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Abstract. Vertex algebras are a class of non-associative and non-commutative

algebraic structures. The Heisenberg vertex algebra, which serves as an alge-
braic model of a single free boson, is an example of such an algebra. In 2011,

Andrew Linshaw studied the invariance of this algebra under finite group ac-
tion and concluded that the ring of invariants of the Heisenberg algebra under

the action of some reductive group is finitely generated. In 2016, Michael

Penn, Hanbo Shao and the author classified the invariants of the free-fermion
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the multiplicative group of integers modulo 2. Using similar techniques, this

work aims to classify the invariants of another example of a vertex algebra,
the bosonic ghost algebra, again under the action of Z/2Z.
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1. Introduction

Vertex algebras are an intriguing field, lying at the intersection of modern algebra
and high-energy physics. Michael Penn, my thesis advisor, first introduced them
to me as a potential area of study for a summer research project. His aim was
to extend work done by a colleague, Andrew Linshaw, on classifying invariants of
these algebras. My aim was, vaguely, to gain mathematical insight into physics
and understand what it means to do research in mathematics. We were both
more or less successful: Michael, Hanbo Shao and I classified the invariants of an
interesting example of a vertex algebra under the action of Z/2Z; independently, I
classified invariants of a different algebra under the same group action, leading to
the work presented in this thesis; and, through a good deal of suffering, I gained
some understanding of what research in mathematics entails.

You may currently be wondering whether you ought to read this paper. Let me
convince you to continue: to begin with, the preliminary work necessary for this
research covers a wide range of mathematics, including group representation theory,
invariant theory from two different centuries, and various notions from the theory
of commutative algebras, quantum algebras and operator algebras (these last three
are conveniently all found in a paper titled “Commutative Quantum Operator Al-
gebras”). I will review most of the necessary groundwork before presenting my own
results. The breadth of material covered is interesting in its own right, particularly
when you see how it is all tied together.

Even more interesting, perhaps, is the actual work done with vertex algebras.
In working towards our results, I tangled with the difficulties of non-associative
algebras for the first time. This was not very fun to do, but I am sure it will make
for an interesting read. Due in good part to the inherent non-associativity of vertex
algebras, the calculations necessary to prove our results are long and off-putting.
They are not part of the reason why you should read this paper, unless you truly
enjoy that sort of thing. In the end, despite the computational complexity, our
results are quite simple and clean. If anything, you ought to continue reading to
see this evolution from relative disorder to relative simplicity.

1.1. Historical Background. To understand vertex operator algebras, we ought
to understand their origin story. It begins with John McKay, who in 1978 embarked
on an apparent goose chase when he noticed a connection between a coefficient of
the elliptic modular j function:

j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · · =
∑

c(n)qn,

where q = e2πiτ ,

and the smallest complex representation of the monster group, a group with degree
196883. The monster group is the largest simple sporadic group, having order
8× 1053.

In fact, the difference between the degree of the monster and the first coefficient
of the j function is so small that McKay felt it could, possibly, indicate the existence
of some sort of relationship between the sporadic groups and modular functions,
an idea which most of his colleagues promptly declared “moonshine.” McKay’s
observation was dismissed until Thompson noticed that the next few coefficients in
the modular j function could be written as linear combinations of dimensions of
irreducible representations of the monster group [B].
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The eventual result of McKay’s goose chase was the moonshine module, a vertex
algebra constructed by Frenkel, Lepowsky and Meurman in 1988. As it would turn
out, the monster group is also the automorphism group of the moonshine module
[B]. The pursuit of this new field was continued by Richard Borcherds, who first
rigorously defined vertex algebras. Victor Kac, in his study of the theory of infinite-
dimensional Lie algebras, extended and formalized Borcherds’ definition. We rely
mostly on Kac’s definitions in this paper.

1.2. Modern Work. The technical framework established by Kac and his con-
temporaries has been used by many others, including Gregg Zuckerman, Bong Lian
and Andrew Linshaw, three mathematicians whose work laid the foundation for
what we will do in this paper.

In [LZ], Lian and Zuckerman bridged the gap between vertex algebras and quan-
tum operator algebras, introducing much of the structure used in this paper. In
2011 Linshaw proved, for the invariant vertex algebra H(n), that H(n)G is strongly
finitely generated if G is a reductive group of automorphisms preserving the con-
formal structure of the Virasoro element [L]. An obvious question emerges from
Linshaw’s work: if we pick some reductive group G, can we find and classify all
these generators?

1.3. Overview. This paper begins by covering necessary background material in
invariant theory, drawing on two sources: Invariant Theory, published by Mara
Neusel in 2007, and The Classical Groups: Their Invariants and Representations,
published by Hermann Weyl in 1939. Neusel’s clear presentation of invariant theory
as seen through the lens of group representation theory is necessary to understand
Weyl’s somewhat opaque text, which will give us insight into the generators of the
ring of polynomial invariants under the orthogonal group, O(n). Weyl also presents
relations between these generators. We will find we are able to apply Weyl’s work
to our own via a series of isomorphisms.

At this point, we will be ready to truly enter the world of vertex algebras,
beginning with several necessary but tedious definitions. These will come mostly
from Victor Kac’s 2003 lecture notes on the subject. We will also introduce two
fundamental operations, the normal-ordered product and the circle product, and
establish some identities. The reader is encouraged to hang on through this section,
because it will all soon be applied!

Finally, we introduce our intended object of study: the bosonic ghost algebra,
which we refer to as the β−γ system. For the sake of timely submission of this paper
we consider only a specific case of this algebra, but this will give us plenty to work
with. Our aim will be to reduce the generating set of the ring of invariants of the
β − γ system acted on by Z/2Z. We first use a linear isomorphism to apply Weyl’s
results and obtain a rather broad generating set. Next, we are able to introduce a
derivative structure that mimics the derivative structure of the β − γ system. At
this point, we are obliged to take a two page-long detour to prove some important
results about the basis of a vector space of quadratic elements that we introduce
solely for the sake of the proof. This detour is necessary because, once the proofs
are complete, we are able to say something new (and better!) about the generating
set of the ∂-algebra we constructed.

