Internet Appendix: Supplemental Proofs

Notes on the Proof of Lemma 2. Division managers determine ((jff, (jfil/) in (17). We will focus on two cases: we
start with the case where 74 > 0, and then we consider the case v4 < 0. Consider G = qq + 8, for § > 0. Switching
to (jgf = qq — 0 lowers iiq by 284aq0 while leaving the constraint unchanged. Therefore, it must be that ¢4 < qq4.
Similarly, switching from qff, = qq + 9, for § > 0 to zjsf = qq — 0 lowers U4 by 2v4a40, leaving the constraint

unchanged. Therefore, it must also be that (jj, < qq. Thus, we can express the Lagrangian as
L=—ig—\ [gc - nd] ~Ta (dff - Qd) - Tar (é&l/ - Qd’) (B1)

where g. = ln 4 4+ In Z‘i' . Because problem (17) admits corner solutions, we characterize its solution by use of the

’

full Kuhn- Tucker condltlonb

oL Oig 09c A
— = ——— — A —Ta=—Paaqa+ 5 —1a=0, B2
aqd g4 g4 qd (B2)
oL Otia 9ge A
= - - — Ty = —Ydaq + = — 1o =0,
247, 247, 247, Td Ydaq + it Td

/\(gc—n ) +Td( 3—%) + T (qu, _Qd’) =0,
A2 0,720,720, 1" —ge >0, ga— G 20, g — dyr 2 0.
From the definition of g., to satisfy the constraint n¢ — g. > 0 it must be ¢ > 0 and Gy > 0, which implies that

% = 6q = 0. Also, B4aq > 0 implies A > 0, and thus that g. — n% = 0. In addition, it cannot be that both 74 > 0
d da’

and 7 > 0 because, if so, then §¢ = g4 and ¢% = qar, which would imply that g. = 0 < ¢, which contradicts X > 0.

This leaves us with three types of solutions: 74 = 7y =0, 74 > 0 = 74/, and Td =0<7y.

If 74 = 744 = 0, then we have the case in the main appendix: % = aq
d

= 0 together imply that X\ = Byaqd?

and A = ’ydad/qg, giving Bdadég = Wdad/dg/. Because g. = nd implies that ngj, — qdqq’, after substitution

this implies that

1
d d 2
f‘i;d, ((jj) = e " qaqy, or equivalently, §¢ = [ef” Hd} ® qa, where Hy = 75::;5:/. Similarly,

qj, = [e_”d %d] qar- In order for this to be feasible, however, it must be that ¢4 < g4, or equivalently, Hy < e”d,

d
and Ljdd, < qg, or equivalently, Hg > e~" | giving case (ii) when v4 > 0. If 7y > 0 = Td/ then ¢ = ¢q and, from

ge =n*, also ¢% = e " gy Note that sz = 0 implies that A = Yaage™ " gy and, from 2 a4 d = 0, we have that
aqjreé ’ _pd
T4 = —fBaad + Jadd p . _ Baad (Hde T — 1) >0, (B3)
a

which requires Hy > e"d, giving case (i) when 4 > 0. Finally, if 74 = 0 < 74, then (jfil, = qo and, from g. = n?, also

g4 = e géﬁjj = 0 implies that A\ = ﬂdade*”dqd, and, from 8 d = 0, we have that
d
- ,
T = —Yata + Paaae ™ qa _ Yaag (H;le*" — 1) >0, (B4)
qa’

which requires 0 < Hg < eiT’d’, giving case (iii) when 4 > 0.
The case with 74 < 0 proceeds similarly, noting that §¢ < gq but q;l, > qq/- Thus, we can express the Lagrangian

as
L=—0g— A\ [gc — nd] — T4 (dﬁ - Qd) — T (Qd' - (jj/) (B5)



/

where g. = ln —|— In 7(1 Again, the full Kuhn-Tucker conditions are

8£ a’LLd agc A
— = ——— — A —Tqa=—Lfdatq+ — —T1a =0, (B6)
aq4 aq " 04 a4
oL Olg 9gc A
= — “— 4+ Ty = —Yaaq — —— + 719 =0,
a4y Cagd Togl, T T g — %

A(Qc*ﬁ)+Td( d*qrt)wLTd/ (qd'*@d/) =0,
AN > 0,70 >0,74>0, 9" —gc>0, ga—G7>0, qo — g > 0.

From the definition of g., to satisfy the constraint nd — ge > 0 it must be qj > 0 and ¢4 > 0, which implies that

aaqc = W = 0. Also, B4aq > 0 implies A > 0, and thus that g. — n% = 0. In addition, it cannot be that both 74 > 0
d

and 74 > 0 because, if so, then ¢4 = g4 and zjff, = qa, which would imply that g. = 0 < ¢, which contradicts A > 0.

This leaves us with three types of solutions: 74 =74 =0, 74 >0 =7y, and 74 =0 < 7.

If 7q = 794 = 0, % = % = 0 together imply that A = Bgaqdd and A = |y4|aw [2qd/ f(jg,], giving
Baaadd = |va| aa [2qd/ - (jj,]. Because g. = 1 implies that ¢4 [qu/ - qg,] = ef”dqdqd/7 after substitution this
1
. . N _nd . ~ _nd 2 agrqyr .
implies that \5:\22/ (qg) = e " qaqa, or equivalently, ¢¢ = [e m Hd] 2 qd, where Hgy = %. Similarly,

1
cjjl = {2 — (e—"dHLd) 2} ga- In order for this to be feasible, however, it must be that ¢¢ < g4, or equivalently,

Hg <e"” ,and qd, > qq, O equlvalently, Hg>e -n? , giving case (11) when 4 < 0. Alternatively, if 74 > 0 = 74, then
44 = g4 and, from g. = 0%, also ¢% = (2 —e " ) qq'. Note that W = 0 implies that A = |vq| age —n? qq and, from
Li,

oL
a¢d

= 0, we have that
— Buaa+ Iqul A =n . — Baq [Hde*"d - 1] >0, (B7)
d

which requires Hy > e"d, giving case (i) when 4 < 0. Finally, if 74 = 0 < 74/, then ¢% = g4 and, from g. = n?, also

% = e~ q4. Note that now %ujz = 0 implies that A = faaze™"" ga, and, from a%g = 0, we have that
d/
d
aqse” " 1 _.d
i = g + P49 oy (e 1) 20, (B8)
qa Ha
,nd

which requires 0 < Hy < e~ " | giving case (iii) when 74 < 0. =
Proof of Lemma 3. The lemma is shown in two steps. First, we obtain division managers’ best response functions,
aq = 04B443. Second, we characterize the Nash equilibrium in terms of log (a4) and we apply the contraction mapping
theorem, proving uniqueness.

Division manager d € {A, B} chooses effort level aq to solve (19) by setting
aﬁd Bud aqd aﬁd a&jg/ aﬁd
% 8qd Oag 8@3, Oag - % -

9 (a, ¢ a,w)) =

dag (B9)

where the second equality holds by the envelope theorem, as follows. For case (ii) of Lemma 2, we have that

ou 9 ou
Wd = Aaqu and qdd/ = )‘aq , giving
Dia 047, Ota 04y _ \ (09 0di . 99 04y _\dg _ (B10)
9% daq 9G4, daq 04 daq ' 9qa daa daq
~d ~d N
because g = e~ In cases (i) & (iii), G4 and ¢% do not depend on ag, % = ?,de' =0, so ZZZ = % = Bagd - “— =0.

Thus, the best response functions are ag = 048442, where beliefs ¢¢ are from Lemma 2. If 74 = 0, we have that

H; =0, giving aq = Gdﬂde”’dqd. If 74 # 0, the best response depends on the effort by the other division manager,

2 —2pd o d
ag. If the other division manager, d’ # d, exerts low effort ay < ak = Wﬁzﬁqd’ we have that Hy < e”" and

division manager d holds pessimistic belief as in case (i) of Lemma 2, §d = efndqd, giving ag = al* = Hdﬁdefndqd.

d

R 048%e" q2 . . . .

