xA)− ln a∗B (yA))
2 (B13)

=

√
(ln a∗A (x̃B)− ln a∗A (ỹB))

2 + (ln a∗B (x̃A)− ln a∗B (ỹA))
2

=

√[
1

3
(x̃B − ỹB)

]2

+

[
1

3
(x̃A − ỹA)

]2

=
1

3
d (x̃, ỹ) ≤ 1

3
d (x, y) ,

which implies that 0 ≤ d (F (x) , F (y)) ≤ 1
3
d (x, y) for all x, y ∈ R2. Thus, F is a contraction mapping and the Nash

Equilibrium exists and is unique.

Because the best-response function is constant if d′ exerts low effort, ad′ < aLd′ , and if d′ exerts high effort,

ad′ > aHd′ , the Nash Equilibrium is fully determined. All that remains to be determined is the Nash Equilibrium

effort for d when aLd′ ≤ ad′ ≤ aHd′ . There are three possible cases:

(1) If ad′ = a1∗d′ > aLd′ , so that Hd′ ≤ e−η
d′
, then

ad = ã∗d
(
a1∗d′

)
=

[
θ2dθd′e

−(ηd+ηd
′
) |γd|βd′βdq2d′qd

] 1
3

; (B14)

(2) If ad′ = a2∗d′ < aHd′ , so that Hd′ ≥ eη
d′
, then

ad = ã∗d
(
a2∗d′

)
=

[
θ2dθd′e

−ηd |γd|βd′βdq2d′qd
] 1

3
; (B15)

(3) if a1∗d′ < ad′ < a2∗d′ , so that Hd′ ∈
(
e−η

d′
, eη

d′
)
, then setting ad = ã∗d (ad′) and ad′ = ã∗d′ (ad), after solving we

obtain

ad = ǎd ≡
[
e−η

d

θ2dβd |γd|
] 3

8

[
e−η

d′

θ2d′βd′ |γd′ |
] 1

8

[qdqd′ ]
1
2 . (B16)

Comparative statics follow by differentiation.

Notes on the Proof of Theorem 1. The proof in the body found the optimal contract when γd > 0. We will

show here that the objective is symmetric around zero, completing the proof. Note that, from Lemma 2, q̂dd depends

on γd only through its absolute value, |γd|. Thus, from Lemma 3, equilibrium action ad = βdθdq̂
d
d also depends on

|γd| only. This implies the first term of the uncertainty discount, βdad
(
qd − q̂dd

)
, depends only on |γd|. We next show

that, if γd < 0, the second term of the uncertainty discount, γdad′
(
qd′ − q̂dd′

)
, is unchanged by offering cross pay,

|γd|, rather than relative performance evaluation, γd < 0. From Lemma 2, let q̂d+d′ be the belief held by the DM when

receiving |γd| instead of γd < 0. We will show γdad′
(
qd′ − q̂dd′

)
= |γd| ad′

(
qd′ − q̂d+d′

)
. Consider in turn cases (i), (ii)

and (iii) in Lemma 2.
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First, in case (i), if Hd < e−η
d

, then q̂d+d′ = q̂dd′ = qd′ , so

|γd| ad′
(
qd′ − q̂d+d′

)
= γdad′

(
qd′ − q̂dd′

)
= 0. (B17)

In case (ii), if Hd ∈
(
e−η

d

, eη
d
)
, then q̂dd′ =

(
2−

[
e−η

d βdadqd
|γd|ad′qd′

] 1
2

)
qd′ , giving

γdad′
(
qd′ − q̂dd′

)
= γdad

[
e−η

d

βdadqd
|γd| ad′qd′

] 1
2

− 1

 qd′ = |γd| ad′

1−

[
e−η

d

βdadqd
|γd| ad′qd′

] 1
2

 qd′ . (B18)

This implies that replacing γd with |γd|, beliefs will remain in case (ii), with q̂d+d′ =
[
e−η

d βdadqd
|γd|ad′qd′

] 1
2
qd′ . Thus, we

obtain

|γd| ad′
(
qd′ − q̂d+d′

)
= γdad′

(
qd′ − q̂dd′

)
. (B19)

Finally, in case (iii) with Hd > eη
d

and q̂dd′ =
(
2− e−η

d
)
qd′ , if HQ replaces γd with |γd|, beliefs will be q̂d+d′ = e−η

d

qd′

we obtain

|γd| ad′
(
qd′ − q̂d+d′

)
= |γd| ad′

(
1− e−η

d
)
qd′ = γdad′

(
e−η

d

− 1
)
qd′ = γdad′

(
qd′ − q̂dd′

)
. (B20)

Therefore, π̂(γd) = π̂(|γd|) and π̂ is symmetric in γd around zero.

Proof of Corollary 1. Because the participation constraint (8) binds, HQ payoff, π̂, now is equal to∑
d,d′∈{A,B}

d′ ̸=d

[
(1− βd − γd′) qdad + βdadq̂

d
d + γdad′ q̂

d
d′ −

a2d
2θd

−
rσ2

(
β2
d + 2βdγdρ+ γ2

d

)
2

]
(B21)

where {aA, aB} are the Nash equilibrium effort levels of Lemma 3.

Different from the case of Theorem 1, because of the presence of the last term, HQ objective function π̂ admits

multiple strict local maxima. The proof therefore proceeds in two steps. First, we consider candidate optimal contracts

that induce division managers to hold one of four possible configurations of beliefs (implied by Lemma 2). Specifically,

we consider contracts as follows. Case (A): a small exposure to the other division leading to Hd < e−η
d

, case (i) of

Lemma 2; Case (B): a moderate positive exposure to the other division, γd > 0 and Hd ∈
(
e−η

d

, eη
d
)
, within case

(ii) of Lemma 2; Case (B’): a moderate negative exposure to the other division, γd < 0 and Hd ∈
(
e−η

d

, eη
d
)
, also

within case (ii) of Lemma 2; Cases (C) and (C’): a large (negative or positive) exposure to the other division, leading

to Hd > eη
d

case (iii) of Lemma 2. Second, we compare payoffs to HQ from optimal contracts in these regions and

we determine the globally optimal contract.

Case (A): If Hd < e−η
d

, have q̂dd = e−η
d

qd and q̂dd′ = qd′ , which do not depend on γd. Similarly, by Lemma 3,

ad = βdθde
−ηdqd, which does not depend on γd as well. Therefore, setting

∂π̂

∂γd
= −rσ2 (ρβd + γd) = 0 (B22)

gives γd = −ρβd and γd is set to hedge risk with no effect on incentives. Substituting in π̂ and differentiating we

obtain
∂π̂

∂βd
= (1− 2βd) θdqq̂

d
d + βdθd

(
q̂dd

)2

− rσ2βd
(
1− ρ2

)
(B23)

Therefore

β1
d ≡ 1

1 +
(
1− q̂dd/q

)
+ rσ2 (1− ρ2) /(θqq̂dd)

. (B24)

After substitution, this gives HQ payoff under condition (S)

π̂1 ≡
[
e−ηθq2

]2
(2− e−η) e−ηθq2 + rσ2 (1− ρ2)

. (B25)

Case (B): If γd > 0 and Hd ∈
(
e−η, eη

)
, we can express the payoff to HQ as

π̂ = (1− βA − γB) aAqA + (1− βB − γA) aBqB + ûA(aA, q̂
A(aA, wA)) + ûB(aB , q̂

B(aB , wB)), (B26)
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where ûd(ad, q̂
d(ad, wd)) = min

q̂d∈Kq̂
d
ûd, with

ûd(ad, q̂
d(ad, wd)) = βdadq̂

d
d + γdad′ q̂

d
d′ −

rσ2

2

(
β2
d + 2ρβdγd + γ2

d

)
− a2d

2θd
= −sd, (B27)

and where ǎd is the Nash equilibrium given by (B16). Because ûd is strictly concave and the minimum operator is

concave, ûd(ad, q̂
d(ad, wd)) is strictly concave. Therefore, π̂ is strictly concave as well. Thus, first-order conditions of

optimality are sufficient for a local optimum. Similar to the proof of Theorem 1, we have

dπ̂

dβd
= −qdǎd + (1− βd − γd′) qd

∂ǎd
∂βd

+ (1− βd′ − γd) qd′
∂ǎd′

∂βd
(B28)

+
dûd(ǎd, q̂

d(ǎd, wd))

dβd
+
dûd′(ǎd′ , q̂

d′(ǎd′ , wd′))

dβd
.

In this region, from (B16), we have ∂ǎd
∂βd

= 3ǎd
8βd

and
∂ǎd′
∂βd

=
ǎd′
8βd

. Because ∂ûd
∂ǎd′

= γdq̂
d
d′ and

∂ûd
∂βd

= adq̂
d
d−rσ2 (βd + ργd),

by applying the envelope theorem to ûd(ǎd, q̂
d):

dûd(ǎd, q̂
d(ǎd, wd))

dβd
= adq̂

d
d − rσ2 (βd + ργd) + γdq̂

d
d′
ǎd′

8βd
. (B29)

Similarly, because
∂ûd′
∂βd

= 0 and
∂ûd′
∂ǎd

= γd′ q̂
d′
d , we obtain

dπ̂

dβd
= −ad

(
qd − q̂dd

)
+ (1− βd − γd′) qd

3ǎd
8βd

+ (1− βd′ − γd) qd′
ǎd′

8βd
(B30)

−rσ2 (βd + ργd) + γdq̂
d
d′
ǎd′

8βd
+ γd′ q̂

d′
d
3ǎd
8βd

.

Consider now γd. We have that

dπ̂

dγd
= −qd′ ǎd′ + (1− βd − γd′) qd

∂ǎd
∂γd

+ (1− βd′ − γd) qd′
∂ǎd′

∂γd
(B31)

+
dûd(ǎd, q̂

d(ǎd, wd))

dγd
+
dûd′(ǎd′ , q̂

d′(ǎd′ , wd′))

dγd
.