Now we are in the home stretch. In the final section of the paper, we make use
of the non-associativity inherent to the β−γ system to find “quantum” corrections
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that result from considering the relations between various pairings of elements.
These thorny-looking relations allow us to further reduce our generating set. This
final generating set is minimal so, at this point, we will be done.

2. Invariant Theory

We begin with introducing some fundamental concepts from group representation
theory, a field of mathematics concerned with the study of groups via their action
on various mathematical objects. We will focus on group actions on polynomials,
as polynomial invariants will soon become relevant. The following definitions are
due to M. Nuesel [N], while the examples are the author’s.

2.1. Group Representation Theory.

Definition 2.1. Linear Representation of a Group
A linear representation of a group is a group homomorphism

φ : G→ GL(n,F)

where F is any field, the number n is the degree of the representation φ, and GL(n,F)
is the general linear group, i.e., the group of n× n invertible matrices with entries
from F. For our purposes, we will always work over the complex numbers, C.

Alternatively, and more generally, we may write GL(V ), where V is the vector
space over F. In this case, we think of GL(V ) as the group of invertible linear
transforms of V . These representations may be of finite or infinite groups, but we
are concerned only with representations of finite groups.

Example 1. The Cyclic Group Z2

Take V = Cn. Let ρ be our linear representation, where

ρ : Z2 → GLn(C)

such that 0 7→ I and 1 7→ −I, where I is the identity matrix.

Example 2. The Dihedral Group D4

Take V = R2. Let
ρ : D4 → GL2(R)

such that r 7→
(

0 −1
1 0

)
and s 7→

(
1 0
0 −1

)
.

Definition 2.2. Group Action
Let S be a set and G a group. A group action of G on S is a map

G× S → S, (g, s) 7→ gs

such that es = s and (gh)s = g(hs) for all g, h ∈ G and s ∈ S. We call S a G-set.

Example 3. Z2 as a group action and map
Take T to be R2, and G to be the multiplicative form of Z2 = {±1}. Then, the map

Z2 × R2 → R2, (g, s) 7→ gs

is a group action of Z2 on R2 for all g ∈ Z2 and s ∈ R2. We can check this quickly:
take x ∈ R2. Then, 1(x) = x verifies the first condition and (1 ∗ −1)x = −x =
1(−1 ∗ x) verifies the second. We say R2 is a Z2-set.
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Moreover, if we take S = R, another Z2-set, and let φ be multiplication by a
vector in R2 (i.e., scalar multiplication, as all elements of R will be scalars) such
that φ : R → R2, then φ is a Z2-map. Again, this is easy to check. For t1, t2 ∈ R2

and s ∈ R, we have φ(1 ∗ s) =
(
t1
t2

)
1 ∗ s = 1 ∗

(
t1
t2

)
s = 1 ∗ φ(s). The calculation is

essentially the same for the other member of Z2, −1.
It is worth nothing that a group action and a group representation, as defined

above, are equivalent notions. We will use the terms interchangeably in this paper.

Definition 2.3. Dual Space
The dual space V ∗ is a vector space of dimension n consisting of all linear maps
V → F. The dual basis x1, · · · , xn ∈ V ∗ is defined by

xi(ej) = δij =

{
1 if i = j

0 otherwise.

Proof. See [N], pg. 51. �

Remark 2.1. Linear Group Action
Take a finite group G and ρ, a linear representation of that group. Because ρ maps
every group element to a matrix, ρ(g) acts by matrix multiplication on the vectors
v = (v1, · · · , vn) ∈ Fn. So, for every element g ∈ G we obtain a linear map

g : Fn → Fn,v 7→ gv := ρ(g)(v1, · · · , vn)t.

Using our previously defined terminology, we may say the map

G× Fn → Fn, (g,v) 7→ ρ(g)vt

defines a group action of G on the vector space V = Fn. Similarly, we can define
an action of G on elements of V ∗:

gxi(ej) := xi(g
−1ej)

for all i, j. By extending this action to the entire vector space V ∗, we induce a
linear group action of G on V ∗.

2.2. Group Action on all Polynomial Functions. We may further extend the
group action defined above to all polynomials.

Denote by F[V ] = C[x1, · · · , xn] the ring of polynomials in n polynomial func-
tions on V, x1, . . . xn, with coefficients taken from the field C. A monomial in the
ring of polynomials may be written as

xI = xi11 . . . x
in
n

where i1, · · · in ∈ Nn0 is an exponent sequence. Any polynomial f ∈ F[V ] may be
written as a finite sum of monomials:

f(x1, · · · , xn) =
∑
I

aIx
I

We extend our G-action multiplicatively, to define it on a monomial:

g(xi11 . . . x
in
n ) = g(x1)i1 . . . g(xn)in

and linearly, to define it on all polynomials:

gf = g(
∑
I

aIx
I) =

∑
I

aIg(xI).
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In summary, we have extended our G-action such that

gf(v) = f(ρ(g)−1v) ∀g ∈ G, v ∈ V, and f ∈ F[V ].

The degree of the polynomial in question remains the same no matter the group G.

Example 4. Z2 acting on an arbitrary polynomial
Take O : C[x1, . . . , xn]→ C[x1, . . . , xn] by O(xi) = −xi and note that 〈O〉 = Z/2Z.
Consider first the action of O on a monomial:

O(xi11 . . . x
in
n ) = (−1)n(xi11 . . . x

in
n ) = (−1)n(xI).

Now, consider the same action on an arbitrary polynomial p(x1, · · · , xn) in F[V ]:

O(p) =
∑
I

aI(−1)nxI = (−1)n
∑
I

aIx
I ,

where the action of the second group element on a polynomial uses the expression
we wrote down for the same action on a monomial. It is an interesting property
that the monomial will remain unchanged only for even powers of n.