If division manager d’ exerts moderate level of effort, aﬁl <ag < aﬁ{ = %, division manager d hold beliefs
d



1
as in case (ii) of Lemma 2; thus Hy € [efnd, e"d} and aq = [03 |va| ad/ﬂde*”dqd/qd] :, Finally, if division manager d’

exerts a high level of effort, ay > aX, division manager d hold beliefs as in case (iii) of Lemma 2; thus |Hq| > e

and aq = 04f4qqa. The best response function for DM d is therefore given by
d
ag" = 0afae™ qa ag < aél

al <ay <aff . (B11)

H
aqr > Qgr

@l

* -

d
ai(aa) =\ @ (aw) = [03 val aw Bae™" qurad]
ay" = 0aBaga
A Nash equilibrium is a pair {a4,ap} such that ag = a} (as), d € {A, B}, d # d'. Note that a; (aq) is a positive,

continuous, and increasing function of ay . Expressing the best response in logs, we obtain

_.d
In6gBaqe™" ({d Inay < Inak
4 1
Inay(lnag) =14 In [93 |va| Bae™" qd,qd]3 +%1H(ad/) Inal <Ilnay <Inall . (B12)
In0484qa Inag >Inal
Further, note ;11::; =0 for ag < al and ag > alf, while ;11::; = ¢ for al < ap < afl. Define F : R? - R?

so that F' = (Ina% (Inag),Ilnaj (Inaa))’, and let d(z,y) be the Euclidean distance. For z,y € R?, define %4 =

max {ln ak, min {:cd,ln a,?}} and ¢4 = max {1n ak, min {yd,ln af}}, we have

A(F (@), F@) = \/(nay(@s) - naj p)* + (naj (@) - naj (ya))* (B13)
= e @8) — ey 7)) + (nag (74) — Inag (72))°
2 2
- \/ 5o —im)| |5 @a i) =30 < Ja),
which implies that 0 < d (F (x), F (y)) < %d (z,y) for all ,y € R%. Thus, F is a contraction mapping and the Nash

Equilibrium exists and is unique.

Because the best-response function is constant if d’ exerts low effort, ag < ak, and if d’ exerts high effort,
aq > afl{, the Nash Equilibrium is fully determined. All that remains to be determined is the Nash Equilibrium
effort for d when agl <ag < afﬁ. There are three possible cases:

(1) If agr = alf > ak, so that Hy < e”’d/, then

1

« x _(d o d 3
aq = aj (aq’) = [eied/e G @yﬁdqilqd} ; (B14)
(2) If ag = a%F < alf, so that Hy > e , then
1
~ % * —nd 3
aq = aq (CLZ/) = [Qged/e K |’Yd‘ ﬁd/ﬂdqglqd] 3 ) (B15)

d’ d’
(3) if alf < ag < a2F, so that Hy € (e”’ ,e ), then setting aq = aj; (ag’) and ay = @y (aq), after solving we

obtain 1

_pd 50 & 8 1
ag =aq = [6 70384 \7d|] ° {6 " 0% Bar |’Yd/\] [qaqar]? - (B16)

Comparative statics follow by differentiation. m

Notes on the Proof of Theorem 1. The proof in the body found the optimal contract when v4 > 0. We will
show here that the objective is symmetric around zero, completing the proof. Note that, from Lemma 2, §¢ depends
on 74 only through its absolute value, |y4|. Thus, from Lemma 3, equilibrium action aq = 40449 also depends on
|va| only. This implies the first term of the uncertainty discount, Bqaq (qd — qg), depends only on |v4|. We next show
that, if 74 < 0, the second term of the uncertainty discount, yqag (qd/ — zjj,), is unchanged by offering cross pay,
|va|, rather than relative performance evaluation, 74 < 0. From Lemma 2, let (jjﬁ' be the belief held by the DM when
receiving |yq| instead of y¢ < 0. We will show yaaq (qa — 43) = |74l aar (qar — (jg,*). Consider in turn cases (i), (ii)

and (iii) in Lemma 2.



d
First, in case (i), if Ha < e™"", then ¢%" = §% = qu, so

[va| aar (qd/ - dﬁf’) = Ya@ar (Qd’ - dff/) =0. (B17)

1
In case (ii), if Hq € (efnd,e"d), then ¢4 = <2 — [e”’d M] 2) qq’, giving

[valagrag

1
_pd 2 pd 3
X e " Baaaqa e Baadqa
Yaaqr (Qd’ - qg/) = Ydad ¢ " Padadqa |y g = Pyl ag |1 | S0 qa- (B18)
|val aar qar [val aar qar
1
This implies that replacing vq with |yq|, beliefs will remain in case (ii), with (jjf = [e*”d mﬁ] % g Thus, we
obtain
|val aas (Qd’ - QZ#) = YaQa (Qd’ - qg') . (B19)

Finally, in case (iii) with Hgq > " and G4 = (2 - e_"d) qar, if HQ replaces v4 with |yal, beliefs will be (jjf = e_”dqd/

we obtain

p— d _ d A
[va| agr (qd/ - c}jf’) = |vd4| ag (1 —e " )Qd/ = Yatar (e = 1) qar = YdQar (qw - q&l/) ~ (B20)
Therefore, 7 (yq) = #(|va|) and 7 is symmetric in v4 around zero. m
Proof of Corollary 1. Because the participation constraint (8) binds, HQ payoff, 7, now is equal to

2 2 (2 2
E ~ N a ro” (B3 + 2Bavap + 7
[(1 — Ba = Yar) qaaa + Baaadi + vaaw @i — 5 — (5 )

204 2
d,d'e€{A,B}
d'#d

(B21)

where {aa,ap} are the Nash equilibrium effort levels of Lemma 3.

Different from the case of Theorem 1, because of the presence of the last term, HQ objective function 7 admits
multiple strict local maxima. The proof therefore proceeds in two steps. First, we consider candidate optimal contracts
that induce division managers to hold one of four possible configurations of beliefs (implied by Lemma 2). Specifically,
we consider contracts as follows. Case (A): a small exposure to the other division leading to Hq < e”’d, case (i) of
Lemma 2; Case (B): a moderate positive exposure to the other division, 74 > 0 and Hq € (e‘”d, e’ , within case
(ii) of Lemma 2; Case (B’): a moderate negative exposure to the other division, 74 < 0 and Hq € (e”’d, e’ , also
within case (ii) of Lemma 2; Cases (C) and (C’): a large (negative or positive) exposure to the other division, leading
to Hyqg > e"d case (iii) of Lemma 2. Second, we compare payoffs to HQ from optimal contracts in these regions and
we determine the globally optimal contract.

Case (A): If Hy < e_"d, have ¢ = e_”dqd and % = qu, which do not depend on ~4. Similarly, by Lemma 3,

aqg = ﬁdé?de*"dqd, which does not depend on 4 as well. Therefore, setting

= 1o (B +7) = 0 (B22)
gives 74 = —pPaq and g is set to hedge risk with no effect on incentives. Substituting in 7 and differentiating we
obtain o% )
981 (1 — 2B4) 0aqd5 + Baba ((jﬁ) —ra*Ba (1 - p°) (B23)
Therefore
o : (B24)

T 1+ (1-4%/q) +ro2 (1 —p2) /(89dd)
After substitution, this gives HQ payoff under condition (S)

_ 2
A1 _ [6 n9q2]
= (2—e ) e 10¢%? +ro? (1 —p?)’ (B25)

Case (B): If v > 0 and Hq € (677], e”), we can express the payoff to HQ as

#=(1—fBa—78)aaqa+ (1 — B —va)apqs +walaa, i (aa,wa)) + is(as,” (ap, ws)), (B26)



~ ~d . o .
where Gq(aq, ¢“(aq, wq)) = rmnquKg g, with

ag
204

and where a4 is the Nash equilibrium given by (B16). Because g4 is strictly concave and the minimum operator is

2
N N N N ro
tq(aa, §*(aa, wa)) = Baaadi + vaauw dy — - (B3 + 2pBava +73) — —8d, (B27)

concave, tq4(ad, (jd(ad, wq)) is strictly concave. Therefore, 7 is strictly concave as well. Thus, first-order conditions of

optimality are sufficient for a local optimum. Similar to the proof of Theorem 1, we have

dﬁ' o 8&@ 0dd/
- — — 1— — ’ —_— 1— ’ — ’ B28
R qaGa + (1 = Ba — Yar) qa 28, + (1= Bar —7d) qa 98 (B28)
dita(da, §* (a4, wa) | ditar (@, §* (@ar, war))
dBa dBa )
In this region, from (B16), we have ggj = gg‘; and BBQBZ/ = 85 8 = vad3 and = aqdi—ro? (Ba + pa),

by applying the envelope theorem to tg(da, ¢¢):

dig(aa, ¢%(aq, w . d Ga
d( dy q ( d d)) — adqfil _ 7"0'2 (ﬂd + p'}/d) + 'qu?l/ d' ) (B29)
dBa 884
Similarly, because %%‘fi' =0 and %de' = var qg’, we obtain
dn ~d ad’
- = — 1— — g 1—38y — ) — B30
R aq (Qd Qd) (1—PBa—"a )Qd ﬂ + (1= Bar —7a) a 8 (B30)
~d' 304
ro? (Ba + pya) + Yadd —o- 86 + 74 Ga T
Consider now 74. We have that
dm 0aq Qag
_ = —_ U a U 1 —_ —_— U _ 1 —_ ’r — U B31
o qarbar + (1 — Ba — Yar) qa 97 + (1= Bar —a) qa 97 (B31)

dia(ia, ¢*(aa, wa)) | dia (@, q® (dw, wa))
+ + :
d’yd d’yd

d1 = d o1 ~d 9a g : A (s ad
Because aiwj = aq' 4y — 10> (ya + pBa), aaL:, = vagy, and a:‘g = g%;, applying the envelope theorem to @q(da, %),

dtia(aq, 4% (aq, wa))