Because ∂ûd
∂γd

= ǎd′ q̂
d
d′ − rσ2 (γd + ρβd),

∂ûd
∂ǎd′

= γdq̂
d
d′ , and

∂ǎd′
∂γd

=
ǎd′
8γd

, applying the envelope theorem to ûd(ǎd, q̂
d),

dûd(ǎd, q̂
d(ad, wd))

dγd
= ad′ q̂

d
d′ − rσ2 (γd + ρβd) + γdq̂

d
d′
ǎd′

8γd
. (B32)

Similarly, because
∂ûd′
∂γd

= 0,
∂ûd′
∂ǎd

= γd′ q̂
d′
d , and ∂ǎd

∂γd
= 3ǎd

8γd
, we obtain

dπ̂

dγd
= −ǎd′

(
qd′ − q̂dd′

)
+ (1− βd − γd′) qd

3ǎd
8γd

+ (1− βd′ − γd) qd′
ǎd′

8γd
(B33)

−rσ2 (γd + ρβd) + γdq̂
d
d′
ǎd′

8γd
+ γd′ q̂

d′
d
3ǎd
8γd

.

Thus, from (B30) and (B33), we obtain the first-order conditions

dπ̂

dβd
= −ǎd

(
qd − q̂dd

)
− rσ2 (βd + ργd) +

∆d

βd
= 0, (B34)

dπ̂

dγd
= −ǎd′

(
qd′ − q̂dd′

)
− rσ2 (γd + ρβd) +

∆d

γd
= 0,

where ∆d ≡ (1− βd − γd′) qd
3ǎd
8

+ (1− βd′ − γd) qd′
ǎd′
8

+ γdq̂
d
d′
ǎd′
8

+ γd′ q̂
d′
d

3ǎd
8
, giving

βdǎd
(
qd − q̂dd

)
+ rσ2 (β2

d + ργdβd
)
= γdǎd′

(
qd′ − q̂dd′

)
+ rσ2 (γ2

d + ρβdγd
)
. (B35)

By Lemma 2, we have that βdǎdq̂
d
d = γdǎd′ q̂

d
d′ , which implies that

βdǎdqd + rσ2β2
d = γdǎd′qd′ + rσ2γ2

d (B36)

We will guess and verify that, due to the symmetry condition (S), it is optimal to implement symmetric effort,

ǎd = ǎd′ = ǎ, and that qd = q, ηd = η, and θd = θ. Define f (x) ≡ xǎq + rσ2x2. Note f ′ (x) = ǎq + 2rσ2x > 0 for
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x > 0, so that f is monotonic over positive numbers and f (γd) = f (βd) if and only if γd = βd. Thus, q̂
d
d = q̂dd′ = e−

η
2 q

and ǎd = e−
η
2 θβ

3
4
d β

1
4
d′q. In order to optimally implement the same effort, it must be that βd = βd′ , so ǎ = e−

η
2 θβq.

Thus, we obtain the first-order condition

dπ̂

dβd
= −θβdq̂dd

(
q − q̂dd

)
+ (1− 2βd) qq̂

d
d
θ

2
− rσ2βd (1 + ρ) +

θβd
(
q̂dd
)2

2
= 0. (B37)

Therefore

β2
d ≡ 1

1 + 3
(
1− q̂dd/q

)
+ 2rσ2 (1 + ρ) /(θqq̂dd)

. (B38)

After substitution, this gives HQ payoff

π̂2 ≡ θ2e−ηq4

θe−
η
2 q2

(
4− 3e−

η
2

)
+ 2rσ2 (1 + ρ)

. (B39)

Because βd is the same for both divisions, this verifies that a is symmetric. Because HQ objective π̂ is strictly concave

on this region, there is only one solution on this region, so the symmetric solution is the unique solution.

Case (B’): Consider γd < 0 and Hd ∈
(
e−η, eη

)
. Following the same process as in case (B) above, we have

dπ̂

dβd
= −qdǎd + (1− βd − γd′) qd

∂ǎd
∂βd

+ (1− βd′ − γd) qd′
∂ǎd′

∂βd
(B40)

+
dûd(ǎd, q̂

d(ǎd, wd))

dβd
+
dûd′(ǎd′ , q̂

d′(ǎd′ , wd′))

dβd
.

Because in this region ∂ǎd
∂βd

= 3ǎd
8βd

and
∂ǎd′
∂βd

=
ǎd′
8βd

, we obtain that

dπ̂

dβd
= −ad

(
qd − q̂dd

)
+ (1− βd − γd′) qd

3ǎd
8βd

+ (1− βd′ − γd) qd′
ǎd′

8βd
(B41)

−rσ2 (βd + ργd) + γdq̂
d
d′
ǎd′

8βd
+ γd′ q̂

d′
d
3ǎd
8βd

.

Consider now γd. We have that

dπ̂

dγd
= −qd′ ǎd′ + (1− βd − γd′) qd

∂ǎd
∂γd

+ (1− βd′ − γd) qd′
∂ǎd′

∂γd
(B42)

+
dûd(ǎd, q̂

d(ǎd, wd))

dγd
+
dûd′(ǎd′ , q̂

d′(ǎd′ , wd′))

dγd
.

Because ∂ǎd
∂γd

= 3ǎd
8γd

,
∂ǎd′
∂γd

=
ǎd′
8γd

and ∂ûd
∂ǎd′

= γdq̂
d
d′ , by applying the envelope theorem on ûd′(ǎd′ , q̂

d′), we obtain that

dûd(ǎd, q̂
d(ad, wd))

dγd
= ad′ q̂

d
d′ − rσ2 (γd + ρβd) + q̂dd′

ǎd′

8
. (B43)

Similarly, because
∂ûd′
∂γd

= 0,
∂ûd′
∂ǎd

= γd′ q̂
d′
d , and ∂ǎd

∂γd
= 3ǎd

8γd
, by applying the envelope theorem on ûd′(ǎd′ , q̂

d′), we

obtain that
dûd′(ǎd′ , q̂

d′(ǎd′ , wd′))

dγd
= γd′ q̂

d′
d
3ǎd
8γd

. (B44)

Together (B43) and (B44) give that

dπ̂

dγd
= −ǎd′

(
qd′ − q̂dd′

)
+ (1− βd − γd′) qd

3ǎd
8γd

+ (1− βd′ − γd) qd′
ǎd′

8γd
(B45)

−rσ2 (γd + ρβd) + q̂dd′
ǎd′

8
+ γd′ q̂

d′
d
3ǎd
8γd

.

Thus, from (B41) and (B45), we obtain the first-order conditions

dπ̂

dβd
= −ǎd

(
qd − q̂dd

)
− rσ2 (βd + ργd) +

∆d

βd
= 0, (B46)

dπ̂

dγd
= −ǎd′

(
qd′ − q̂dd′

)
− rσ2 (γd + ρβd) +

∆d

γd
= 0,
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where ∆d ≡ (1− βd − γd′) qd
3ǎd
8

+ (1− βd′ − γd) qd′
ǎd′
8

+ γdq̂
d
d′
ǎd′
8

+ γd′ q̂
d′
d

3ǎd
8
, giving

βdǎd
(
qd − q̂dd

)
+ rσ2 (β2

d + ργdβd
)
= γdǎd′

(
qd′ − q̂dd′

)
+ rσ2 (γ2

d + ρβdγd
)
. (B47)

Again, in this region, q̂dd =
[
e−η

d

Hd

] 1
2
qd, and q̂

d
d′ =

(
2−

[
e−η

d

H−1
d

] 1
2

)
qd′ , where Hd =

|γd|ad′qd′
βdadqd

. Thus,

γdǎd′
(
qd′ − q̂dd′

)
= γdǎd′qd′

(
e−

ηd

2 H
− 1

2
d − 1

)
= −γdǎd′qd′ − e−

ηd

2 (βdadqd |γd| ad′qd′)
1
2 . (B48)

Similarly,

βdǎdq̂
d
d = e−

ηd

2 (βdǎdqd |γd| ǎd′qd′)
1
2 (B49)

Therefore, after substitution, we obtain that (B47) becomes

βdǎdqd + rσ2β2
d = |γd| ǎd′qd′ + rσ2γ2

d . (B50)

We guess again that HQ optimally implement the same effort from both divisions, ǎd = ǎd′ , which implies that

f (|γd|) = f (βd), where again f (x) ≡ xǎq + rσ2x2. This implies that |γd| = βd, or equivalently, that γd = −βd, so
that Hd = 1. Thus, q̂dd = e−

η
2 q, and q̂dd′ =

(
2− e−

η
2

)
q. To be consistent with this guess, it must be that βd′ = βd,

so that ǎd = ǎd′ = e−
η
2 θβdq. Substituting in π̂ and differentiating we obtain

dπ̂

dβd
= −θβdq̂dd

(
qd − q̂dd

)
− rσ2β (1 + ρ) +

1

2
(1− 2βd) θqq̂

d
d +

1

2
βdθ

(
q̂dd

)2

(B51)

β3
d ≡ 1

1 + 3(1− q̂dd/q) + 2rσ2 (1− ρ) /(θqq̂dd)
. (B52)

After substitution, this gives HQ payoff

π̂3 ≡ θ2e−ηq4

θe−
η
2 q2

(
4− 3e−

η
2

)
+ 2rσ2 (1− ρ)

, (B53)

which verifies the guess that HQ optimally implements symmetric effort. Comparing π̂2 and π̂3, observe that they

differ only for the final term in the denominator. Thus, π̂3 ⋛ π̂2 as ρ ⋛ 0, and

max
{
π̂2, π̂3} =

θ2e−ηq4

θe−
η
2 q2

(
4− 3e−

η
2

)
+ 2rσ2 (1− |ρ|)

. (B54)

Case (C): If γd > eηβd, we have that q̂dd = qd and q̂dd′ = e−ηqd′ , so

∂π̂

∂γd
= −ad′qd′

(
1− e−η

)
− rσ2 (ρβd + γd) < 0, (B55)

and setting γd > eηβd is not optimal. Similarly, if γd < −eηβd, we have that q̂dd = qd and q̂dd′ =
(
2− e−η

)
q

∂π̂

∂γd
= ad′qd′

(
1− e−η

)
+ rσ2 (|γd| − ρβd) > 0 (B56)

and setting γd < −eηβd is not optimal. Thus, Hd ≤ eη.