Definition 2.4. We say a polynomial f ∈ F[V ] is invariant under the group action
of G if

g · f = f for all g ∈ G.
F[V ]G ⊂ F[V ] is the subset consisting of all polynomials invariant under G.

2.3. Classical Invariant Theory. Hermann Weyl’s work in [W] produced what
would become the first and second fundamental theorems of classical invariant
theory. Specifically, Weyl obtained the generators for the ring of all polynomial
invariants under the action of finite groups, including the orthogonal group O(n).
Additionally, Weyl described the relations between elements in the generating set
of such a ring as being of a common type, such that a (n+ 1)× (n+ 1) matrix of
the elements has a determinant of 0.

Theorem 2.1. The First Main Theorem for the Orthogonal Group
Every even orthogonal invariant depending on m vectors x1, x2, · · · , xm in the n-
dimensional vector space is expressible in terms of the m2 scalar products (xαxβ).
Every odd invariant is a sum of terms

[u1u2 . . . un] · f∗(x1, . . . , xm),

where u1, . . . , un are selected from the row x1, . . . , xm and f∗ is an even invariant.
If τ is the group O(n) of all proper and improper orthogonal transformations,

then we have one basic type of invariant, the scalar product (xy). A typical relation
among scalar products is the following, involving n+ 1 vectors x and n+ 1 vectors
y:

J =

∣∣∣∣∣∣∣∣
(x0y0) (x0y1) · · · (x0yn)
(x1y0) (x1y1) · · · (x1yn)
· · · · · · · · · · · ·

(xny0) (xny1) · · · (xnyn)

∣∣∣∣∣∣∣∣ = 0.

Proof. See H. Weyl, The Classical Groups. �
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Theorem 2.2. The Second Main Theorem for the Orthogonal Group
Every relation among scalar products is an algebraic consequence of relations of
type J.

Proof. See H. Weyl, The Classical Groups, [W]. �

2.4. Interpreting Classical Invariant Theory. We rely on the known isomor-
phism O(1) ∼= Z/2Z to draw Weyl’s results into our work.

Definition 2.5. The Orthogonal Group of Dimension n
The orthogonal group O(n) is defined as as the group of n × n orthogonal ma-

trices, i.e., matrices such that AT = A−1, where the group action is matrix mul-
tiplication. It is well known that det(A) = det(AT ) for a matrix of any degree.
Moreover, if that matrix is invertible, then det(A−1) = 1

det(A) . Every matrix in the

orthogonal group is, by definition, invertible, so this condition applies. We need
one last (practically tautological) observation: if two matrices are equal, then their
determinants are also equal. So now, for A ∈ O(n), we have:

(det(A))2 = det(A) det(AT ) = det(A) det(A−1) =
det(A)

det(A)
= 1.

This implies that det(A) = ±1. Now, we refine this understanding of O(n) to O(1).

Definition 2.6. The Orthogonal Group of Dimension 1
We define O(1) as the group of 1× 1 matrices such that AT = A−1. Right away,

we can write down that O(1) = {x} with det(x) = ±1. This implies that O(1) =
{1,−1}, which is the multiplicative form of Z/2Z. We conclude that O(1) = Z/2Z,
meaning we are now able to apply Weyl’s theorems to polynomials in one variable.
However, it will be useful to us later in this paper to be able to apply them to
a polynomial in two variables. In order to extend his theorems to our setting, we
demonstrate the following linear isomorphism on the level of commutative algebras:

(2.1)
C[x(0), x(1), . . . ] ∼= C[x0(0), x1(0), x0(1), x1(1), . . . ]

x(m) 7→ xr(q)

where m = 2q + r for m, q ≥ 0 and 0 ≤ r < 2.
We will soon demonstrate the isomorphism C[x0(m), x1(n)] ∼= A(1), allowing us

to lift Weyl’s theorems into the realm of vertex algebras. In order to do so, however,
we need to present some basic results and definitions concerning these algebras.

3. Vertex Algebras

3.1. Definitions. The following definitions are due to V. Kac [K].

Definition 3.1. Formal Distribution
Given a vector space V over the complex numbers, for an ∈ V , a V -valued formal
distribution is an expression

(3.1) a(z) =
∑
n∈Z

anz
n

where z is a formal variable and by distribution we mean a linear map T : D(R) 7→
R. We define the formal residue Resz a(z) := a−1, from which it follows that we



8 INVARIANTS OF THE BOSONIC GHOST ALGEBRA UNDER FINITE GROUP ACTION

may define a(n) = Resz z
na(z) and rewrite 3.1 as

(3.2) a(z) =
∑
n∈Z

a(n)z
−n−1

We may extend this definition to multiple formal variables. For example, in two
variables, we have:

(3.3) a(z, w) =
∑
n,m∈Z

an,mz
nwm

for am,n ∈ V .

Definition 3.2. Graded Vector Space
A graded vector space is a vector space with a decomposition into the direct sum
of vector subspaces.

Definition 3.3. Super Space
A super space is a vector space with a Z/2Z grading, i.e., a decomposition V =
V0 ⊕ V1.

Remark 3.1. Parity of Vertex Algebras
Vertex algebras may be of even or odd parity. An odd vertex algebra (c.f. [PSC])
is constructed from a super space as defined above. An even vertex algebra, such
as the bosonic ghost algebra we will introduce shortly, is constructed from a vector
space without a grading.

3.2. Construction. Let V be a vector space over C. We define QO(V ) to be the
space of all linear maps

V 7→ V [[z, z−1]] :=

{∑
n∈Z

v(n)z−n−1|v(n) ∈ End(V ), v(n) = 0 for n >> 0

}
where z is a formal variable. Each element a ∈ QO(v) can be represented as a
formal power series a(z) ∈ QO(V ), written as:

a = a(z) :=
∑
n∈Z

a(n)z−n−1 ∈ End(V )[[z, z−1]].