~d 2 d Qa’
= ’ ’ ’ B32
& aa'dar — 10" (va + pBa) + vada Sva (B32)
.. ot O ;1 ~
Similarly, because s =0, 5 = 'yd/qfil , and g:: = g:; we obtain
dm . ~d 3ad dd’
— = —au r— Q. 1-— — g —_— 1—-08y — , B33
o da (qd da ) + (1 = Ba—a )qu + (L = Bar —7d) qa S7a (B33)
d Qqr 4’ 3a
—10 (Ya + pBa) + Yadi o + Yar G
8vd 8Ya
Thus, from (B30) and (B33), we obtain the first-order conditions
dit § . A
— = —da ((Zd - qﬁ) —10” (Ba+ pra) + 22 =0, (B34)
dfa Ba
dir iy . A
g = (g —ab) —ro® (utpBa) + 2 =0,
Yd Yd
where Ag = (1 — B — var) 4a 2 + (1 — Bar — va) qar 22 + 4G & + v S 222, giving
Bada (qcl - @g> +r0? (B3 + pyaBa) = Yada (Qd’ - Qg/) + 70 (vi + pBava) - (B35)
By Lemma 2, we have that BqGad?d = vata cjg,, which implies that
Batiaqa + ro” B = Yatarqar + 10"V (B36)

We will guess and verify that, due to the symmetry condition (S), it is optimal to implement symmetric effort,

G4 = dg = G, and that g4 = ¢, n% = 7, and 4 = 6. Define f (z) = zaq + ro’z?. Note f'(z) = aq + 2ro’z > 0 for



2 > 0, so that f is monotonic over positive numbers and f (v4) = f (84) if and only if y4 = B4. Thus, §¢ = ¢4 = e~ 2¢
3 1

and aq = engBj B3q- In order to optimally implement the same effort, it must be that 84 = B4/, so & = efgeﬂq.

Thus, we obtain the first-order condition

2
dit ) R 40 08a (45
—— = —0Bad] (q - qi) +(1—2Ba) qdis —r0Ba (14 p) + 08 (@) _ (B37)
dfBa 2 2
Therefore )
2
= . B38
Bi = T (= ala) v 20" (5 p) J0adD) (53%)
After substitution, this gives HQ payoff
2 —n, 4
7= 07 "q . (B39)

fe— % g2 (4 - 36-%) +2r0% (14 p)

Because (34 is the same for both divisions, this verifies that a is symmetric. Because HQ objective 7 is strictly concave
on this region, there is only one solution on this region, so the symmetric solution is the unique solution.

Case (B’): Consider 74 < 0 and Hy € (cf”7 e”). Following the same process as in case (B) above, we have

di D

— - 1— Bg—Ya — By — ,dad’ B40
B qada + (1 — Ba — va )Qd 8,6 + (1 = Bar —7d) qa s (B40)
diig(aa, ¢ (aa, wa)) | dia (dar, 4% (G, war))
dBa dBa '
Because in this region 244 = 324 and 9% — %4’ e obtain that
8B4 8B4 9B4q 8B4’
dn ~d ad’
5 = - - 1- — / 1-— ’— ;I B41
R aq (Qd Qd) (1= fBa—a )Qd ﬂ + (1 = Bar —7d) qa 8 (B41)
~d' 304
ro® (Ba + pya) + Yady oo 86 +wda gg -
Consider now 4. We have that
dm 0aq Qag
_ = —_ U a ’ 1 - —_— ! e 1 - ’r — U B42
e qarGar + (1 = Ba — var) qa 97 + (1 = Bar —d) qa 97 (B42)
dia(da, " (@, wa)) | diw (@, q* (@w, wa))
+ .
d’yd d’yd
Because % = ?%, %ii’ = gﬁ; and gsj/ = ’yﬂjju by applying the envelope theorem on g4 (aqr, (jd/)7 we obtain that
dug(a ,A‘i QAd, W R d Qg
200, (000D _ s — ro® (a+ pBa) + (B43)
Ya 8
Similarly, because a;{‘: =0, %f;‘;' = 'yd/(jj/, and gi: = %, by applying the envelope theorem on ﬁd/(dd/,cjd/), we
obtain that p
dud/ (a’d/7 q (ad/7 'LUd/)) =y qA;l/ % (B44)
dva 874
Together (B43) and (B44) give that
dn . ~d 3aq %
_ —_— U ’r — U 1 - - ! - 1 - ’ — ! B45
dva Qg (qd 4a ) + (1 = Ba—7a )ng + (L= Bar — ) qa 870 (B45)
—ro ( + ﬁ )_|_ _|_ Ad'%
Yd T PPd Qd/ 8 Yd'4a 87
Thus, from (B41) and (B45), we obtain the first-order conditions
dit _ . A
dBs M (qd - qfil) —70” (Ba+ pra) + 22 =0, (B46)
dBa Ba
dn . ( ~d ) 2 Ag
— = —Q.q ; — 1] —ro + + — = 03
dva d’ \qd’ — 4a (Va + pBa) va



3a4

where Ag = (1 — B4 — Vo) qa22t + (1 — By — 7a) g “& + vady “& + var 3 222, giving

Bada (Qd - qu> +r0? (B3 + pyaBa) = Yada (Qd’ - ng) +70% (v4 + pBava) - (B47)

1 1
Again, in this region, ¢4 = [e_"de] * qa, and qs = <2 — [e_"ngl] 2) qa’, where Hy = Dalagrag Thus,

Baaddd

. . y _nd 1 5 _n? 1
Yadar (Qd’ - qg/) = YdGarqu (6 TH,® — 1) = —Yataqw —€ 2 (Baaaqa |val awqar)? - (B48)
Similarly,
g ot V 1
Batada = e 2 (Baaaqa |va| darqar)? (B49)
Therefore, after substitution, we obtain that (B47) becomes
Bataqa +r0”Ba = |Val darqar +ro’i. (B50)

We guess again that HQ optimally implement the same effort from both divisions, G4 = @4/, which implies that
f (val) = f (Ba), where again f (z) = xaq + ro>z®. This implies that |y4] = B4, or equivalently, that v4 = —f4, so
that Hqy = 1. Thus, qj = (fgq7 and qg, = (2 — 67%) q. To be consistent with this guess, it must be that 8y = Sa,
so that ag = aqa = engqu. Substituting in 7 and differentiating we obtain
dn . . 1 . 1 a2
= ~0Badi (2 — i) —r0°B (1 +p) + 5 (1= 284) 0qdi + 5t () (B51)
_ 1
C14+3(1-q3/q) +2ro2 (1 - p) /(04d3)
After substitution, this gives HQ payoff
3 92677](14
T

; e~ 3 g2 (4 - 36_‘3) +2ro?2(1—p)

Bi

(B52)

which verifies the guess that HQ optimally implements symmetric effort. Comparing #% and #>, observe that they

2

differ only for the final term in the denominator. Thus, 7 3 w°asp 3 0, and

2 —n, 4
max {#%,#°} = — fe q : (B54)
fe~2¢? (4 — 3675) +2ro2(1—|p|)
Case (C): If 4 > €" B4, we have that ¢¢ = g4 and G4 = e gy, s0
on —n 2
5y, = Taada (1—e™) —ro” (pBa +va) <O, (B55)
Yd
and setting 4 > €34 is not optimal. Similarly, if 74 < —e”84, we have that ¢3 = ¢4 and ¢4 = (2 — 677]) q
on —n 2
5= aqrqqr (1 —e ) +ro” (|val — pBa) >0 (B56)
Yd
and setting v4 < —e" B4 is not optimal. Thus, Hy < e".
The second and final step is to compare max {7%2, 7%3} and #'. Let
2
fon=2(1-e2) 067 +ro® (1= o) [ (1 +1pl) — 2], (B57)
so that max {#2,7#%} > #' if and only if f > 0. Note f (0) = —ro? (1 — |p|)* < 0,
() :2(1767%)67%0(]24’1"026” (1-p*) >0 (B58)

and lim, o f (1) = 400, which implies there is a unique 7 such that max {7?2, frs} > 7! if and only if > 7. Thus,
for < 7 the optimal contract is in Case (A), with 84 = 85 and 74 = —pB4. For n > 7 the optimal contract is in
Case (B) for p < 0, with 84 = 83 and |y4| = B4, but in Case (B’) for p > 0, with 84 = 85 and |v4| = Ba.