The second and final step is to compare max
{
π̂2, π̂3

}
and π̂1. Let

f (η) ≡ 2
(
1− e−

η
2

)2

θq2 + rσ2 (1− |ρ|) [eη (1 + |ρ|)− 2] , (B57)

so that max
{
π̂2, π̂3

}
> π̂1 if and only if f > 0. Note f (0) = −rσ2 (1− |ρ|)2 < 0,

f ′ (η) = 2
(
1− e−

η
2

)
e−

η
2 θq2 + rσ2eη

(
1− ρ2

)
> 0 (B58)

and limη→∞ f (η) = +∞, which implies there is a unique η̄ such that max
{
π̂2, π̂3

}
> π̂1 if and only if η > η̄. Thus,

for η ≤ η̄ the optimal contract is in Case (A), with βd = β1
d and γd = −ρβd. For η > η̄ the optimal contract is in

Case (B) for ρ < 0, with βd = β2
d and |γd| = βd, but in Case (B’) for ρ > 0, with βd = β3

d and |γd| = βd.

Finally, note that the first term of f , 2
(
1− e−

η
2

)2

θq2, is strictly positive. Because f (η̄) = 0, it must be that
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rσ2 (1− |ρ|)
[
eη̄ (1 + |ρ|)− 2

]
< 0. This implies that ∂f

∂r
= σ2 (1− |ρ|) [eη (1 + |ρ|)− 2] < 0 in a neighborhood of η̄.

By the implicit function theorem, we obtain that dη̄
dr

= −
∂f
∂r
f ′(η) > 0, and η̄ is increasing in r. For ρ ̸= 0, define

ηρ ≡ − ln (|ρ|) and note that

f (ηρ) = 2
(
1−

√
|ρ|

)2

θq2 + rσ2 (1− |ρ|)2

|ρ| > 0 (B59)

which implies that η̄ < ηρ. Finally, note that ∂f
∂|ρ| = 2rσ2 (1− eη |ρ|) > 0 because η < ηρ, so

dη̄
d|ρ| < 0.

Proof of Theorem 3. We guess and verify that HQ has positive exposure to both divisions, ϕd = 1− βd− γd > 0,

and that beliefs are as in case (ii) of Lemma 4, HHQ
d ∈

(
e−η

HQ

, eη
HQ

)
. Because (8) binds and r = 0, HQ payoff π̂

is equal to ∑
d,d′∈{A,B}

d ̸=d′

[
adqd − (1− βd − γd′) ad

(
qd − q̂HQd

)
− βdad

(
qd − q̂dd

)
− γdad′

(
qd′ − q̂dd′

)]
, (B60)

where q̂d = (q̂dd , q̂
d
d′) are division manager beliefs from Lemma 2, ad are the Nash equilibrium effort levels from Lemma

3, and q̂HQ = (q̂HQd , q̂HQd′ ) are HQ beliefs from Lemma 4. The proof is in two steps and is similar to the proof of

Theorem 1. First, we show that γd < 0 is suboptimal; then we find the optimal contract for γd ≥ 0.

Similar to Theorem 1, switching from γd to |γd| does not affect q̂dd , and thus does not affect ad and βdad
(
qd − q̂dd′

)
.

Letting again q̂d+d′ be the belief held by a division manager when receiving |γd| instead of γd < 0, we have that

γdad′
(
qd′ − q̂dd′

)
= |γd| ad′

(
qd′ − q̂d+d′

)
for all γd < 0. This implies that

(1− βd′ − |γd|) ad′
(
qd′ − q̂HQd′

)
< (1− βd′ − γd) ad′

(
qd′ − q̂HQd′

)
(B61)

for γd < 0 because q̂HQd′ < qd′ , and thus that setting γd < 0 is dominated by offering its absolute value, |γd|.
Because HQ strictly prefers offering |γd| > 0 to all γd < 0, it is sufficient to consider γd ≥ 0. If HQ sets

0 ≤ γd < e−η βdadqd
ad′qd′

, division managers beliefs are in case (i) of Lemma 2, with q̂dd = e−ηqd and q̂dd′ = qd, giving

ad = βdθde
−ηqd. Further, ∂π̂

∂γd
= ad′

(
q̂dd′ − q̂HQd′

)
> 0 because q̂HQd′ ∈

(
e−η

HQ

qd, qd
)
, so setting γd < e−η βdadqd

ad′qd′
is

not optimal. Alternatively, if HQ sets γd > eη βdadqd
ad′qd′

, division manager beliefs are in case (iii) of Lemma 2, with

q̂dd = qd and q̂dd′ = e−ηqd′ , giving ad = βdθdqd. Thus, ∂π̂
∂γd

= −ad′
(
q̂HQd′ − q̂dd′

)
< 0 because q̂HQd′ ∈

(
e−η

HQ

qd, qd
)

and ηHQ < η, so setting γd > eη βdadqd
ad′qd′

is not optimal. Thus, HQ sets e−η βdadqd
ad′qd′

≤ γd ≤ eη βdadqd
ad′qd′

and induce beliefs

that are in case (ii) of Lemma 2, with Hd ∈
(
e−η, eη

)
.

Similar to the proof of Theorem 1, we can express HQ’s objective as

π̂ = ϕAǎAq̂
HQ
A + ϕB ǎB q̂

HQ
B + ûA(aA, q̂

A(aA, wA)) + ûB(aB , q̂
B(aB , wB)), (B62)

where ϕd = 1 − βd − γd′ , ûd(ǎd, q̂
d) = min

q̂d∈Kq̂
d
ûd, with ûd = βdǎdq̂

d
d + γdǎd′ q̂

d
d′ −

ǎ2d
2θd

= 0, and ǎd is the Nash

equilibrium of division managers given by (B16) in the proof of Lemma 3. Consider first

dπ̂

dβd
= −q̂HQd ǎd + ϕdǎd

∂q̂HQd
∂βd

+ ϕd′ ǎd′
∂q̂HQd′

∂βd
+ ϕdq̂

HQ
d

∂ǎd
∂βd

+ ϕd′ q̂
HQ
d′

∂ǎd′

∂βd
(B63)

+
dûd(ǎd, q̂

d(ǎd, wd))

dβd
+
dûd′(ǎd′ , q̂

d′(ǎd′ , wd′))

dβd
.

Because q̂HQ solves (22), from the envelope theorem ϕdǎd
∂q̂

HQ
d
∂βd

+ ϕd′ ǎd′
∂q̂

HQ

d′
∂βd

= 0, which, together with

dûd(ǎd,q̂
d(ǎd,wd))
dβd

= adq̂
d
d + γdq̂

d
d′
ǎd′
8βd

and
dûd′ (ǎd′ ,q̂

d′ (ǎd′ ,wd′ ))
dβd

= γd′ q̂
d′
d

3ǎd
8βd

from the proof of Theorem 1, gives

dπ̂

dβd
= −ǎd

(
q̂HQd − q̂dd

)
+ ϕdq̂

HQ
d

3ad
8βd

+ ϕd′ q̂
HQ
d′

ad′

8βd
+ γdq̂

d
d′
ǎd′

8βd
+ γd′ q̂

d′
d
3ǎd
8βd

. (B64)

Consider now γd. Applying again the envelope theorem on π̂
(
q̂HQ

)
, we obtain

dπ̂

dγd
= −q̂HQd′ ǎd′ + ϕdq̂

HQ
d

∂ǎd
∂γd

+ ϕd′ q̂
HQ
d′

∂ǎd′

∂γd
(B65)

+
dûd(ǎd, q̂

d(ǎd, wd))

dγd
+
dûd′(ǎd′ , q̂

d′(ǎd′ , wd′))

dγd
.
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Substituting dûd(ǎd,q̂
d(ad,wd))
dγd

= ad′ q̂
d
d′ + γdq̂

d
d′
ǎd′
8γd

and
dûd′ (ǎd′ ,q̂

d′ (ǎd′ ,wd′ ))
dγd

= γd′ q̂
d′
d

3ǎd
8γd

from the proof of Theorem 1,

dπ̂

dγd
= −ǎd′

(
q̂HQd′ − q̂dd′

)
+ ϕdq̂

HQ
d

3ǎd
8γd

+ ϕd′ q̂
HQ
d′

ǎd′

8γd
+ γdq̂

d
d′
ǎd′

8γd
+ γd′ q̂

d′
d
3ǎd
8γd

. (B66)

Thus, from (B64) and (B66) we obtain the first-order conditions

dπ̂

dβd
= −ǎd

(
q̂HQd − q̂dd

)
+

∆d

βd
= 0,

dπ̂

dγd
= −ǎd′

(
q̂HQd′ − q̂dd′

)
+

∆d

γd
= 0, (B67)

where ∆d ≡ ϕdq̂
HQ
d

3ǎd
8

+ ϕd′ q̂
HQ
d′

ǎd′
8

+ γdq̂
d
d′
ǎd′
8

+ γd′ q̂
d′
d

3ǎd
8
, giving

βdǎd
(
q̂HQd − q̂dd

)
= γd′ ǎd′

(
q̂HQd′ − q̂dd′

)
. (B68)