We also impose the following truncation condition: for all a ∈ QO(V ) and v ∈ V,
there is an N ∈ N such that a(n)v = 0 for all n ≥ N. In terms of formal power
series, this gives us:

a(z)v ∈ V ((z)) = V [[z]][z−1].

We endow QO(V) with infinitely many bilinear products known as circle products.
For homogeneous a, b ∈ QO(V ), we define the nth circle product for n ∈ Z:

(3.4) a(w) ◦n b(w) = Resza(z)b(w)(z − w)n −Reszb(w)a(z)(−w + z)n.

The graded subspace A of QO(V ), closed under all circle products ◦n and contain-
ing the identity operator, is called a quantum operator algebra. Such an algebra
is closed under formal differentiation, which will allow us to derive an identity
for negative and non-negative circle products shortly. First, note that ∂ is a for-
mal differentiation operator with respect to z and ◦

◦−◦
◦ denotes the normal ordered

product:
◦
◦a(z)b(w)◦

◦ := a(z)+b(w) + p(a, b)b(w)a(z)−
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where

a(z)+ =
∑
n≤−1

a(n)z
−1−n

a(z)− =
∑
n≥0

a(n)z
−1−n

The normal ordered product is iterated from left to right, so that ◦
◦a1(z) . . . ak(z)◦

◦

is defined by
◦
◦a1(z) . . . ak(z)◦

◦ = ◦
◦a1(z)b(z)◦

◦,

where b(z) = ◦
◦a2(z) . . . ak(z)◦

◦.

Lemma 3.1. Circle Product

(3.5) a(z) ◦n b(z) =

{
1

(−n−1)!
◦
◦∂
−n−1a(z)b(z)◦

◦ if n < 0

[(
∑n
m=0 a(m)(−z)n−m), b(z)] if n ≥ 0

where

(3.6) ∂a(z) =
∂

∂z
a(z)

and, naturally,

∂(a(z)b(z)) =
∂

∂z
a(z)b(z) + a(z)

∂

∂z
b(z)

Proof. We consider two cases: n ≥ 0 and n < 0. First, for n ≥ 0, we have

(w − z)n =

n∑
k=0

(
n

k

)
(−z)n−kwk = (−z + w)n

So we may write

a(z) ◦n b(z) = Resw(w − z)n[a(w), b(z)]

= Resw

n∑
k=0

(
n

k

)
(−z)n−kwk[

∑
m∈Z

a(m)w−m−1, b(z)]

= Resw

n∑
k=0

(
n

k

)
(−z)n−k[

∑
m∈Z

a(m)wk−m−1, b(z)]

=

n∑
k=0

(
n

k

)
(−z)n−k[Resw

∑
m∈Z

a(m)wk−m−1, b(z)]

To take the formal residue, we observe that k −m− 1 = −1 only when k = m, so:

=

n∑
k=0

(
n

k

)
(−z)n−k[a(k), b(z)]

= [

n∑
k=0

(
n

k

)
a(k)(−z)n−k, b(z)]

This proves the first part of equation (3.4).
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We begin the proof of the identity when n < 0 with some mild re-indexing,
letting n→ −n− 1. Now we are trying to show, for n < 0,

a(z) ◦−n−1 b(z)
1

(n)!
◦
◦∂
na(z)b(z)◦

◦.

Again, we get an expression for the circle product in terms of the residue, this time
with respect to z, and we write:

a(z) ◦−n−1 b(z) = Resz((z − w)−n−1)[a(z), b(w)]− Resz((−z + w)−n−1)[b(w), a(z)]

= Resz[a(z)b(w)(
∑
i≥0

(
−n− 1

i

)
(−w)iz−n−1−i)]

− Resz[b(w)a(z)(
∑
i≥0

(
−n− 1

i

)
zi(−w)−n−1−i)]

Using the fact that a(z) =
∑
m∈Z a(m)z

−m−1 where a(m) = Resz z
ma(z) , we may

write:

= Resz[(
∑
m∈Z

a(m)z
−m−1)(b(w))(

∑
i≥0

(
−n− 1

i

)
(−w)iz−n−1−i)]

− Resz[b(w)(
∑
m∈Z

a(m)z
−m−1)(

∑
i≥0

(
−n− 1

i

)
zi(−w)−n−1−i)]

We consider the two terms separately. For the first term, in order to take the formal
residue, we need −m− 1− n− 1− i = −1 or, more concisely, m = −n− 1− i. We
are restricted by the fact that n ≥ 0 and i ≥ 0. These three restrictions reduce the
first term to:((

−n− 1

0

)
(−w)0a−n−1 +

(
−n− 1

1

)
(−w)1a−n−2 + . . .

)
b(w).

Using the fact that, for l and k ∈ Z, we have:

1

k!
∂kxl =

(
l

k

)
l!

(l − k)!
,

we may write:

=

(
1

n!
∂nw−n−1a0 +

1

n!
∂nw−n−1a−1 + . . .

)
b(w)

=

 ∑
n≤−1

1

n!
∂nanw

−n−1

 b(w)

= a(z)−b(w).

Now we consider the second term. In order to take the formal residue, we need
m = −i. With the same restrictions as the first term, we have:

b(w)

((
−n− 1

0

)
a0(−w)−n−1 +

(
−n− 1

1

)
a1(−w)−n−2 + . . .

)
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Again rewriting the binomial coefficients in terms of derivatives, as well as factoring
out some negatives, we obtain:

= b(w)(−1)

(
1

n!
∂na0w

−n−1 +
1

n!
∂na1w

−n−1 + . . .

)

= −b(w)

∑
n≥0

1

n!
∂nanw

−n−1


= −b(w)a(z)+.