Finally, note that the first term of f, 2 (1 - e_g)2 0q?, is strictly positive. Because f (77) = 0, it must be that



ro® (1 — |p|) [€" (1 + |p|) — 2] < 0. This implies that 2X = o2 (1 — |p|) [” (1 +|p|) — 2] < 0 in a neighborhood of 7.

of
By the implicit function theorem, we obtain that d" = T) > 0, and 7 is increasing in r. For p # 0, define

T
1, = —1In (|p|) and note that
2 1= |o])?
£ =2 (1= Vipl) ot 470" 5 o (B59)
which implies that 7 < 7n,. Finally, note that W =2ro? (1 —e7|p|) > 0 because 1 < 1,, s0 W <0. m

Proof of Theorem 3. We guess and verify that HQ has positive exposure to both divisions, ¢g =1 — 84 —v4 > 0,
and that beliefs are as in case (ii) of Lemma 4, HfQ € (e_"HQ,e"HQ). Because (8) binds and » = 0, HQ payoff #
is equal to
LHQ ~d ~d
> [ade — (1= Ba—"a)aa (Qd — 4y ) — Baaq (Qd - qd) — Ydaar (Qd’ - Qd/)] ; (B60)

d,d'e{A,B}
d#d’

where ¢ = (¢4, %) are division manager beliefs from Lemma 2, a4 are the Nash equilibrium effort levels from Lemma

G119 = ((ij,qgQ) are HQ beliefs from Lemma 4. The proof is in two steps and is similar to the proof of

3, and ¢
Theorem 1. First, we show that v4 < 0 is suboptimal; then we find the optimal contract for v4 > 0.

Similar to Theorem 1, switching from 7q to [74| does not affect g, and thus does not affect ag and Byaa (g2 — 43)-
Letting again qd,'" be the belief held by a division manager when receiving |vq| instead of v4 < 0, we have that

Yaaq (g — %) = |val awr (g — @4") for all v4 < 0. This implies that
(1 = Bar = |val) aa (Qd' - @§Q) < (1= Bar — va) aar (Qd' - @5Q) (B61)

for v4 < 0 because de < qq, and thus that setting v4 < 0 is dominated by offering its absolute value, |yq|.
Because HQ strictly prefers offering |v4] > 0 to all 74 < 0, it is sufficient to consider 74 > 0. If HQ sets
0< v <e "if;g:f division managers beliefs are in case (i) of Lemma 2, with G4 = e "qq and (}j, = qad, giving
~ ~H ~ _nHQ a .
aq = Babae "qq. Further, J = ag (qd, — Gy ) > 0 because qgQ (6 ! qdqu>7 so setting vq4 < e "id,;j,d 18
not optimal. Alternatively, 1f HQ sets vq4 > " lidlqu division manager beliefs are in case (iii) of Lemma 2, with
G4 = qq4 and cjd, = e qq, giving aq = Bibiqq. Thus, a—” = —ay ((jd, — tjd/) < 0 because qu, (e”’ qd,qd)
and nf1? < 1, so setting yq > €” ﬁ";agj/d is not optimal. Thus, HQ sets e™" iﬁ:;d:f <vg<el ﬂdaz:,d and induce beliefs
that are in case (ii) of Lemma 2, with Hq € (e 7", €").

Similar to the proof of Theorem 1, we can express HQ’s objective as
= ¢adady ® + opandy +ia(aa, ¢ (aa,wa)) + is(as, ¢ (as, ws)), (B62)

2
where ¢q = 1 — B4 — Y, ﬁd(dd,(jd) = minédGK@ Uq, with 4qg = madqg + 'yd(zdf(jg, — E = 0, and a4 is the Nash
d

equilibrium of division managers given by (B16) in the proof of Lemma 3. Consider first

drn LHQ » AHQ @H HQ 004 HQ 00
Ba —qy “ad + Pald—%— 3/3 + Parlar — 75— 950 + pady B + Par Gy 954 (B63)
dad (dd, qu (ad, wd)) dﬁd/ (ddl7 (jd (dd’ , Wqr ))
dpaq dfa

HQ HQ
Because ¢7¢ solves (22), from the envelope theorem ¢qég 885 + qﬁd/ad/ 85 = 0, which, together with

dﬂd(ﬁd»ggidded)) = aaGd + vagd 85; and dud/(ad"zﬁjad' war)) = var gt g’%d from the proof of Theorem 1, gives
dmw . HQ Ad) HQ 3aq ' 304
Bl — ) — B64
s a (qd Ga ) + dady 85, Ly paih® 85 +wqd 85 +Yardg 85, (B64)
Consider now ~4. Applying again the envelope theorem on 7 (QHQ), we obtain
drm N 8@ N 8(1 ’
Tw = —qd, Caa + ¢aq HQ@ ¢ + ¢ard, ne 872 (B65)
dia(aa, 4" (@0, wa)) | dita (@, ¢" (@a, war))
+ + .
d’yd d’yd



~ N - ~d!
Substituting M — ad’qd/ + ’Yd(j?l/ ;';1/ and diagr(ag,q° (ag,wgr)) = vy qul S:d from the proof of Theorem 1,

ava dvq
dm . (AHQ  Ad ) HQ 304 LHQ O a d' 304

— _ay (79 — g% Gt  da” 2dd B66
i (qd G ) + Gady 0+ Surdy 8 -+ Yadi 8 -+ Yardi S (B66)

Thus, from (B64) and (B66) we obtain the first-order conditions

dw ; (AHQ ) Aq dm . (.HQ Aq
= —qQ — +7:0, 7:70,/( ’ /)+7:O, B67
dBa d\dg Ba dva d' \ 4y — 44 va ( )
where Ay = (;Sd(jflIQ 7324 + gzﬁdr(ng —68'1’ + 'ydcjg, —d‘s’” + ij’ —32% giving
Bada (qf Q_ qg) = Y (qgQ - qg,) . (B68)

Because, from Lemma 2, B4G4d3 = vaGa %, we have that (B68) implies dedcij = fyddd/(ng. Because HHQ €
LHQ
L HQ HQ ~ N
(e e ), from Lemma 4, qbdadqu = qbd/ad/qf,Q. Thus, “d/?g’Q = 52 = jd Define mq such that 84 = mada,
aqdy
mqg

SO Y4 = Mqpg, which implies ¢pg =1 — g —var = m, and thus Bq = y4 = TFmgrmy Substituting in v4 = Ba

T,
into @ from Lemma 3, we have aq = (0304/)* e % (B384)7 (qagar)?. Substituting into HQ objective, we obtain

nHQ
= (0a8) baaan (Bafi) [2e75 H (1 o) + 36770+ ). (B69)
Differentiating, we obtain the first-order condition
dn 1 _n 3 —n
O Oa0) b asan (57 500} [T (=380 = e+ 2380+ )| =0, (B70)
giving
H-9) | g (g - e%(n*n’”)) Ba+ G e HQ)) Bar =0, (B71)
Because this holds for both divisions, after solving we obtain
1 1
Ba =B = = Yd, (B72)

4— 33079 T 14 3(1- 44/a09)
giving (25). Note 8 < 3 L pecause n > nf@ + 21n < and HHQ Hye ( "HQ, en'® ) This implies that

1
030 L1 LHQ
_ (e d/) (nHquq(i/ , and thus that ¢¢ = e‘quHj and 79 =e "7 qq

ol

1
—3e2
Proof of Theorem 4. Because the participation constraint (8) binds, we can express HQ’s payoff as
= paaady® + dpasdn® +ia(aa, ¢ (aa,wa)) + inlas, ¢ (as, ws)), (B73)
where ¢g = 1 — Ba — var and @4(aa, ¢*(aa, wa)) = minédng g, with
. ~d ~d ~d ro’ 2 2 a?i
da(ad, §"(ad, wa)) = Badada + Yada dor — —- (Ba + 2pBava +va) — 2, = 5 (B74)

where ¢¢ is from Lemma 2, aq is from Lemma 3, and ¢ is from Lemma 4. Different from Theorem 3, and similar to
Theorem 2, because of division manager risk aversion, HQ objective function m admits again multiple local maxima.
The proof proceeds again in two steps. First, we consider candidate optimal contracts that induce division managers
to hold one of four possible configurations of beliefs (implied by Lemma 2) in the same four cases examined in the
proof of Corollary 1, Cases (A), (B), (B’), (C), and (C’). Second, we compare payoffs to HQ from optimal contracts
in these regions and we determine the globally optimal contract.