Because, from Lemma 2, βdǎdq̂
d
d = γdǎd′ q̂

d
d′ , we have that (B68) implies βdǎdq̂

HQ
d = γdǎd′ q̂

HQ
d′ . Because HHQ

d ∈(
e−η

HQ

, eη
HQ

)
, from Lemma 4, ϕdadq̂

HQ
d = ϕd′ad′ q̂

HQ
d′ . Thus,

ad′ q̂
HQ

d′

adq̂
HQ
d

= βd
γd

= ϕd
ϕd′

. Define md such that βd = mdϕd,

so γd = mdϕd′ , which implies ϕd = 1−βd−γd′ = 1
1+md+md′

, and thus βd = γd = md
1+md+md′

. Substituting in γd = βd

into ǎ from Lemma 3, we have ǎd =
(
θ3dθd′

) 1
4 e−

η
2 (β3

dβd′)
1
4 (qdqd′)

1
2 . Substituting into HQ objective, we obtain

π̂ = (θAθB)
1
2 qAqB(βAβB)

1
2

[
2e−

ηHQ

2 e−
η
2 (1− βA − βB) +

3

2
e−η(βA + βB)

]
. (B69)

Differentiating, we obtain the first-order condition

dπ̂

dβd
= (θAθB)

1
2 qdqd′(β

−1
d βd′)

1
2

[
e−

ηHQ

2 (1− 3βd − βd′) e
− η

2 +
3

4
e−η(3βd + βd′)

]
= 0, (B70)

giving

e
1
2 (η−η

HQ) + 3

(
3

4
− e

1
2 (η−η

HQ)
)
βd +

(
3

4
− e

1
2 (η−η

HQ)
)
βd′ = 0. (B71)

Because this holds for both divisions, after solving we obtain

βA = βB =
1

4− 3e
1
2 (ηHQ−η)

=
1

1 + 3(1− q̂dd/q̂
HQ
d )

= γd, (B72)

giving (25). Note β < 1
2
because η > ηHQ + 2 ln 3

2
and HHQ

d = Ĥd ∈
(
e−η

HQ

, eη
HQ

)
. This implies that

ǎd =
(θ3dθd′)

1
4 e

− η
2 (qdqd′ )

1
2

4−3e
1
2 (ηHQ−η)

, and thus that q̂dd = e−
η
2 qdĤ

1
2
d and q̂HQd = e−

ηHQ

2 qdĤ
1
2
d .

Proof of Theorem 4. Because the participation constraint (8) binds, we can express HQ’s payoff as

π̂ = ϕAaAq̂
HQ
A + ϕBaB q̂

HQ
B + ûA(aA, q̂

A(aA, wA)) + ûB(aB , q̂
B(aB , wB)), (B73)

where ϕd = 1− βd − γd′ and ûd(ad, q̂
d(ad, wd)) = min

q̂d∈Kq̂
d
ûd, with

ûd(ad, q̂
d(ad, wd)) = βdadq̂

d
d + γdad′ q̂

d
d′ −

rσ2

2

(
β2
d + 2ρβdγd + γ2

d

)
− a2d

2θd
= −sd, (B74)

where q̂d is from Lemma 2, ad is from Lemma 3, and q̂HQ is from Lemma 4. Different from Theorem 3, and similar to

Theorem 2, because of division manager risk aversion, HQ objective function π admits again multiple local maxima.

The proof proceeds again in two steps. First, we consider candidate optimal contracts that induce division managers

to hold one of four possible configurations of beliefs (implied by Lemma 2) in the same four cases examined in the

proof of Corollary 1, Cases (A), (B), (B’), (C), and (C’). Second, we compare payoffs to HQ from optimal contracts

in these regions and we determine the globally optimal contract.

Case (A): If Hd < e−η, have q̂dd = e−ηqd and q̂dd′ = qd′ , which do not depend on γd. Similarly, by Lemma 3,

ad = βdθde
−ηqd, which implies that both ad and ad′ do not depend on γd. Therefore,

dπ̂

dγd
= −q̂HQd′ ad′ + ϕdad

∂q̂HQd
∂γd

+ ϕd′ad′
∂q̂HQd′

∂γd
+ ϕdq̂

HQ
d

∂ad
∂γd

+ ϕd′ q̂
HQ
d′

∂ad′

∂γd
(B75)

+
dûd(ad, q̂

d(ad, wd))

dγd
+
dûd′(ad′ , q̂

d′(ad′ , wd′))

dγd
,

9



where, by the envelope theorem on π̂, we have ϕdad
∂q̂

HQ
d
∂γd

+ ϕd′ad′
∂q̂

HQ

d′
∂γd

= 0. In addition, on this region, ∂ad
∂γd

=

∂ad′
∂γd

= 0, which implies that dûd(ad,q̂
d(ad,wd))
dγd

= ∂û
∂γd

= ad′ q̂
d
d′ − rσ2 (ρβd + γd) and

dûd′ (ad′ ,q̂
d′ (ad′ ,wd′ ))
dγd

= 0. Thus,

∂π̂

∂γd
= ad′

(
qd′ − q̂HQd′

)
− rσ2 (ρβd + γd) . (B76)

Because HQ has long exposure to the symmetric divisions, q̂HQd = q̂HQd′ = e−
ηHQ

2 q. Thus, ∂π̂
∂γd

= 0 if and only if

γ = −Mβ, where M ≡ ρ− ρ̄ and ρ̄ ≡ θq̂dd
rσ2

(
qd′ − q̂HQd′

)
= e−ηθq2

rσ2

(
1− e−

ηHQ

2

)
. Similarly,

dπ̂

dβd
= q̂dd q̂

HQ
d θ (1− 2βd)−Mβd

(
qd′ − q̂HQd′

)
q̂ddθ + βdθ

(
q̂dd

)2

− rσ2βd (1− ρM) . (B77)

Note 1 − ρM = 1 − ρ2 + ρρ̄ and 1 − 2ρM +M2 = 1 − ρ2 + ρ̄2, so 1 − ρM = 1 − 2ρM +M2 + ρ̄ (ρ− ρ̄). Also,

rσ2ρ̄ (ρ− ρ̄) = θ
(
qd′ − q̂HQd′

)
q̂dd (ρ− ρ̄). Thus, we obtain the first-order condition

dπ̂

dβd
= q̂dd q̂

HQ
d θ (1− 2βd) + βdθ

(
q̂dd

)2

(B78)

−2Mβd
(
qd′ − q̂HQd′

)
q̂ddθ − rσ2βd

(
1− 2ρM +M2) = 0,

which implies

β4
d ≡ 1

1 + 2(ρ− ρ̄)

(
q̂d
d′

q̂
HQ

d′
− 1

)
+

(
1− q̂d

d

q̂
HQ
d

)
+

rσ2(1−ρ2+ρ̄2)
θq̂

HQ
d

q̂d
d

. (B79)

After substitution, this gives HQ payoff

π̂4 ≡ e−(η
HQ+2η)θ2q4(

2M + 2 (1−M) e−
ηHQ

2 − e−η
)
e−ηθq2 + rσ2 (1− 2ρM +M2)

. (B80)

Case (B): If γd > 0 and Hd ∈
(
e−η, eη

)
, as in the proof of Theorem 3, applying the envelope theorem on π̂

(
q̂HQ

)
,

we have

dπ̂

dβd
= −q̂HQd ǎd + (1− βd − γd′) q̂

HQ
d

∂ǎd
∂βd

+ (1− βd′ − γd) q̂
HQ
d′

∂ǎd′

∂βd
(B81)

+
dûd(ǎd, q̂

d(ǎd, wd))

dβd
+
dûd′(ǎd′ , q̂

d′(ǎd′ , wd′))

dβd
.

Because in this region ∂ǎd
∂βd

= 3ǎd
8βd

and
∂ǎd′
∂βd

=
ǎd′
8βd

, we have

dπ̂

dβd
= −ad

(
q̂HQd − q̂dd

)
+ (1− βd − γd′) q̂

HQ
d

3ǎd
8βd

+ (1− βd′ − γd) q̂
HQ
d′

ǎd′

8βd

−rσ2 (βd + ργd) + γdq̂
d
d′
ǎd′

8βd
+ γd′ q̂

d′
d
3ǎd
8βd

. (B82)

Consider now γd. Applying again the envelope theorem on π̂
(
q̂HQ

)
, we have

dπ̂

dγd
= −q̂HQd′ ǎd′ + (1− βd − γd′) q̂

HQ
d

∂ǎd
∂γd

+ (1− βd′ − γd) q̂
HQ
d′

∂ǎd′

∂γd
(B83)

+
dûd(ǎd, q̂

d(ǎd, wd))

dγd
+
dûd′(ǎd′ , q̂

d′(ǎd′ , wd′))

dγd
.

Because in this region ∂ǎd
∂γd

= 3ǎd
8γd

and
∂ǎd′
∂γd

=
ǎd′
8γd

, we have that

dπ̂

dγd
= −ǎd′

(
q̂HQd′ − q̂dd′

)
+ (1− βd − γd′) q̂

HQ
d

3ǎd
8γd

+ (1− βd′ − γd) q̂
HQ
d′

ǎd′

8γd

−rσ2 (γd + ρβd) + γdq̂
d
d′
ǎd′

8γd
+ γd′ q̂

d′
d
3ǎd
8γd

. (B84)
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Thus, from (B82) and (B84) we obtain the first-order conditions

dπ̂

dβd
= −ad

(
q̂HQd − q̂dd

)
− rσ2 (βd + ργd) +

∆d

βd
= 0 (B85)

dπ̂

dγd
= −ad′

(
q̂HQd′ − q̂dd′

)
− rσ2 (ρβd + γd) +

∆d

γd
= 0,

where ∆d = ϕdq̂
HQ
d

3ad
8

+ ϕd′ q̂
HQ
d′

ad′
8

+ γdq̂
d
d′
ad′
8

+ γd′ q̂
d′
d

3ad
8
, giving

βdad
(
q̂HQd − q̂dd

)
+ rσ2 (β2

d + ργdβd
)
= γdad′

(
q̂HQd′ − q̂dd′

)
+ rσ2 (ργdβd + γ2

d

)
(B86)

From Lemma 2, we have βdadq̂
d
d = γdad′ q̂

d
d′ . Also, because ϕd > 0 and HQ has beliefs as in case (ii) of Lemma 4,

with ϕdadq̂
HQ
d = ϕd′ad′ q̂

HQ
d′ , we have

βdadq̂
HQ
d + rσ2β2

d = γd
ϕd
ϕd′

adq̂
HQ
d + rσ2γ2

d . (B87)

We now show that ϕA = ϕB . Suppose to the contrary that ϕA > ϕB . Because (B87) holds for both divisions, βA > γA

but βB < γB . This would imply, however, that ϕA = 1 − βA − γB < 1 − βB − γA = ϕB , which is a contradiction.