Subtracting the second term from the first term gives us the desired result. �

The set QO(V ) contains the identity map 1 : V → V, given by

1(z) =
∑
n∈Z

1(n)z−n−1 = 1.

If a linear subspace A ⊂ QO(V ) contains 1 and is closed under taking circle prod-
ucts, it is known as a quantum operator algebra. Furthermore, a quantum operator
algebra whose elements are pairwise mutually local is called a commutative quan-
tum operator algebra. We say two quantum operators a(z), b(z) are mutually local
if a(z) ◦n b(z) = 0 for all n save for a finite set of positive n. The notion of a
commutative quantum operator algebra is equivalent to that of a vertex algebra,
and from now on we will use the latter term.
For a(z), b(w) ∈ A, where A is a vertex algebra, we define the operator product
expansion as follows.

Definition 3.4. Operator Product Expansion
The operator product expansion (OPE) for a local pair of g-valued formal distri-
butions is defined as:

(3.7) a(z)b(w) =
∑
n≥0

a(w) ◦n b(w)(z − w)−n−1 + ◦
◦a(z)b(w)◦

◦

For the remainder of the paper, we will abbreviate a(z) ∈ A to a ∈ A. Using
the normal ordered product and circle product as defined above, we may write
down several identities describing the interaction between these products. These
identities have been used by several authors; c.f. [L] and others. For a, b, c ∈ A,
m ≥ 0, we have:

(3.8) (◦
◦ab

◦
◦) ◦m c =

∑
k≥0

1

k!
◦
◦(∂ka)(b ◦m+k c)

◦
◦ +

∑
k≥0

b ◦m−k−1 (a ◦k c)

(3.9) a ◦m (◦
◦bc

◦
◦) = ◦

◦(a ◦m b)c◦◦ + ◦
◦b(a ◦m c)◦

◦ +

m∑
k=1

(
m

k

)
(a ◦m−k b) ◦k−1 c

(3.10)

◦
◦
◦
◦ab

◦
◦c

◦
◦ − ◦

◦abc
◦
◦ =

∑
k≥0

1

(k + 1)!

(
◦
◦

(
∂k+1a

)
(b ◦k c)◦

◦ + (−1)|a||b|◦◦
(
∂k+1b

)
(a ◦k c)◦

◦

)

(3.11) ◦
◦ab

◦
◦ − (−1)|a||b|◦◦ba

◦
◦ =

∑
k≥0

(−1)k

(k + 1)!
∂k+1(a ◦k b)
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Our goal in this paper is to find a minimal generating set for an example of a vertex
algebra, so we must clarify what it means for a vertex algebra to be generated by
something. We say a vertex algebra A is generated by a subset B ⊂ A and write

A = 〈B〉
if any element of A can be written as a finite linear combination of terms of the
form

b1 ◦i1 b2 ◦i2 b3 ◦i3 · · · ◦in−1 bn ◦in 1

for bj ∈ B and ij ∈ Z.

Furthermore, we say A is strongly generated by a subset B and write

A = 〈B〉S
if in (3.4) we may take ij < 0. By the definition of our circle products, this implies
that A is spanned by monomials of the form

◦
◦∂
i1a1 · · · ∂inan◦

◦.

4. The Bosonic Ghost Algebra

In this section, we turn to our principal object of study: the bosonic ghost
algebra, which we will henceforth refer to as the β − γ system. Specifically, we
consider the rank-1 algebra, denoted A(1). A(1) is generated by two fields, β(z)
and γ(z), subject to operator product expansion (OPE):

(4.1) β(z)β(w) = ◦
◦β(z)β(w)◦

◦ + 0

(4.2) γ(z)γ(w) = ◦
◦γ(z)γ(w)◦

◦ + 0

(4.3) β(z)γ(w) = ◦
◦β(z)γ(w)◦

◦ +
1

(z − w)2

A general element a ∈ A(1) is a monomial of the form β ◦m1
· · ·◦mk

β ◦n1
γ ◦n2

· · ·◦nl

γ. It is well known that this reduces to an expansion in only the negative circle
products, as the non-negative circle products become constant terms, leaving us
with a monomial of the form ◦

◦∂
m1β...∂mkβ∂n1γ...∂nlγ◦

◦. This gives us the following
linear isomorphism between a classical polynomial ring and A(1):

(4.4)
C[x0(m), x1(n)|m,n ≥ 0] ∼= A(1),

x0(m1) · · ·x0(mk)x1(n1) · · ·x1(nl) 7→ ◦
◦∂
m1β · · · ∂mkβdn1γ · · · ∂nlγ◦

◦.

There is a natural action of Z/2Z on A(1) given by

(4.5) β(z) 7→ −β(z) and γ(z) 7→ −γ(z).

Our first isomorphism, (4.4), induces a linear isomorphism of the invariant sub-
spaces

(4.6) C[x0(m), x1(n)|m,n ≥ 0]Z/2Z ∼= A(1)Z/2Z,

allowing us to study the invariants of C[x0(m), x1(n)|m,n ≥ 0] and apply our results
to A(1). Throughout this paper, we will use the following shorthand:

(4.7)

ω1(a, b) = ◦
◦∂
aβ∂bβ◦

◦

ω2(a, b) = ◦
◦∂
aγ∂bγ◦

◦

ω3(a, b) = ◦
◦∂
aβ∂bγ◦

◦.
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We will also refer to the ω1 and ω2 terms as “homogeneous” terms and ω3 terms
as “heterogeneous” terms.