Case (A): If Hy < e™ ", have G = e "qq and (jg, = g4/, which do not depend on 4. Similarly, by Lemma 3,

d = Babae” "qq, which implies that both a4 and a4 do not depend on ~y4. Therefore,

dw _ _AHQa n ¢ a ALIi_IQ n ¢ a 8qH n (Z) AHQ ad + ¢ AHQ 8ad/ (B75)
7d'}/d = qq Q4 dad 94 d’ Ad D4 374 a’'q 94
diva(aa, §*(ag, wa)) | dg (aw,q" (ag, wa))
+ ,
d’yd d’yd



H
where, by the envelope theorem on #, we have ¢gaq—i— 87

8 H
+ daray —%— = 0. In addition, on this region, %Z =
N ~d!
al,;d' = 0, which implies that %W = (%fi =apih —ro (pﬂd + v4) and d“d’(ad”zw;ad”wd’” = 0. Thus,
on R
877(1 =ay (qd/ — qgQ) —ro? (pBa + va) - (B76)

HQ _ oHQ _ -nhY o4
Because HQ has long exposure to the symmetrlc divisions, ¢; ~ = ¢, = e 2 gq. Thus, ﬁ = 0 if and only if
- HQ
~y=—MB, where M =p—pand p= m (qd/ — qd, ) = % (1 —e "z ) Similarly,
i

2
T, = 090 (1 —200) ~ MBa (4w 053®) 416+ a6 (5) " —ro*Ba (1= pM)
Note 1 —pM =1—p?> +ppand 1 —2pM + M?> =1 —p* +
2 _

(B77)
sol—pM =1—-2pM + M?>+ 5(p—p). Also
rop(p—p) =0 (qw — qf,Q) G4 (p — p). Thus, we obtain the first-order condition

d# " A2
= g4l (1—2Ba) + Bt (q(‘f) (B78)
dBa
oM B, (qd, - q;{‘?) 330 — r*Ba (1 — 2pM + M?) =0,
which implies
4 1
= . B79
e 1+ 2( 5) ‘id S—1)+(1- ag +M ( )
p=r qd/ qu GqHqu
After substitution, this gives HQ payoff
—(n"9+2n) g2 4
= NH; 4 . (B80)
(QM +2(1-M)e "z — e*") e~"0¢% + ro? (1 — 2pM + M?)

Case (B): If y¢ > 0 and Hy € (e m e”), as in the proof of Theorem 3, applying the envelope theorem on (qHQ)
we have

dr HO _rQ Odd HQ Ody
_— = - 1-— ’ 1— By — ;e — B81
B Gy “aa+ (1= Ba—va)dy PBa (1= Ba —va)d, 95 (B81)
+dﬁd(éd7 % (aa, wa)) | dia (da, §* (da, war))
dBq dBq
Because in this region %‘;3 = ggj and %aﬁ‘fl' = ggd, we have
dm LHQ Ad) LHQ 304 SHQ Gd’
an - - - 1= By — 1— By J
5, ad (qd da) + (1= Ba—a)dy 88, (1= Bar —a) 4y 85
.d’ 304
- ’— — . B&2
ro® (Ba + pya) + Yadh = 85 +twdd oo (B82)
Consider now 4. Applying again the envelope theorem on 7 (qHQ) we have
dn HQ « HQ aad
O~ g%+ (1= By — v
i Gy aq + (1= Ba—ar)qy

Oag
o , »HQ d

B83
97 (B83)
diia(aa, §*(Ga, wa)) | dig (dd/:qd (Gar,war))
+ +
d’yd d’}/d

Because in this region g%‘; = g”%j and ?;dd' = g;i;, we have that

dn - LHQ ~d ) ~HQ 3(1,1 HQ ad/

—_— = —Qg ;. — Qg 1-— — ’ 1-— ’ — ’

e aq (qd da ) + (1 = Ba —var) 4y S7a (1= Bar —a) 4y Sva

.4’ 3a
—ro® (ya + pBa) + vadd <2 8 b wdi gt (B84)
Yd

10



Thus, from (B82) and (B84) we obtain the first-order conditions

d HQ - A

g = (@9 =) —ro® Bat pra)+ 51 =0 (185)
dn JHQ  Ad 2 Aa _

TW = 2% (qd/ Qd’) ro” (pBa + va) + ~a =0,

where Ay = (Z)dtij 39 4 quQ + ’qudr g Lty qd 8 , giving
Baaa (49 = 43) +ro® (B3 + praBa) = vaaa (152 — @) +r0” (praBa +73) (BS6)

From Lemma 2, we have S4a4d? = vaaq . Also, because g > 0 and HQ has beliefs as in case (ii) of Lemma 4,
with ¢4aqd" @ = parargh®, we have
Baaadl® +ro’ Bl = ’yd;f—dad(jf ? 4ro’yl. (B8T)
d/
We now show that ¢4 = ¢p. Suppose to the contrary that ¢4 > ¢p. Because (B8T7) holds for both divisions, 84 > va
but g < yg. This would imply, however, that ¢4 =1 — 4 — v < 1 — B — 74 = ¢B, which is a contradiction.
Similarly, ¢4 < ¢ would also imply a contradiction. Thus, ¢4 = ¢p. Further, this implies

(adeQ +r0” (Ba+ Wd)) (Ba — va) = 0. (B88)

Since the first term is strictly positive, 84 = 4. Further, because the divisions are symmetric, the first-order conditions
are symmetric, which implies the existence of a symmetric solution, 54 = Sp. Because the problem is strictly concave

2HQ
on this region, this must be the unique solution. Thus, as = ap = efgb’ﬁq. Also, qHQ = qgQ =e 2 qand

d _nf@ 57%95 _n 6*12195 . . s
@ =qh=e 3 q,50 Ag = (1 =20)e” 2 ¢=—F"% 4 fe” 2 q*—5+%, which gives the first-order condition

dr _1,.4.1Q d HQ § % 2 _
15, = 2Pda? — 2p0diall? + 508 (1) —ro’B(1+p) =0, (B89)
and thus 1
Bl = ~ =45 (B90)
18 (1-dd/a)?) + oty

After substitution, this gives HQ payoff

2,4,—(n"94n)
7= g e . (B91)

HQ
0q? (4e—(" . 3e—’7) +2r02 (1+ p)

Theorem 3 showed that 4 > 0 is optimal when r» = 0. Similarly, 74 > 0 when p = 0. Further, for p < 0, granting
ro? (B2 +2pBa+ i), than setting ¢ > 0. Thus, 74 = B4 dominates all
va < 0 with Hg € (67", e") for all p < 0. Note that #5 > #* if and only if g, > 0, where

Y4 < 0 results in a larger risk premium,

HQ ( HQ+,)
gL = <2M—|—2(1 - M) e 42T —de 7 )es_"eq2 (B92)
+ro® (1 —2pM + M? — 27" (1 +p)) .

and note that g|,_,no_y = —ro” (1 +p)? < 0, which implies that #* > #° for n = n? = 0. Note also that
HQ HQ
%:2(1—67772 >67"0q2+21"02 (M — p) =0, because M = p—pand p= © ﬂoq (1—67772 >,and thus that

@94
%9—; =—gr +2 (e_ B R e‘") e "0q> + ro* (1 —2pM + M?) > 0 for all g, < 0. This implies that, for a given

n*@ there is a unique 7 so that gr, (77, nHQ) =0, and for all n > #, it is gr, > 0 and thus #° > 7.
2HQ
a‘}}Q:(Qe (l—M)) "z e0¢> > 0fornp <y =-2Ini(1-M).

Consider now n'!
Substituting 0’ in gr., we obtain

1+M)>*(1—-M)?
8

2
0q° + ro’ (1 —20M + M? — % 1+ p)) >0, (B93)

Irlp=rn =
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where the inequality is obtained by noting that h (p) = 1 —2pM + M? — M

thus achieving its minimum at an endpoint. Because h (1) = 1 (1 — M)® > 0 and h( )= (1+M)>>0,h(p)>0

for all p € [-1,1], so gr|y=r’ > 0. Thus, in the ne1ghborhood of gL =0,7<7,s0

7% (allowing for the possibility that 79 = 0) such that #° > #* for 9 > ﬁHQ
Case (B’): Consider 74 < 0 with Hyq € (e™",€").