Similarly, ϕA < ϕB would also imply a contradiction. Thus, ϕA = ϕB . Further, this implies(
adq̂

HQ
d + rσ2 (βd + γd)

)
(βd − γd) = 0. (B88)

Since the first term is strictly positive, βd = γd. Further, because the divisions are symmetric, the first-order conditions

are symmetric, which implies the existence of a symmetric solution, βA = βB . Because the problem is strictly concave

on this region, this must be the unique solution. Thus, aA = aB = e−
η
2 θβq. Also, q̂HQd = q̂HQd′ = e−

ηHQ

2 q and

q̂dd = q̂dd′ = e−
η
2 q, so ∆d = (1− 2β) e−

ηHQ

2 q e
− η

2 θβq
2

+ βe−
η
2 q e

− η
2 θβq
2

, which gives the first-order condition

dπ̂

dβd
=

1

2
θq̂dd q̂

HQ
d − 2βθq̂dd q̂

HQ
d +

3

2
θβ

(
q̂dd

)2

− rσ2β (1 + ρ) = 0. (B89)

and thus

β5
d ≡ 1

1 + 3
(
1− q̂dd/q̂

HQ
d

)
+ 2rσ2(1+ρ)

θq̂
HQ
d

q̂d
d

= β̂. (B90)

After substitution, this gives HQ payoff

π̂5 ≡ θ2q4e−(η
HQ+η)

θq2
(
4e−

(ηHQ+η)
2 − 3e−η

)
+ 2rσ2 (1 + ρ)

. (B91)

Theorem 3 showed that γd > 0 is optimal when r = 0. Similarly, γd > 0 when ρ = 0. Further, for ρ < 0, granting

γd < 0 results in a larger risk premium, rσ2

2

(
β2
d + 2ρβd + γ2

d

)
, than setting γd > 0. Thus, γd = βd dominates all

γd < 0 with Hd ∈
(
e−η, eη

)
for all ρ ≤ 0. Note that π̂5 ≥ π̂4 if and only if gL ≥ 0, where

gL ≡
(
2M + 2 (1−M) e−

ηHQ

2 + 2e−η − 4e−
(ηHQ+η)

2

)
e−ηθq2 (B92)

+rσ2 (1− 2ρM +M2 − 2e−η (1 + ρ)
)
.

and note that gL|η=ηHQ=0 = −rσ2 (1 + ρ)2 < 0, which implies that π̂4 > π̂5 for η = ηHQ = 0. Note also that

∂gL
∂M

= 2

(
1− e−

ηHQ

2

)
e−ηθq2 +2rσ2 (M − ρ) = 0, because M ≡ ρ− ρ̄ and ρ̄ ≡ e−ηθq2

rσ2

(
1− e−

ηHQ

2

)
, and thus that

∂gL
∂η

= −gL + 2

(
e−

(ηHQ+η)
2 − e−η

)
e−ηθq2 + rσ2

(
1− 2ρM +M2

)
> 0 for all gL < 0. This implies that, for a given

ηHQ, there is a unique η̂ so that gL
(
η̂, ηHQ

)
= 0, and for all η > η̂, it is gL > 0 and thus π̂5 > π̂4.

Consider now ηHQ. Note first that ∂gL
∂ηHQ =

(
2e−

η
2 − (1−M)

)
e−

ηHQ

2 e−ηθq2 > 0 for η < η′ ≡ −2 ln 1
2
(1−M).

Substituting η′ in gL, we obtain

gL|η=η′ ≡
(1 +M)2 (1−M)2

8
θq2 + rσ2

(
1− 2ρM +M2 − (1−M)2

4
(1 + ρ)

)
> 0, (B93)
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where the inequality is obtained by noting that h (ρ) ≡ 1−2ρM +M2− (1−M)2

4
(1 + ρ) is linear in ρ for any given M ,

thus achieving its minimum at an endpoint. Because h (1) = 1
2
(1−M)2 > 0 and h (−1) = (1 +M)2 > 0, h (ρ) > 0

for all ρ ∈ [−1, 1], so gL|η=η′ > 0. Thus, in the neighborhood of gL = 0, η < η′, so ∂gL
∂ηHQ > 0. Thus, there is a unique

η̂HQ (allowing for the possibility that η̂HQ = 0) such that π̂5 > π̂4 for ηHQ > η̂HQ.

Case (B’): Consider γd < 0 with Hd ∈
(
e−η, eη

)
.

dπ̂

dβd
= −q̂HQd ǎd + (1− βd − γd′) q̂

HQ
d

∂ǎd
∂βd

+ (1− βd′ − γd) q̂
HQ
d′

∂ǎd′

∂βd
(B94)

+
dûd(ǎd, q̂

d(ǎd, wd))

dβd
+
dûd′(ǎd′ , q̂

d′(ǎd′ , wd′))

dβd
.

Because ∂ǎd
∂βd

= 3ǎd
8βd

and
∂ǎd′
∂βd

=
ǎd′
8βd

, we have that

dπ̂

dβd
= −ad

(
q̂HQd − q̂dd

)
+ (1− βd − γd′) q̂

HQ
d

3ǎd
8βd

+ (1− βd′ − γd) q̂
HQ
d′

ǎd′

8βd
(B95)

−rσ2 (βd + ργd) + γdq̂
d
d′
ǎd′

8βd
+ γd′ q̂

d′
d
3ǎd
8βd

.

Consider now γd. We have that

dπ̂

dγd
= −q̂HQd′ ǎd′ + (1− βd − γd′) q̂

HQ
d

∂ǎd
∂γd

+ (1− βd′ − γd) q̂
HQ
d′

∂ǎd′

∂γd
(B96)

+
dûd(ǎd, q̂

d(ǎd, wd))

dγd
+
dûd′(ǎd′ , q̂

d′(ǎd′ , wd′))

dγd
.

Because ∂ǎd
∂γd

= 3ǎd
8γd

,
∂ǎd′
∂γd

=
ǎd′
8γd

, we obtain

dπ̂

dγd
= −ǎd′

(
q̂HQd′ − q̂dd′

)
+ (1− βd − γd′) q̂

HQ
d

3ǎd
8γd

+ (1− βd′ − γd) q̂
HQ
d′

ǎd′

8γd
(B97)

−rσ2 (γd + ρβd) + q̂dd′
ǎd′

8
+ γd′ q̂

d′
d
3ǎd
8γd

.

From (B95) and (B97) we obtain the first-order conditions

dπ̂

dβd
= −ǎd

(
q̂HQd − q̂dd

)
− rσ2 (βd + ργd) +

∆d

βd
= 0, (B98)

dπ̂

dγd
= −ǎd′

(
q̂HQd′ − q̂dd′

)
− rσ2 (γd + ρβd) +

∆d

γd
= 0,

where ∆d ≡ ϕdq̂
HQ
d

3ǎd
8

+ ϕd′ q̂
HQ
d′

ǎd′
8

+ γdq̂
d
d′
ǎd′
8

+ γd′ q̂
d′
d

3ǎd
8
, giving

βdǎd
(
q̂HQd − q̂dd

)
+ rσ2 (β2

d + ργdβd
)
= γdǎd′

(
q̂HQd′ − q̂dd′

)
+ rσ2 (γ2

d + ρβdγd
)
. (B99)

Because the first-order conditions are symmetric, there exists a symmetric solution: βA = βB = β and γA = γB = γ.

Thus, ad = a = e−
η
2 θβ

1
2 |γ|

1
2 q. This also implies that ϕA = ϕB , so q̂

HQ
d = e−

ηHQ

2 q. Also, Hd = |γ|
β
, so q̂dd = e−

η
2

|γ|
1
2

β
1
2
q

and q̂dd′ = (2− e−
η
2
β

1
2

|γ|
1
2
)q. Thus, βaq̂dd = e−

η
2 β

1
2 |γ|

1
2 aq and

γa
(
q̂HQd′ − q̂dd′

)
= γae−

ηHQ

2 q − 2γaq − e−
η
2 β

1
2 |γ|

1
2 aq, (B100)

which implies that

βae−
ηHQ

2 q + rσ2β2 = |γ|
(
2− e−

ηHQ

2

)
aq + rσ2γ2 (B101)

Because γ
β
∈

(
−eη,−e−η

)
, there exists ξ̂ ∈

(
e−η, eη

)
such that γ = −ξ̂β. Substituting in a = e−

η
2 θβξ̂

1
2 q, (B101) is

equivalent to f
(
ξ̂
)
= 0, where

f
(
ξ̂
)
≡

[(
2e

ηHQ

2 − 1

)
ξ̂ − 1

]
e−

ηHQ

2 e−
η
2 ξ̂

1
2 θq2 + rσ2

(
ξ̂2 − 1

)
= 0. (B102)
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Note f
(
e−η

)
< 0 < f (1) = 2

[
e

ηHQ

2 − 1

]
e−

ηHQ+η
2 θq2 and f ′ > 0, so ξ̂ ∈

(
e−η, 1

)
for ηHQ > 0, but ξ̂ = 1 if ηHQ = 0.