4.1. Applying Invariant Theory. The results from classical invariant theory
we built up earlier, specifically (2.1), allow us to conclude that the invariants of
C[x0(m), x1(n) | 0 ≤ m ≤ n]Z/2Z are generated by quadratics

(4.8)

q0,0(a, b) = x0(a)x0(b)

q1,1(a, b) = x1(a)x1(b)

q0,1(a, b) = x0(a)x1(b)

In analogy to the elements of A(1), will refer to the first two terms as homogeneous
terms of types 1 and 2 and the last term as a heterogeneous term. Right away, this
representation and (4.4) give us a new generating set for A(1)Z/2Z:

(4.9) A(1)Z/2Z = 〈ω1(a1, b1), ω2(a2, b2), ω3(a3, b3)|ai, bj ≥ 0〉S .

The second theorem from [W], (2.2), gives us the following relation between ele-
ments of C[x0(m), x1(n)|m,n ≥ 0], described by:

(4.10) x0(a0)x1(a0)x0(a1)x1(a1)− x0(a0)x1(a1)x0(a0)x1(a1) = 0

for 0 ≤ a0 ≤ a1 and 0 ≤ b0 ≤ b1. We will put off using this relation until section
4.3, where will we use it to motivate further reduction of the generating set.

4.2. Introducing the Derivative Structure. Recall that for an algebra A over
C a derivation ∂ : A→ A is a C-linear map that satisfies

(4.11) ∂(ab) = a∂(b) + ∂(a)b

for any a, b ∈ A. The pair (A, ∂) is known as a ∂-algebra and will be denoted by
A∂ .

We now endow C[x0(m), x1(n)|m,n ≥ 0] (and thus C[x0(m), x1(n)|m,n ≥ 0]Z/2Z)
with the structure of a ∂-algebra via the derivation described by

(4.12)
∂ : C[x0(m), x1(n)|m,n ≥ 0]→ C[x0(m), x1(n)|m,n ≥ 0]

xi(m) 7→ xi(m+ 1).

We write C∂ [x0(m), x1(n)|m,n ≥ 0] for the associated ∂-algebra. This extra struc-
ture will allow us to describe C∂ [x0(m), x1(n)|m,n ≥ 0]Z/2Z using a smaller gen-
erating set. Of use for the proof will be the following vector space of quadratic
elements

(4.13) Ai,j(m) = {qi,j(a, b)|a+ b = m}.

where the qi,j terms are as defined in (4.8).

Lemma 4.1. The set

(4.14) {∂2m−2kqi,i(0, 2k)|0 ≤ k ≤ m}

is a basis of Ai,i(2m) for 1 ≤ i ≤ n. Moreover, the set

(4.15) {∂2m−2k+1qi,i(0, 2k)|0 ≤ k ≤ m}

is a basis of Ai,i(2m+ 1) for 1 ≤ i ≤ n.
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Proof. We begin with several observations concerning the bases of Ai,i(2m) and
Ai,i(2m+ 1) as defined above.

Consider all basis vectors of Ai,i(2m) under ∂. An arbitrary basis vector is
qi,i(a, 2m− a), 0 ≤ a ≤ m. Applying ∂, we see that

∂qi,i(a, 2m− a) = qi,i(a+ 1, 2m− a) + qi,i(a, 2m− a+ 1).

The right hand side of this equation is in the basis of Ai,i(2m+1); it follows that
∂Ai,i(2m) is a subset of Ai,i(2m+ 1). Furthermore, dimAi,i(2m) = dimAi,i(2m+
1) = m + 1. As ∂Ai,i(2m) is a subset of Ai,i(2m + 1) and both have the same
dimension, we can say they are equal as vector spaces.

Similarly, ∂Ai,i(2m−1) is a subset of Ai,i(2m). It follows from (1) that the codi-
mension of Ai,i(2m) and ∂Ai,i(2m− 1) is 1. It follows from the above observations

that

Ai,i(2m)/∂Ai,i(2m− 1)

= ∂Ai,i(2m− 1) + 〈q(0, 2m)〉
= Cqi,i(0, 2m) + ∂Ai,i(2m− 1)

This implies that Ai,i(2m) = ∂2Ai,i(2m−2)
⊕

Cqi,i(0, 2m). Similarly, Ai,i(2m+
1) = ∂3Ai,i(2m− 2)

⊕
C∂q(0, 2m).

We proceed with proof by induction on m, splitting our proof into two cases.
For the even case, we begin by observing that Ai,i(0) has a basis spanned by

{qi,i(0, 0)}. Now, suppose the the basis of Ai,i(2k) is {∂2iqi,i(0, 2k−2i)|0 ≤ i ≤ k}.
Then, as Ai,i(2k + 2) = ∂2Ai,i(2k) + Cqi,i(0, 2k + 2), we can say that ∂2Ai,i(2k) =
∂2 Ai,i(2k). Using the fact that the basis of a direct sum is the union of the
corresponding bases, we can say Ai,i(2k + 2) = {∂2i+2qi,i(0, 2k − 2i)|0 ≤ i ≤
k} ∪ {qi,i(0, 2k + 2)}.

Now we re-index, letting i→ i− 1, and we obtain

= {∂2iqi,i(0, 2k − 2i+ 2)|1 ≤ i ≤ k + 1} ∪ {qi,i(0, 2k + 2)}
= {∂2iqi,i(0, 2k − 2i+ 2)|0 ≤ i ≤ k + 1},

which is what we wanted to show.
For Ai,i(2m + 1), the odd case, we begin by noting that it follows from the

previous proof that the basis of Ai,i(2k) = {∂2iq(0, 2k − 2i)|0 ≤ i ≤ k}.
Using the fact that the basis of Ai,i(2k+ 1) is the same as the basis of ∂Ai,i(2k),

we can write the former as:

{∂2i+1q(0, 2k − 2i)|0 ≤ i ≤ k}.
�

Lemma 4.2. The set

(4.16) {∂m−kqi,j(0, k)|0 ≤ k ≤ m}
is a basis of Ai,j(m) for 1 ≤ i < j ≤ n.