(1 + p) is linear in p for any given M,

> 0. Thus, there is a unique

dﬁ‘ ~HQ ~HQ 8ad ~HQ Bad/
-— = - 1— / 1— Ba ) B94
dﬂd dq ad+( ﬂd ’Yd)qd 8,8 ( ﬁd ) 94 aB ( )
ditg(ig, 4 (Ga, wa)) | dity (a0, ¢ (a0, wa))
dBa dBa ’
Because g%d = S“TZ and %QBGZ = gﬁ; we have that
dm SHQ Ad) JHQ 30d HQ G4/
—_— — - 1—Bq—va 1— By ;= B95
a5, ad(qd da )+ (1= Ba—a)dy 85, (1= Bar = 7a) Gy 85 (B95)
.d' 304
ro (Ba + pra) + Tadly - 8[3 +wda oo
Consider now 4. We have that
di HQ . g 0daq HQ O0lqr
— = %y + (1 —=Bg— gy 1— By — p B96
e Gy aw + (1= Ba—var) dg P (1= Ba —va) 4y 97 (B96)
ditg(da, §* (G, wa)) | ditg (a0, G (G0, wa))
+ .
d’yd d’yd
da 3a da g ag
Because 8’yd = 873, ﬁ = SM’ we obtain
dm - AHQ  Ad ) LHQ 3a, oad LHQ Qar
—_— —Qg L — Qg 1—Ba—vya 1— By y B97
T aa (qd Gar ) + (1= Ba—var) 4y S7a (1= Bar —7a) dy Sva (BI7)
.d’ 3ad
ro” (ya + pBa) + 4 2 8 -+ a4 Sa
From (B95) and (B97) we obtain the first-order conditions
drt . . A
B - (qu - qg) —10” (Ba+ pya) + 5 =0, (B98)
dBa Ba
dm . CHQ  ~d 2
T%Z = —ag (qd/ - Qd’) —ro” (ya+pBa) + — =0,
where Ag = ¢ady 2220 + pur g0 %8 + vadl - + wrqd 222, giving
Bada (df @ 43) +1r0” (B3 + pyaBa) = vatda (qfl{‘? - tif}f) +r0” (73 + pBava) - (B99)
Because the first-order conditions are symmetric, there exists a symmetric solution: 4 = g = 8 and ya = vy = 7.
HQ 1
Thus, ag =a =€~ 3 95 |v|2 ; g. This also implies that ¢4 = ¢5, so g HQ _ o= "o q. Also, Hy = I'Yl ,s0 ¢ = e 3 Mf q
B2
oh
and ¢4 = (2 — e 3 B2 )q. Thus, Bagl = e~ 3432 |’y|% aq and
[v]2
nHQ
va ((if/Q - éfff) = yae~ T q—2yag — e 2% 7|7 ag, (B100)
which implies that
_afe 2 52 _af1e 2 2
Bae” 2 q+ro°f :|7|(276 2 )aq+r07 (B101)
Because % € (—6"7 —6777), there exists é € (67",6") such that v = —éﬁ. Substituting in a = efgeﬁé%q, (B101) is
equivalent to f (é) = 0, where
A HQ « HQ A ~
f (g) = [(26" = _ 1) é— 1} e T e 382047 + 1o (52 - 1) = 0. (B102)
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HQ ~
Note f (e™") <0< f(1) =2 {enZ — 1} e (e7",1) for 9 > 0, but £ = 1if "< = 0.

Comparative statics on f follow because max { gi, 38(7"2, gf]} < 0 < min {g—g, g—g, affJ;Q } Further, 2 8—5 =0 iff
1 R
8= - g 7 —£8 < 0. (B103)
1+(qd' )f+2(1*qfce)+49th@
dl

After substitution in 7, we have

—(" 9+ g2,4
70 = ° S . (B104)
H

_nfQ 2AQ AT Cnf oo 5 P, fo
2¢e" "2 |14+ (272 —1)¢ 2£20qg?% — 3e71€q2%0 + ro (1—2p£+£>

Note #% > #* if and only if gs > 0, where

nH<
gs = (2M +2(1-M)e™" T + 267") 6¢” + ¢"ro® (1—2pM + M?) (B105)
HQ HQ N 1- 2Pé+€2
9o e |:1+ (26%_1> 5] 35 éQQQ—TJQ(é)v
with P HQ HQ
By =t (o) T [ (275 ) et et mion)
n

L N R
Note that [1 + (26 2 — 1) 4 ~3 s increasing and larger than 2 for £ € (e_”, 1), so 66’%”5 > 0. Also, 32%563 =
HQ
2

HQ -
—(1=M)e "z 0%+ (1 —f) e T e

~3£-20¢% Because M < e~ < £, we have that 6‘3?,5,9 < 0. Defining 9, 79

so that gs (ﬁ,ﬁfQ) =0, part (ii)(b) of Theorem 4 is proven.

Case (C): If vq4 > €"fBa, aid =0, so B;Wd =0, and thus T’; = —ay ((ng — dg/) — 1% (pB+7) < 0,50 v < eB.

Similarly, for Case (C"), if 7a < —¢"fa, 524 = G = 0,50 5 = —ay (4% = %) = ro” (pBu+74). Because
dar > 0> vq, (ng < qy < qj,. Also, p € (—1,1). Thus, % > 0 for v4 < —e"Bq, so it must be that v4 > —e"34.
Therefore, Cases (C) and (C’) are suboptimal.

All that remains to be shown is part (ii)(b) of Theorem 4, by showing that #° > #°® when n™< is large enough.

dn

Note #% > #% if and only if gz > 0, where

g = 2 {1+ (Qeﬁ —1> g} “8¢-204% 4 ro? (1—2pé+£2) Jé

(M4
2

—4e” 0q° — 2ra” (14 p). (B107)

o9p _ 1(8) _
Note 0 = @ = 0. Note that

d9E AN\ a1 _ %4y
877HQ:[*(1*§)5 z+2]e T 0g% > 0 (B108)
if and only ifé > 3 — 2v/2. Recall é is strictly decreasing in nHQ. This implies that g an inverse U-shaped function
of ™2 and that there is a unique 779, defined by £(77?) = 3 — 2v/2, such that a?ﬂ?@ > 0 for 19 < 752 and
Oi% < 0 for 9 > 779, Next, we will show that gz > 0 for all n7@ > 772 and, thus, for all £ < 3 — 21/2. Note
that, from (B102), we can express (B107) as

_ _n (s 1 2 f (é) 2 1

gr =4e 2 e 2(5 2—1>9q+ >~ 4+ 2ro {7—2/)—1]. (B109)
3 3

The first term is positive because f < 1, the second term is zero, and the third term is positive for all 1 > 3, which

is satisfied for £ < 3 —2v2 < 5. This implies that gz (n%?) > 0 for all @ > ##2. Thus, if gg (0) > 07 gr > 0 for
all n79 > 0, and thus define 75'“ = 0; otherwise, if gr (0) < 0, there is a unique 72 © such that gg(75“) = 0, with

13



ﬁfQ < 719 completing the proof of Theorem 4. m

Proof of Lemma 5. First, the division manager is indifferent between contracts (8,0,1) and (8,0, —1), so we
restrict attention to ¢ > 0 (if ¢ < 0, the proof follows by substituting in |¢| for 1). Next, the division manager is
indifferent between contracts (3,0,%) and (83,%,0). Note granting (3,0,v) gives HQ II = min rocxmq 7, where

m=(1-PB)aaqy® +pap® —bugt® —s (B110)

Conversely, granting (8,1,0) gives HQ II = min no ¢ gre 7, where

= (1= B)aags® + (1 —¥) ugp? s (B111)
Note that the s and a4 will be the same with both contracts. Thus, it is better to grant (3, ,0) than (8,0,) iff
: _ HQ _ HQ - _ HQ HQ
L0, (I=B)aagy+ (1 =) pgg~ = QHgII(IH (1-B)aaqs® + nap® — Yugh® (B112)

Let the solution to the left-hand side be §%% and the solution to the right-hand side be §7%. Because 1 > 0, we
know that qCQ > q¢. First, suppose that ) < 1. This implies that, by the definition of the minimum,
(1= B)aads® +puip® —uic® < (1-p)aady®+puin? — Pugo (B113)
< (1-B)aady® + pdg? —duds®