Comparative statics on ξ̂ follow because max
{
∂f
∂r
, ∂f
∂σ2 ,

∂f
∂η

}
< 0 < min

{
∂f
∂θ
, ∂f
∂q
, ∂f
∂ηHQ

}
. Further, ∂π̂

∂β
= 0 iff

β =
1

1 +

(
q̂d
d′

q̂
HQ

d′
− 1

)
ξ̂ + 2(1− q̂d

d

q̂
HQ
d

) +
2rσ2(1−ρξ̂)
θq̂

HQ
d

q̂d
d

; γ = −ξ̂β < 0. (B103)

After substitution in π̂, we have

π̂6 ≡ e−(ηHQ+η)ξ̂θ2q4

2e−
ηHQ

2

[
1 +

(
2e

ηHQ

2 − 1

)
ξ̂

]
e−

η
2 ξ̂

1
2 θq2 − 3e−η ξ̂q2θ + rσ2

(
1− 2ρξ̂ + ξ̂2

) . (B104)

Note π̂6 ≥ π̂4 if and only if gS ≥ 0, where

gS ≡
(
2M + 2 (1−M) e−

ηHQ

2 + 2e−η
)
θq2 + eηrσ2 (1− 2ρM +M2) (B105)

−2e−
ηHQ

2

[
1 +

(
2e

ηHQ

2 − 1

)
ξ̂

]
e−

η
2 ξ̂−

1
2 θq2 − rσ2

(
1− 2ρξ̂ + ξ̂2

)
ξ̂

,

with
∂gS
∂η

= eηrσ2 (1− ρ2 + (ρ−M)2
)
+ {e−

ηHQ

2 e−
η
2

[
1 +

(
2e

ηHQ

2 − 1

)
ξ̂

]
ξ̂−

1
2 − 2e−η}θq2. (B106)

Note that

[
1 +

(
2e

ηHQ

2 − 1

)
ξ̂

]
ξ̂−

1
2 is increasing and larger than 2 for ξ̂ ∈

(
e−η, 1

)
, so ∂gS

∂η
> 0. Also, ∂gS

∂ηHQ =

− (1−M) e−
ηHQ

2 θq2 +
(
1− ξ̂

)
e−

ηHQ

2 e−
η
2 ξ̂−

1
2 θq2. Because M < e−η < ξ̂, we have that ∂gS

∂ηHQ < 0. Defining η̂, η̂HQ1

so that gS
(
η̂, η̂HQ1

)
= 0, part (ii)(b) of Theorem 4 is proven.

Case (C): If γd > eηβd,
∂ad
∂γd

= 0, so
∂ad′
∂γd

= 0, and thus ∂π̂
∂γd

= −ad′
(
q̂HQd′ − q̂dd′

)
− rσ2 (ρβ + γ) < 0, so γ ≤ eηβ.

Similarly, for Case (C’), if γd < −eηβd, ∂ad
∂γd

=
∂ad′
∂γd

= 0, so dπ̂
dγd

= −ad′
(
q̂HQd′ − q̂dd′

)
− rσ2 (ρβd + γd) . Because

ϕd′ > 0 > γd, q̂
HQ
d′ < qd′ < q̂dd′ . Also, ρ ∈ (−1, 1). Thus, dπ̂

dγd
> 0 for γd < −eηβd, so it must be that γd ≥ −eηβd.

Therefore, Cases (C) and (C’) are suboptimal.

All that remains to be shown is part (ii)(b) of Theorem 4, by showing that π̂5 ≥ π̂6 when ηHQ is large enough.

Note π̂5 ≥ π̂6 if and only if gE ≥ 0, where

gE ≡ 2e−
ηHQ

2

[
1 +

(
2e

ηHQ

2 − 1

)
ξ̂

]
e−

η
2 ξ̂−

1
2 θq2 + rσ2

(
1− 2ρξ̂ + ξ̂2

)
/ξ̂

−4e−
(ηHQ+η)

2 θq2 − 2rσ2 (1 + ρ) . (B107)

Note ∂gE
∂ξ̂

=
f(ξ̂)
ξ̂2

= 0. Note that

∂gE
∂ηHQ

=
[
−
(
1− ξ̂

)
ξ̂−

1
2 + 2

]
e−

(ηHQ+η)
2 θq2 ≥ 0 (B108)

if and only if ξ̂ ≥ 3− 2
√
2. Recall ξ̂ is strictly decreasing in ηHQ. This implies that gE an inverse U-shaped function

of ηHQ and that there is a unique η̃HQ, defined by ξ̂(η̃HQ) = 3 − 2
√
2, such that ∂gE

∂ηHQ > 0 for ηHQ < η̃HQ and
∂gE
∂ηHQ < 0 for ηHQ > η̃HQ. Next, we will show that gE > 0 for all ηHQ ≥ η̃HQ and, thus, for all ξ̂ ≤ 3− 2

√
2. Note

that, from (B102), we can express (B107) as

gE = 4e−
ηHQ

2 e−
η
2

(
ξ̂−

1
2 − 1

)
θq2 +

f
(
ξ̂
)

ξ̂
+ 2rσ2

[
1

ξ̂
− 2ρ− 1

]
. (B109)

The first term is positive because ξ̂ < 1, the second term is zero, and the third term is positive for all 1

ξ̂
> 3, which

is satisfied for ξ̂ ≤ 3− 2
√
2 < 1

3
. This implies that gE(η

HQ) > 0 for all ηHQ ≥ η̃HQ. Thus, if gE (0) ≥ 0, gE > 0 for

all ηHQ > 0, and thus define η̂HQ2 ≡ 0; otherwise, if gE (0) < 0, there is a unique η̂HQ2 such that gE(η̂
HQ
2 ) = 0, with

13



η̂HQ2 < η̃HQ, completing the proof of Theorem 4.

Proof of Lemma 5. First, the division manager is indifferent between contracts (β, 0, ψ) and (β, 0,−ψ), so we

restrict attention to ψ ≥ 0 (if ψ < 0, the proof follows by substituting in |ψ| for ψ). Next, the division manager is

indifferent between contracts (β, 0, ψ) and (β, ψ, 0). Note granting (β, 0, ψ) gives HQ Π = minqHQ∈KHQ π, where

π = (1− β) aAq
HQ
A + µqHQB − ψµqHQC − s (B110)

Conversely, granting (β, ψ, 0) gives HQ Π = minqHQ∈KHQ π, where

π = (1− β) aAq
HQ
A + (1− ψ)µqHQB − s (B111)

Note that the s and aA will be the same with both contracts. Thus, it is better to grant (β, ψ, 0) than (β, 0, ψ) iff

min
qHQ∈KHQ

(1− β) aAq
HQ
A + (1− ψ)µqHQB ≥ min

qHQ∈KHQ
(1− β) aAq

HQ
A + µqHQB − ψµqHQC (B112)

Let the solution to the left-hand side be q̂HQ and the solution to the right-hand side be q̃HQ. Because ψ > 0, we

know that q̃HQC ≥ qC . First, suppose that ψ ≤ 1. This implies that, by the definition of the minimum,

(1− β) aAq̃
HQ
A + µq̃HQB − ψµq̃HQC ≤ (1− β) aAq̂

HQ
A + µq̂HQB − ψµqC (B113)

≤ (1− β) aAq̂
HQ
A + µq̂HQB − ψµq̂HQB

= min
qHQ∈KHQ

(1− β) aAq
HQ
A + (1− ψ)µqHQB

Because (1− ψ) ≥ 0, q̂HQB ≤ qB , so the second line follows by monotonicity. Therefore, for ψ < 1, it is better to

pay with B than with C. If ψ > 1, by symmetry of the set, because
(
q̂HQA , q̂HQB , qC

)
∈ KHQ and qB = qC , then(

q̂HQA , qB , q̂
HQ
B

)
∈ KHQ. Thus,

(1− β) aAq̃
HQ
A + µq̃HQB − ψµq̃HQC ≤ (1− β) aAq̂

HQ
A + µqB − ψµq̂HQB (B114)

≤ (1− β) aAq̂
HQ
A + µB q̂

HQ
B − ψµB q̂

HQ
B

= min
qHQ∈KHQ

(1− β) aAq
HQ
A + (1− ψ)µBq

HQ
B

The second line holds by monotonicity, because ψ > 1, so HQ has a negative exposure to B, and thus q̂HQB ≥ qB .

Proof of Theorem 5. Note that the participation constraint binds, so we can express the objective as

Π = (1− β) aAq̂
HQ
A + (1− γ)µq̂HQB − ψµq̂HQC + Û (B115)

where q̂HQ solves minqHQ∈KHQ π and û = βaAq
A
A + γµqAB +ψµqAC − rσ2

2

(
β2 + γ2 + ψ2

)
− a2A

2θA
and Û = minqA∈KA û.