Proof. We begin by obtaining a new vector space decomposition for Ai,j(m). We
would like to show that we can write an arbitrary basis element of Ai,j(m + 1) as
an element in ∂Ai,j(m)

⊕
Cqi,j(0,m+ 1). We proceed via proof by induction.
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First, consider the element qi,j(1,m) in the basis of Ai,j(m+ 1).
Note that we can write qi,j(1,m) = (qi,j(0,m + 1) + qi,j(1,m)) − (qi,j(0,m + 1)),
which is a linear combination of elements in ∂Ai,j(m) and Cqi,j(0,m+ 1).

Now suppose, for some 1 ≤ d ≤ m + 1, that qi,j(d,m + 1 − d) ∈ ∂Ai,j(m+) +
Cqi,j(0,m+1). It follows, then, that qi,j(a+1,m−a) = qi, j(a+1,m−a)+qi,j(a,m+
1−a)−qi,j(a,m+1−a). By our assumption, this is a linear combination of elements
in ∂Ai,j(m) and Cqi,j(0,m+ 1− a).

We conclude that Ai,j(m+ 1) = ∂Ai,j(m)
⊕

Cqi,j(0,m1).
Now that we have obtained the decomposition we needed, we may once again

proceed by induction on m. We begin by noting that that the basis of Ai,j(0) =
{qi,j(0, 0)}. Now, suppose the basis of Ai,j(k) = {∂iqi,j(0, 0)|0 ≤ i ≤ k}. Then,
using the fact that basis Ai,j(k+1) = ∂Ai,j(k)

⊕
Cqi,j(0, k+1), we can say Ai,j(k+

1) = {∂i + 1qi,j(0, k − i)|0 ≤ i ≤ k} ∪ {qi,j(0, k + 1))}.
If we re-index and let i = i− 1, we obtain the following basis for Ai,j(k + 1)

{∂iqi,j(0, k + i))|0 ≤ i ≤ k + 1}.

�

The following proposition follows immediately from lemmas (4.1) and (4.2).

Proposition 4.1. The invariant ∂-algebra C∂ [x0(m), x1(n)|m,n ≥ 0]Z/2Z is gen-
erated by monomials

(4.17)
qi,i(0, 2a) for 1 ≤ i ≤ n and a ≥ 0

qi,j(0, b) for 1 ≤ i < j ≤ n and b ≥ 0.

We apply (4.17) directly to obtain a new generating set for A(1)Z/2Z:

(4.18) A(1)Z/2Z = 〈ω1(0, 2a), ω2(0, 2b), ω3(0, c)〉S .

4.3. Non-Associativity and Quantum Corrections. Now, finally, we will use
the non-associative structure of A(1) to further reduce our generating set. We will
do this in two steps: first, calculating non-associativity corrections using (3.10) and,
secondly, constructing relations between sets of terms, which we will call quantum
corrections, and using these relations to solve for terms we suspect may not be in
our final generating set.

Note that, by way of the OPE (4.1, 4.2, and 4.3) we have:

(4.19)

ββ = ◦
◦ββ

◦
◦ + 0

γγ = ◦
◦γγ

◦
◦ + 0

βγ = ◦
◦βγ

◦
◦ +

1

(z − w)2

In other words, homogeneous terms are associative and do not result in any cor-
rections when we re-associate within our normal ordered products. Heterogeneous
terms, on the other hand, are not associative. When we re-associate products,
we must introduce a correction term. We calculate the following non-associativity
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corrections, using (3.10):

(4.20)

◦
◦ω1(a, b)ω2(c, d)◦

◦ = ◦
◦
◦
◦∂
aβ∂bβ◦

◦
◦
◦∂
cγ∂dγ◦

◦
◦
◦

= ◦
◦∂
aβ∂bβ∂cγ∂dγ◦

◦

+ (−1)b
(

◦
◦∂
a+b+c+1β∂dγ◦

◦

b+ c+ 2
+

◦
◦∂
a+b+d+1β∂cγ◦

◦

b+ d+ 2

)
− (−1)a

(
◦
◦∂
a+b+c+1β∂dγ◦

◦

a+ c+ 2
+

◦
◦∂
a+b+d+1β∂cγ◦

◦

a+ d+ 2

)

(4.21)

◦
◦ω3(a, b)ω3(c, d)◦

◦ = ◦
◦
◦
◦∂
aβ∂bγ◦

◦
◦
◦∂
cβ∂dγ◦

◦
◦
◦

= ◦
◦∂
aβ∂bγ∂cβ∂dγ◦

◦

+ (−1)b
(

◦
◦∂
a+b+c+1β∂dγ◦

◦

b+ c+ 2
+

◦
◦∂
a+b+d+1β∂cβ◦

◦

b+ d+ 2

)
− (−1)a

(
◦
◦∂
a+b+c+1γ∂dγ◦

◦

a+ c+ 2
+
∂a+b+d+1γ∂cβ

a+ d+ 2

)

Now, we lift the second theorem from [W], which was applicable to our classical
polynomial ring, into the realm of vertex algebras. Specifically, we consider relations
of the type described in (4.10). In the classical setting, our terms associate. Clearly,
in A(1), they do not. This non-associativity allow us to find some interesting
quantum corrections. These corrections result from evaluating terms of the form

◦
◦ωi(a, b)ωj(c, d)◦

◦ − ◦
◦ωk(a, c)ωl(b, d)◦

◦,

in analogy to (4.10). The preliminary work here was done for specific terms using
a Mathematica package written by Kris Thielemans of London’s Imperial College
Theoretical Physics Group in 1992. Eventually, once we had an idea of the types of
relations we ought to be considering, we calculated the following general corrections.