_ , 3 HQ | (q _ HQ
= qHQHéIII(lHQ(l B)aaqy” + (1 —1) ugp

Because (1 —1) > 0, (ng < ¢B, so the second line follows by monotonicity. Therefore, for 1) < 1, it is better to
pay with B than with C. If ¥ > 1, by symmetry of the set, because (QXQ,de,qc) € KH? and ¢g = g¢, then

(qﬁQ,qB,qgQ) € KHQ. Thus,

IN

(1= B)aady? + ngs — dpdz® (B114)
(1—8)aad?? + upg? — Yupg®
(1-B)aagh®+ (1) upap®

(1= B)aady® +pip® —puga®

IA

min
¢HQeKHQ
The second line holds by monotonicity, because 1) > 1, so HQ has a negative exposure to B, and thus (ng >qp. n
Proof of Theorem 5. Note that the participation constraint binds, so we can express the objective as
H ~H ~H A
H=(1—/3)aAqAQ+(1—v)quQ—Wq °+U (B115)

£ (847" + %) — S ond O = mingacyon

where (jHQ solves mingHQexHQ and @ =

Applying the envelope theorem.
il H

Q_ ,  Yv , v veAa
a3 —aagqy "~ + 93 + Ban OB (B116)
Because g—g = aa§4 — ro’B, we can express this as
dH ~HQ ~A BH BaA
- _ _ - 74 B11
7 aA(qA qA) ,3+8A a5 (B117)

s U _ , A 2 U _ A 2
Similarly, because G5 = Mg —ToYy and 5g = Mdc — 710 1) we can express

it SHQ A\ OIl Daa

P —n (57— d) = roty 4 5 oy (BLL8)
and

A, (80— g8) = oty AL 00

ap = @™ —dc dar Ov

Next, note that HQ will set ¥ # 0 only if 8aA > 0. Suppose to the contrary that aaA = 0, or equivalently, that

either & = qo or §& = e - qgc. For ¢ > 0, HQ is negative exposed to the source of rlsk but the DM is positively
exposed, zng > go > ¢4, so Z—g < 0 for such ¢ > 0. Similarly, for ¥ < 0, (ng < qc < 8, so % > 0 for such

1 < 0. Thus, either DM will have interior beliefs toward the external risk, so that ‘%A > 0, or HQ will grant him no
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exposure, 1 = 0.

Thus, we have shown that there are three possible regions. First, it could be possible for HQ to grant only
division-based pay. Second, it could be possible for HQ to grant only division-based pay and the internal risk, but
not the external risk. By Lemma 5, we can exclude the corresponding region of granting only division-based pay and
the external risk for all n9 > 0, and it is WLOG optimal to grant the internal risk rather than the external even
when nHQ = 0 (the visionary HQ is indifferent). Finally, we can consider when HQ grants division-based pay, the

internal risk, and the external risk. As we showed in the previous paragraph, it must grant sufficiently of this to induce
da
£

'yuB(jg = w,uc(jé which implies A = e~

interior beliefs, so that > 0. Note that, similar to Lemma 2, on this region, interior beliefs satisfy A = ﬂaA(jﬁ =
n4 1 . ot 2 2 1

¥ T [Baagaypsanducac)?, so G4 =e 5 By0a,° [qayusasdpcqo]®, 45 =
_n? 2 -2 1 R _nd 2 -2 1 . . N
ey 3 g [Baaqagsucac]®, and G& = e~ T ¢T3 uc® [Baaqayupgsge]®. Substituting into as = Babadi,
dap __ ap Oap _ ap

aa aa apa _ aa
o — 58 Oy T~ 5v?

and S = 55

_nA 3 3 1L 3 11 5 11
this implies aa = e~ 5 0585q3v5 upqgyspiql, so

) . . . da da
Suppose to the contrary that HQ used all three, setting > 0, v > 0, and ¥ > 0. Substituting in for 954 , a;‘ ,
and 5);—1;‘7 the FOCs simplify to
11
o (59 —ak) +r®? = G2 (B119)
daa b
oIl aa
LHQ A 2 2
- =34 B12
elz (qB qB) oty = (B120)
1
un (389~ a8) + roy? = S0 (B121)
daas 5
This would imply that
Baa (059 - ad) +ro”8* = u(af° - aB) +ro*y (B122)
= wn(a° —ad) +ro%y’
Also, because the DM has interior beliefs, Baad4 = yuds = Yuds, so this implifies to
ﬁaA(jf{Q +ro?p = ’YN@gQ +roy? = wmng +roly’? (B123)
When 7% is big enough, the HQ will have interior beliefs toward asset A and B, unless 8 = 1 and y = 1. This
implies that (1 — ) aA(szQ =(1-7) ,u(ng, SO M(ng = %amﬁ_{@. Similarly to the proof of Corollary 1, g = .

Suppose that it is optimal to set ¥ > 0 (symmetric arguments for ¢» < 0 will hold). For this to be optimal, it
must be that §& < gc, or equivalently, Yuqge > vuda. Note §a > e " gB = e’ gc because g = qc. Thus, for the
DM to have interior beliefs, it must be that ¢ > Bean. Back to HQ’s FOC, this implies that

A AN 2 A AN 2
bpgl? + 10’0’ > B pal® 4 ra® (™) > B pap +ro® (Be ") (B124)

The second inequality holds because HQ has a negative exposure to the external risk, so (jg @ > go and q¢ = gs.
nHQ _2
If HQ has interior beliefs toward all three sources of risk, GH? = e~ (1 - *y)*% pg? [(1—75) aAquBszucqc]%,

which is decreasing in 17HQ. Thus, HﬁHQ such that for all nHQ > ﬁHQ
A A
Be™ " ugp +e 2" 1o’ B > Budh @ + ro’ (B125)

Thus, when 1@ is large enough, % < 0 for all ¢ > ﬁef”A, so it is optimal to set » = 0. =

Proof of Theorem 7. Because there are synergies, the output of each division is increasing in the effort of both
division managers. That is, the drift of division A is (aa + aB) ga, and the drift of division B is (ap + (aa) ¢s. For
simplicity, we will assume that HQ is uncertainty neutral, though HQ uncertainty only makes equity more attractive.

Because the participation constraint binds, the payoff to HQ will be
m=(1-Ba—78)(aa+Cap)qa+ (1—Bp —va)(as +Caa)qs +Us+Us (B126)
Division manager d has payoff Uqg = mingdc ga d, where

2
(B2 + 2pBava +3) — (B127)

2
~ ~ N ro
g = Ba (aa + Caa) 47 +va (aa + Caa) @4 — ——

2 204
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_ val(egr+¢aq)ags
Ba(aa+Cag)aa
If Hy < e, 49 = e "qq and §% = qo. Because we are assuming symmetry, these are the same. Conversely, if

Beliefs are as solved in Lemma 2. We are also assuming both divisions have the same 1. Let Hq =

1 1
Y4 > 0 and Hy € [e‘",e”], then ¢4 = (e_”Hd)§ qa and ¢4 = (e "Hld) 2 qq . Finally, if 74 < 0 and Hy € [e”’,e"],

1 1
g = (e""Ha)? qa but §4 = {2 — (e‘”%) 2] qq- Given beliefs, note aud = Bady +vaCdy — Zf;ﬂ SO

aq =04 [,301@5 + ’YdCéle/] (B128)

There are three types of contracts that might arise in equilibrium: interior beliefs with long exposure, Hq €
[e‘”, e”] with 4 > 0, interior beliefs with short exposure, Hq € [6_”, e”] and 4 < 0, and corner beliefs, Hg < e™".
First, we will show that the optimal contract when Hy € [e_", e"} with 4 > 0 is equity. Then, we will show that
the optimal contract will be on this region when ( is large enough.

First, note that the optimal contract is symmetric and induces symmetric effort, as = ap. Suppose to the
contrary that the HQ gives different contracts to the different division managers. By symmetry, the HQ receives the
same payoff by trading the contract between the two managers. Note that the objective, as the minimum of strictly
concave functions, is strictly concave. Thus, HQ receives a strictly higher payoff by giving both division managers
the average of the two contracts, so it cannot be optimal to give different contracts to the two division managers.
Because the HQ grants the same contract to the two division managers, in equilibrium, they will exert symmetric
effort: aq = ag .