Applying the envelope theorem.

dΠ

dβ
= −aAq̂HQA +

∂Û

∂β
+

∂Π

∂aA

∂aA
∂β

(B116)

Because ∂U
∂β

= aAq̂
A
A − rσ2β, we can express this as

dΠ

dβ
= −aA

(
q̂HQA − q̂AA

)
− rσ2β +

∂Π

∂aA

∂aA
∂β

(B117)

Similarly, because ∂U
∂γ

= µq̂AB − rσ2γ and ∂U
∂ψ

= µq̂AC − rσ2ψ we can express

dΠ

dγ
= −µ

(
q̂HQB − q̂AB

)
− rσ2γ +

∂Π

∂aA

∂aA
∂γ

(B118)

and
dΠ

dψ
= −µ

(
q̂HQC − q̂AC

)
− rσ2ψ +

∂Π

∂aA

∂aA
∂ψ

Next, note that HQ will set ψ ̸= 0 only if ∂aA
∂ψ

> 0. Suppose to the contrary that ∂aA
∂ψ

= 0, or equivalently, that

either q̂AC = qC or q̂AC = e−η
A

qC . For ψ > 0, HQ is negative exposed to the source of risk but the DM is positively

exposed, q̂HQC ≥ qC ≥ q̂AC , so
dΠ
dψ

< 0 for such ψ > 0. Similarly, for ψ < 0, q̂HQC ≤ qC ≤ q̂AC , so
dΠ
dψ

> 0 for such

ψ < 0. Thus, either DM will have interior beliefs toward the external risk, so that ∂aA
∂ψ

> 0, or HQ will grant him no
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exposure, ψ = 0.

Thus, we have shown that there are three possible regions. First, it could be possible for HQ to grant only

division-based pay. Second, it could be possible for HQ to grant only division-based pay and the internal risk, but

not the external risk. By Lemma 5, we can exclude the corresponding region of granting only division-based pay and

the external risk for all ηHQ > 0, and it is WLOG optimal to grant the internal risk rather than the external even

when ηHQ = 0 (the visionary HQ is indifferent). Finally, we can consider when HQ grants division-based pay, the

internal risk, and the external risk. As we showed in the previous paragraph, it must grant sufficiently of this to induce

interior beliefs, so that daA
dψ

> 0. Note that, similar to Lemma 2, on this region, interior beliefs satisfy λ = βaAq̂
A
A =

γµB q̂
A
B = ψµC q̂

A
C which implies λ = e−

ηA

3 [βaAqAγµBqBψµCqC ]
1
3 , so q̂AA = e−

ηA

3 β
− 2

3
A a

− 2
3

A [qAγµBqBψµCqC ]
1
3 , q̂AB =

e−
ηA

3 γ− 2
3 µ

− 2
3

B [βaAqAqBψµCqC ]
1
3 , and q̂AC = e−

ηA

3 ψ− 2
3 µ

− 2
3

C [βaAqAγµBqBqC ]
1
3 . Substituting into aA = βAθAq̂

A
A ,

this implies aA = e−
ηA

5 θ
3
5
Aβ

1
5 q

1
5
Aγ

1
5 µ

1
5
Bq

1
5
Bψ

1
5 µ

1
5
Cq

1
5
C , so

∂aA
∂β

= aA
5β

, ∂aA
∂γ

= aA
5γ

, and ∂aA
∂ψ

= aA
5ψ

.

Suppose to the contrary that HQ used all three, setting β > 0, γ > 0, and ψ > 0. Substituting in for ∂aA
∂β

, ∂aA
∂γ

,

and ∂aA
∂ψ

, the FOCs simplify to

βaA
(
q̂HQA − q̂AA

)
+ rσ2β2 =

∂Π

∂aA

aA
5

(B119)

γµ
(
q̂HQB − q̂AB

)
+ rσ2γ2 =

∂Π

∂aA

aA
5

(B120)

ψµ
(
q̂HQC − q̂AC

)
+ rσ2ψ2 =

∂Π

∂aA

aA
5

(B121)

This would imply that

βaA
(
q̂HQA − q̂AA

)
+ rσ2β2 = γµ

(
q̂HQB − q̂AB

)
+ rσ2γ2 (B122)

= ψµ
(
q̂HQC − q̂AC

)
+ rσ2ψ2

Also, because the DM has interior beliefs, βaAq̂
A
A = γµq̂AB = ψµq̂AC , so this implifies to

βaAq̂
HQ
A + rσ2β2 = γµq̂HQB + rσ2γ2 = ψµq̂HQC + rσ2ψ2 (B123)

When ηHQ is big enough, the HQ will have interior beliefs toward asset A and B, unless β = 1 and γ = 1. This

implies that (1− β) aAq̂
HQ
A = (1− γ)µq̂HQB , so µq̂HQB = 1−β

1−γ aAq̂
HQ
A . Similarly to the proof of Corollary 1, β = γ.

Suppose that it is optimal to set ψ > 0 (symmetric arguments for ψ < 0 will hold). For this to be optimal, it

must be that q̂AC < qC , or equivalently, ψµqC > γµq̂AB . Note q̂AB > e−η
A

qB = e−η
A

qC because qB = qC . Thus, for the

DM to have interior beliefs, it must be that ψ > βe−η
A

. Back to HQ’s FOC, this implies that

ψµq̂HQC + rσ2ψ2 > βe−η
A

µq̂HQC + rσ2
(
βe−η

A
)2

≥ βe−η
A

µqB + rσ2
(
βe−η

A
)2

(B124)

The second inequality holds because HQ has a negative exposure to the external risk, so q̂HQC ≥ qC and qC = qB .

If HQ has interior beliefs toward all three sources of risk, q̂HQB = e−
ηHQ

3 (1− γ)−
2
3 µ

− 2
3

B [(1− β) aAqAqBψµCqC ]
1
3 ,

which is decreasing in ηHQ. Thus, ∃η̄HQ such that for all ηHQ > η̄HQ

βe−η
A

µqB + e−2ηArσ2β2 > βµq̂HQB + rσ2β2 (B125)

Thus, when ηHQ is large enough, dΠ
dψ

< 0 for all ψ > βe−η
A

, so it is optimal to set ψ = 0.

Proof of Theorem 7. Because there are synergies, the output of each division is increasing in the effort of both

division managers. That is, the drift of division A is (aA + ζaB) qA, and the drift of division B is (aB + ζaA) qB . For

simplicity, we will assume that HQ is uncertainty neutral, though HQ uncertainty only makes equity more attractive.

Because the participation constraint binds, the payoff to HQ will be

π = (1− βA − γB) (aA + ζaB) qA + (1− βB − γA) (aB + ζaA) qB + ÛA + ÛB (B126)

Division manager d has payoff Ûd = minqd∈Kd ûd, where

ûd = βd (ad + ζad′) q̂
d
d + γd (ad′ + ζad) q̂

d
d′ −

rσ2

2

(
β2
d + 2ρβdγd + γ2

d

)
− a2d

2θd
(B127)
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Beliefs are as solved in Lemma 2. We are also assuming both divisions have the same η. Let Hd =
|γd|(ad′+ζad)qd′
βd(ad+ζad′)qd

.

If Hd ≤ e−η, q̂dd = e−ηqd and q̂dd′ = qd′ . Because we are assuming symmetry, these are the same. Conversely, if

γd > 0 and Hd ∈
[
e−η, eη

]
, then q̂dd =

(
e−ηHd

) 1
2 qd and q̂dd′ =

(
e−η 1

Hd

) 1
2
qd′ . Finally, if γd < 0 and Hd ∈

[
e−η, eη

]
,

q̂dd =
(
e−ηHd

) 1
2 qd but q̂dd′ =

[
2−

(
e−η 1

Hd

) 1
2

]
qd′ . Given beliefs, note ∂ud

∂ad
= βdq̂

d
d + γdζq̂

d
d′ −

ad
θd

, so

ad = θd
[
βdq̂

d
d + γdζq̂

d
d′

]
(B128)

There are three types of contracts that might arise in equilibrium: interior beliefs with long exposure, Hd ∈[
e−η, eη

]
with γd > 0, interior beliefs with short exposure, Hd ∈

[
e−η, eη

]
and γd < 0, and corner beliefs, Hd ≤ e−η.

First, we will show that the optimal contract when Hd ∈
[
e−η, eη

]
with γd > 0 is equity. Then, we will show that

the optimal contract will be on this region when ζ is large enough.

First, note that the optimal contract is symmetric and induces symmetric effort, aA = aB . Suppose to the

contrary that the HQ gives different contracts to the different division managers. By symmetry, the HQ receives the

same payoff by trading the contract between the two managers. Note that the objective, as the minimum of strictly

concave functions, is strictly concave. Thus, HQ receives a strictly higher payoff by giving both division managers

the average of the two contracts, so it cannot be optimal to give different contracts to the two division managers.

Because the HQ grants the same contract to the two division managers, in equilibrium, they will exert symmetric

effort: ad = ad′ .

When Hd ∈
[
e−η, eη

]
and γd > 0, from Lemma 2 and because ad = ad′ , q̂

d
d = e−

η
2 γ

1
2
d q

1
2
d′β

− 1
2

d q
1
2
d and q̂dd′ =

e−
η
2 β

1
2
d q

1
2
d γ

− 1
2

d q
1
2
d′ . This implies that

ad = e−
η
2 β

1
2
d γ

1
2
d θdq

1
2
d′q

1
2
d (1 + ζ) (B129)

Note that the effort of each division manager depends on βd or γd only through their geometric mean, (βdγd)
1
2 .

Consider the optimal contract that induces interior beliefs from both division managers.

π = (1− βA − γB) (aA + ζaB) qA + (1− βB − γA) (aB + ζaA) qB + ÛA + ÛB (B130)

where Ûd = βd (ad + ζad′) q̂
d
d + γd (ad′ + ζad) q̂

d
d′ − rσ2

2

(
β2
d + 2ρβdγd + γ2

d

)
− a2d

2θd
. Note that

dπ

dβA
=

∂π

∂βA
+

∂π

∂aA

daA
dβA

+
∂π

∂aB

daB
dβA

where ∂π
∂βA

= − (aA + ζaB) qA+
∂ÛA
∂βA

, and ∂ÛA
∂βA

= (aA + ζaB) q̂
A
A−rσ2 (βA + ργA). Further,

∂π
∂aA

= (1− βA − γB) qA+

ζ (1− βB − γA) qB+
∂ÛB
∂aA

, where ∂ÛB
∂aA

= ζβB q̂
B
B+γB q̂

B
A . Recall ∂ÛA

∂aA
= 0 by the envelope theorem. Because aA depends

on the incentive contract only through IA ≡ (βAγA)
1
2 , daA

dβA
= 1

2
∂aA
∂IA

(
γA
βA

) 1
2
. Thus,

dπ

dβA
= − (aA + ζaB)

(
qA − q̂AA

)
− rσ2 (βA + ργA) +

∂π

∂aA

1

2

∂aA
∂IA

(
γA
βA

) 1
2

Similarly,

dπ

dγA
= − (aB + ζaA)

(
qB − q̂AB

)
− rσ2 (ρβA + γA) +

∂π

∂aA

1

2

∂aA
∂IA

(
βA
γA

) 1
2

Therefore, dπ
dβA

= 0 iff

∂π

∂aA

1

2

∂aA
∂IA

(γAβA)
1
2 = βA (aA + ζaB)

(
qA − q̂AA

)
+ rσ2 (β2

A + ργAβA
)

and dπ
dγA

= 0 iff

∂π

∂aA

1

2

∂aA
∂IA

(γAβA)
1
2 = γA (aB + ζaA)

(
qB − q̂AB

)
+ rσ2 (ρβAγA + γ2

A

)
Therefore, the optimal contract satisfies

βA (aA + ζaB)
(
qA − q̂AA

)
+ rσ2 (β2

A + ργAβA
)
= γA (aB + ζaA)

(
qB − q̂AB

)
+ rσ2 (ρβAγA + γ2

A

)

16



Because we have interior beliefs, it must be that βA (aA + ζaB) q̂
A
A = γA (aB + ζaA) q̂

A
B . Symmetric conditions hold for

division B, with qA = qB , and we already showed aA = aB . Thus, the optimal contract must satisfy f (βA) = f (γA),

where f (x) = xa (1 + ζ) q + rσ2x2. Because f is monotonic, βA = γA. Therefore, the optimal contract when

Hd ∈
[
e−η, eη

]
and γd > 0 is equity, with Hd = 1. Substituting back into the FOCs, it can be shown that the optimal

incentive level is β = e
− η

2 θ(1+ζ)2q2

4e
− η

2 θ(1+ζ)2q2−3e−ηθq2(1+ζ)2+2rσ2(1+ρ)
.

Next consider the optimal contract with Hd ∈
[
e−η, eη

]
but γd < 0. From Lemma 2, q̂dd =

(
e−ηHd

) 1
2 qd but

q̂dd′ =

[
2−

(
e−η 1

Hd

) 1
2

]
qd′ . Substituting into the FOC for effort, ad = θd

[
βdq̂

d
d + γdζq̂

d
d′
]
and applying symmetry,

ad = θdq

{
(1− ζ) e−

η
2 β

1
2
d |γd|

1
2 + 2γdζ

}
(B131)

Note that a is increasing in β on this region, and we are on this region only if β < eη |γ|, which implies that

ad ≤ θq |γ| (1− 3ζ) (B132)

Therefore, for ζ ≥ 1
3
, ad ≤ 0 on this region. That is, for ζ ≥ 1

3
, there is no contract that induces effort with β > 0

and γ < −e−ηβ. Any such contract would be dominated by setting β = γ = 0.

Finally, let us consider the optimal contract with corner beliefs, Hd ≤ e−η, so that q̂dd = e−ηqd and q̂dd′ = qd′ . In

this case,

ad = θd
[
βde

−ηq + γdζq
]

(B133)

Note the HQ has payoff

π = (1− βA − γB) (aA + ζaB) qA + (1− βB − γA) (aB + ζaA) qB + ÛA + ÛB (B134)

Thus,
dπ

dβA
=

∂π

∂βA
+

∂π

∂aA

daA
dβA

(B135)

Note that ∂π
∂βA

= − (aA + ζaB) qA + ∂ÛA
∂βA

, where ∂ÛA
∂βA

= (aA + ζaB) e
−ηqA − rσ2 (βA + ργA). Thus,

∂π
∂βA

= − (aA + ζaB) qA
(
1− e−η

)
− rσ2 (βA + ργA). Further, ∂π

∂aA
= (1− βA − γB) qA + (1− βB − γA) ζqB + ∂ÛB

∂aA
,

where ∂ÛB
∂aA

= γBqA + ζβBe
−ηqB : by the envelope theorem, dÛA

daA
= 0. Because daA

dβA
= θe−ηq, ∂π

∂βA
= 0 iff

∂π

∂aA
θAe

−ηqA = (aA + ζaB) qA
(
1− e−η

)
+ rσ2 (βA + ργA) (B136)

Similarly,
dπ

dγA
=

∂π

∂γA
+

∂π

∂aA

daA
dγA

(B137)

because ∂π
∂γA

= − (aB + ζaA) qB + ∂ÛA
∂γA

and ∂ÛA
∂γA

= (aB + ζaA) qB − rσ2 (ρβ + γ), ∂π
∂γA

= −rσ2 (ρβ + γ). Because,
daA
dγA

= θAζqB ,
dπ
dγA

= 0 iff

dπ

daA
θAζqB = rσ2 (ρβA + γA)

Thus, ∂π
∂βA

= 0 and dπ
dγA

= 0 implies that

dπ

daA
θq = a (1 + ζ) eηq

(
1− e−η

)
+ eηrσ2 (β + ργ) =

1

ζ
rσ2 (ρβ + γ) (B138)

Substituting in for optimal effort, a = θ
[
βe−ηq + γζq

]
, and rearranging,

θβe−ηζ (1 + ζ) eηq2
(
1− e−η

)
+ rσ2 (ζeη − ρ)β = rσ2 (1− ζeηρ) γ − θγζ2 (1 + ζ) eηq2

(
1− e−η

)
(B139)

We will guess and verify that rσ2 (1− ζeηρ) > θζ2 (1 + ζ) eηq2
(
1− e−η

)
, so that we are not dividing by zero. This

implies that γ = mβ, where

m =
θζ (1 + ζ) q2

(
1− e−η

)
+ rσ2 (ζeη − ρ)

rσ2 (1− ζeηρ)− θζ2 (1 + ζ) eηq2 (1− e−η)
.

If ρ > 0, note that the numerator is strictly increasing in ζ, while the denominator is strictly decreasing in ζ.
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When ζ = 0, m = −ρ, so the numerator is negative for small values of ζ and positive for large values of ζ. Note

that m = 0 iff ρ = 1
rσ2 θζ (1 + ζ) q2

(
1− e−η

)
+ ζeη. In this case, the denominator is D = rσ2

(
1− ζ2e2η

)
+

ζ2θq2
(
1− e−η

)
(1 + ζ) eη (1− ζ) which is strictly positive (note that, for ζ ≥ e−η, the numerator is bigger than

θe−ηq2
(
1− e−2η

)
+ rσ2 (1− ρ), which is strictly positive for all ρ ∈ [−1, 1], so it must be that ζ < e−η when m = 0).

Finally, note that we are on this region iff γ < e−ηβ, or equivalently, iff m < e−η. Because the numerator is strictly

positive as the denominator approaches 0, m explodes, so it must be for ζ smaller than that m > e−η. When ρ < 0,

the numerator is strictly positive, and the denominator is increasing then decreasing, so m is still well-defined by the

same argument. Thus, m solves f (m) = 0,

f (m) = m
[
rσ2 (1− ζeηρ)− θζ2 (1 + ζ) eηq2

(
1− e−η

)]
− θζ (1 + ζ) q2

(
1− e−η

)
− rσ2 (ζeη − ρ)

Note f ′ = rσ2 (1− ζeηρ)− θζ2 (1 + ζ) eηq2
(
1− e−η

)
. We already proved above that f ′ > 0 for all m < e−η.

∂f

∂ζ
= −m

[
rσ2eηρ+ θeηq2

(
1− e−η

) (
2ζ + 3ζ2

)]
−θe−ηeηq2

(
1− e−η

)
(1 + 2ζ)− rσ2eη

Thus, ∂f
∂ζ

< 0. By the implicit function theorem, note that df
dζ

= 0, because f is uniformly zero. Because df
dζ

=

∂f
∂ζ

+ f ′ dm
dζ

is uniformly zero, dm
dζ

= −
∂f
∂ζ

f ′ > 0. Therefore, an increase in the synergy increases the exposure of the

contract to cross-pay under corner beliefs. Similarly,

∂f

∂η
= m

[
−rσ2ζeηρ− θζ2 (1 + ζ) eηq2

]
− θζ (1 + ζ) q2e−η − rσ2ζeη

which is likewise negative. Therefore, dm
dη

> 0: and an increase in uncertainty increases cross-pay with synergies.

Finally, note

f (m) |ζ=e−η = m
[
rσ2 (1− ρ)− θe−2η (1 + e−η

)
eηq2

(
1− e−η

)]
− θe−η

(
1 + e−η

)
q2

(
1− e−η

)
− rσ2 (1− ρ)

= (m− 1)
[
rσ2 (1− ρ)− θe−ηq2

(
1− e−2η)]

If rσ2 (1− ρ) > θe−ηq2
(
1− e−2η

)
, this implies that m = 1 when ζ = e−η. If rσ2 (1− ρ) ≤ θe−ηq2

(
1− e−2η

)
, then

there exists a ζ ≤ e−η such that rσ2 (1− ζeηρ) − θζ2 (1 + ζ) eηq2
(
1− e−η

)
= 0, and limζ→ζ̃m = +∞. Because

dm
dζ

> 0, there exists a unique ζ̂ < e−η such that m < e−η iff ζ < ζ̂. Therefore, if ζ > ζ̂, it is not locally optimal to

select γ < e−ηβ, and the HQ will shift to the first region, Hd ∈
[
e−η, eη

]
.

Therefore, define ζ̄ = max
{
ζ̂, 1

3

}
. For all ζ > ζ̄, the optimal contract will be equity.
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