When Hy € [67’7,6"} and 4 > 0, from Lemma 2 and because ag = aq, §3 = efgwd%qd%,ﬁ;%qd% and ¢4 =
efgﬁd% qd% vd_%qd%,. This implies that

aqg =€ z Bd 'Yd edqd/qd (1+0) (B129)

N)\»—A

Note that the effort of each division manager depends on (4 or v4 only through their geometric mean, (B847v4)2 .

Consider the optimal contract that induces interior beliefs from both division managers.
7= (1-Ba—75)(aa+Cap)ga+ (1 - B —va) (ap + CaA) g +Ua+Usp (B130)

where Uy = fa (aq + Caw) 44 +va (aar + Caa) 4% — ™5 (82 + 20Bava +13) — mit. Note that
dr  Om n on daiA_’_ or dap
d/BA 85A Oaa dﬂA dap dﬁA

where 8/3 —(aa + §aB) qA+a , and ggﬁ = (aa + Cap) G4—r02 (Ba + pya). Further, 83" =(1—-Ba—7B)ga+

¢(1—-B8B—"a) qB+ 8aA where 8UB = (BBGE+vBiG5. Recall BUA = 0 by the envelope theorem. Because a4 depends

1

. . _ 1 da __10a
on the incentive contract only through I4 = (8474)2, dﬁﬁ =3 012 (BA) Thus,

1
o LA\ Om 10aa (74)?
= (aa+ Cap) (qA qA) ro” (Batpa) + 5557, (/BA
Similarly,
1
di _ A 2 ﬁl% ﬁi ?
dya (aB +Caa) (‘IB qB) ro” (pBa+a)+ Oaa 2 014 (VA
Therefore, -2 an, = 0 iff
or 10a 1 i
Bay 3oL, (WOnE =Baea+Gen) (a4 = d4) + 70" (B + pa5a)
and £~ = 0 iff
A or 10aa 1
S5 o (1aBa)% =7 (an +Can) (a5 — ) + 0% (pBara +73)

Therefore, the optimal contract satisfies

Ba (aa +Can) (QA - @,’2) +70% (B4 + praBa) = va (aB + Caa) (qB - éﬁ) +710° (pBava +74)
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Because we have interior beliefs, it must be that 84 (aa + Cap) {4 = va (ap + Caa) Ga. Symmetric conditions hold for

division B, with ga = gB, and we already showed a4 = ap. Thus, the optimal contract must satisfy f (84) = f (v4),

where f(z) = za(1+¢)q + ro®2®. Because f is monotonic, 84 = ya. Therefore, the optimal contract when

H; e [ef”, e"] and 4 > 0 is equity, with Hg = 1. Substituting back into the FOCs, it can be shown that the optimal
e 30(1+0)%?

1673 0(140)2q2 —3e=10g2(1+¢) > +2r02 (1+p)

incentive level is 8 =

1
Next consider the optimal contract with Hy € [ef”,e"] but 74 < 0. From Lemma 2, §¢ = (eand) 2 gq but

1
§4 = [2 — (e_”Hid) 2} qa’- Substituting into the FOC for effort, aq = 04 [,Bd(jg + fydC(jg/] and applying symmetry,

_n 1 1
0 =0 {(1 = O 8} 1l + 20uc (B131)
Note that a is increasing in 8 on this region, and we are on this region only if 8 < e” |7y|, which implies that
aa < 0q || (1 - 30) (B132)

Therefore, for ¢ > %, aqd < 0 on this region. That is, for { > %, there is no contract that induces effort with 5 > 0
and v < —e~"8. Any such contract would be dominated by setting 8 = v = 0.

Finally, let us consider the optimal contract with corner beliefs, Hq < e™", so that cjg =e "qq and cjj, =gqqu. In

this case,
aq = 04 [Bae”"q + valq] (B133)
Note the HQ has payoff
m=(1-Ba—7v8)(aa+Can)qa+ (1 —Bp —7a)(an + Cas) gz + Ua + Us (B134)
Thus,
dm onr or daa
am _ om | Om daa B135
dBa 0Ba  Oaa dBa ( )
Note that % = —(aa +Cap)qa + %, where % = (aa +Cap) e "qa —ro? (Ba + pya). Thus,
% = —(aa+Cas)qa (1 _ e*") — 1% (Ba + pya). Further, 8(1: =(1-Ba—v8)ga+ (1 - BB —v4)las + ggf’
where gﬁ,{fj =~vBqa + (Bre "qp: by the envelope theorem, % = 0. Because Zg—i = fe g, aa‘ﬁ =0 iff
7] _ _
%GAe Tga = (aa + CaB) qa (1 —e 7’) +ro? (Ba+ pya) (B136)
Similarly,
dm om or daa
= 4 = B137
dya  O0ya Oaa dya ( )
because ;—’; = —(ap +Caa)qgp + % and % = (ap +Caa)gs — ro’ (pB +7), % = —ro® (pB + ). Because,
da s .
24 = 0aan, 45, =01 )
T 9aCqn = ro® (pBa +va)
daa
Thus, 57~ = 0 and ;2 = 0 implies that
dm _ n _n n. 2 1 s
e fa=a(+Qe"q(1—e™") +e"ro” (B+py) = ¢ B+ (B138)
A

Substituting in for optimal effort, a = 6 [ﬁefnq + ’y(q}7 and rearranging,
08¢ (1+¢)e"q* (1—e™") +ro® (Ce" —p) B =ro” (1 —Ce'p)y —07¢* (14 () e"g* (1 —e") (B139)

We will guess and verify that ro? (1 — Cep) > 6¢% (1 +¢) e¢? (1 — 6777), so that we are not dividing by zero. This
implies that v = mf, where

A+ (1—e") +ro? (e —p)

o2 (1—Cerp) —0C (1+ ) eng? (1 —e)’

If p > 0, note that the numerator is strictly increasing in ¢, while the denominator is strictly decreasing in (.
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When ¢ = 0, m = —p, so the numerator is negative for small values of ¢ and positive for large values of (. Note
that m = 0 iff p = —50¢(1+¢)¢* (1 —e™") + ¢e”. In this case, the denominator is D = ro® (1 —¢%e*) +
¢%0q> (1 — 67") (1+¢)e" (1 —¢) which is strictly positive (note that, for ¢ > e™", the numerator is bigger than
fe g> (1 — 67277) +ro? (1 — p), which is strictly positive for all p € [—1,1], so it must be that ¢ < e~" when m = 0).
Finally, note that we are on this region iff v < e~"f, or equivalently, iff m < e~". Because the numerator is strictly
positive as the denominator approaches 0, m explodes, so it must be for ¢ smaller than that m > e~"7. When p < 0,
the numerator is strictly positive, and the denominator is increasing then decreasing, so m is still well-defined by the
same argument. Thus, m solves f (m) =0,

fm)=mro® (1 —¢e"p) =0 1+ e (1—e )] 01+ a" (1—e ") —ra” (Ce" —p)

Note f' =r0% (1 —Ce"p) — 6¢% (1 +¢) eq? (1 — 67"). We already proved above that f' > 0 for all m < e~ ".

Z—J; —m [razenp + 0eq? (1—e™") (2¢+ 3(2)]
—0e"e"q” (1 —e ") (14 2¢) — ro’e”
Thus, g—g < 0. By the implicit function theorem, note that g—é = 0, because f is uniformly zero. Because g—é =
%J; + f’dd—’g is uniformly zero, “;—”g = —% > 0. Therefore, an increase in the synergy increases the exposure of the
contract to cross-pay under corner beliefs. Similarly,
% =m [—ra%e”p —6¢? 1+9¢ e"qz] —6¢C(1+¢) e —ro’Ce”

which is likewise negative. Therefore, % > 0: and an increase in uncertainty increases cross-pay with synergies.
Finally, note

f(m)|ee-m = m [7"02 (1—p)—0e 2" (1+e ) e"q’ (1—e™M)] =07 (1+e ) ¢ (1—e™) = ro” (1 —p)
= (m-1) [r02 (1—p)—0e "¢ (1- 6727])]
If ro® (1 — p) > Be "¢* (1 — e~ "), this implies that m = 1 when ¢ = e ". If ro”® (1 — p) < 0" "¢” (1 — e~ "), then
there exists a ¢ < e~ such that ro? (1 — Cep) — 0¢% (1 +¢) e"¢? (1 — ef”) = 0, and lim, ,;m = +oo. Because
d,T’g > 0, there exists a unique 6 < e " such that m < e™ "7 iff { < 6 Therefore, if ¢ > é, it is not locally optimal to
select v < e” "8, and the HQ will shift to the first region, Hq € [67U7 e"}.

Therefore, define ¢ = max {C, %} For all ¢ > ¢, the optimal contract will be equity. m
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