(4.22)

◦
◦ω3(a, b)ω3(c, d)◦

◦ − ◦
◦ω2(a, c)ω1(b, d)◦

◦ =

+ (−1)b
(

◦
◦∂
a+b+c+2β∂dγ◦

◦

b+ c+ 2
+

◦
◦∂
a+b+d+1β∂cβ◦

◦

b+ d+ 2

)
− (−1)a

(
◦
◦d
a+b+c+1γ∂dβ◦

◦

a+ c+ 2
+

◦
◦∂
a+b+d+1γ∂cβ◦

◦

a+ d+ 2

)
− (−1)c

(
◦
◦∂
a+b+c+1β∂dγ◦

◦

b+ c+ 2
+

◦
◦∂
a+c+d+1β∂bγ◦

◦

c+ d+ 2

)
+ (−1)a

(
◦
◦∂
a+b+c+1β∂dγ◦

◦

a+ b+ 2
+

◦
◦∂
a+c+d+1β∂bβ◦

◦

a+ d+ 2

)
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(4.23)

◦
◦ω1(a, b)ω2(c, d)◦

◦ − ◦
◦ω3(a, c)ω3(b, d)◦

◦ =

+ (−1)b
(

◦
◦∂
a+b+c+1β∂dγ◦

◦

b+ c+ 2
+

◦
◦∂
a+b+d+1β∂cγ◦

◦

b+ d+ 2

)
− (−1)a

(
◦
◦∂
a+b+c+1β∂dγ◦

◦

a+ c+ 2
+

◦
◦∂
a+b+d+1β∂cγ◦

◦

a+ d+ 2

)
− (−1)a

(
◦
◦∂
a+b+c+1γ∂dγ◦

◦

a+ b+ 2
−

◦
◦∂
a+c+d+1γ∂dβ◦

◦

a+ d+ 2

)
− (−1)c

(
◦
◦∂
a+b+c+1β∂dγ◦

◦

b+ c+ 2
+

◦
◦∂
a+c+d+1β∂dβ◦

◦

c+ d+ 2

)
Armed with (4.22) and (4.23), we are ready to further reduce our generator set.
The proof is in two steps: first for homogeneous terms (those of the form ω1(a, b)
and ω2(a, b)) and next for heterogeneous terms (those of the form ω3(a, b)).

Theorem 4.1. The invariant sub-algebra A(1)Z/2Z is minimally strongly gener-
ated by the fields ω1(0, 0), ω1(0, 2), ω2(0, 0), ω2(0, 2), ω3(0, 0), and ω3(0, 1). More
concisely,

(4.24) A(1)Z/2Z = 〈ω1(0, 0), ω1(0, 2), ω2(0, 0), ω2(0, 2), ω3(0, 0), ω3(0, 1)〉S .

Proof. By (4.18), we know that ω1(a, b) may be written in terms of ω1(0, 2m) and
various ω3 terms. The following proof is by induction. First, consider the case
where m = 2. We have the following relationship:

◦
◦ω1(0, 1)ω3(0, 1)◦

◦ − ◦
◦ω1(0, 0)ω3(1, 1)◦

◦

=
1

2
ω1(4, 0)− 2

3
ω1(3, 1)

where, in this case, ω1(4, 0) = ω1(0, 4), so we may write:

ω1(0, 4) = 2(◦
◦ω1(0, 1)ω3(0, 1)◦

◦ − ◦
◦ω1(0, 0)ω)3(1, 1)◦

◦) +
4

3
ω1(1, 3)

where ω1(1, 3) = ∂ω1(0, 3)− ω1(0, 4). So, finally, we have:

ω1(0, 4) =
6

7
(◦
◦ω1(0, 1)ω3(0, 1)◦

◦ − ◦
◦ω1(0, 0)ω3(1, 1)◦

◦) +
4

7
∂ω1(0, 3)

∈ 〈ω1(0, 0), ω1(0, 2), ω3(0, b)〉S .

Now suppose, for all a ≤ b, ω1(0, 2a) ∈ 〈w1(0, 0), w1(0, 2)〉S . Note that

◦
◦ω1(0, 1)ω3(0, 2b− 1)◦

◦ − ◦
◦ω1(0, 0)ω3(1, 2b− 1)◦

◦

=
−5

6
ω3(3, 2b− 1)− 1

3
ω3(2b+ 2, 0)− 1

2b+ 1
ω1(0, 2b+ 2)

and this implies:

ω1(0, 2b+ 2) = (2b+ 1)(−◦
◦ω1(0, 1)ω3(0, 2b− 1)◦

◦ + ◦
◦ω1(0, 0)ω3(1, 2b− 1)◦

◦)

− 10b+ 5

6
ω3(3, 2b− 1)− 2b+ 1

3
ω3(2b+ 2, 0)

∈ 〈ω1(0, 0), ω1(0, 2), ω3(0, b)〉S .

The proof for homogeneous terms of type ω2(a, b) follows in the same manner. Now,
we consider heterogeneous terms. By a previous argument we know that ω3(a, b)
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may be written in terms of ω3(0,m) and homogeneous terms. Again, the proof is
by induction. First, note the case when m = 2:

◦
◦ω1(0, 0)ω2(0, 0)◦

◦ − ◦
◦ω3(0, 0)ω3(0, 0)◦

◦

=
3

2
ω3(0, 0)− 1

2
ω3(0, 2)

where

∂2ω3(0, 0) = ω3(0, 2) + 2ω3(0, 0) + ω3(2, 0)

and this implies:

ω3(2, 0) = ∂2ω3(0, 0)− ω3(0, 0)− 2(ω3(0, 1)− ω3(0, 2))

∈ 〈ω3(0, 0), ω3(0, 1)〉S .

Now suppose, for all m ≥ 2, we have ω3(0,m) ∈ 〈ω3(0, 0), ω3(0, 1)〉S . We consider
the following relation:

◦
◦ω1(0, 0)ω3(1,m− 3)◦

◦ − ◦
◦ω1(1, 0)ω3(0,m− 3)◦

◦

=
−5

6
ω3(3,m− 3) +

1

m− 1
ω3(m− 1, 1)

− 1

m− 1
ω3(m, 0)− 1

m− 1
ω1(m− 1, 1)− 1

m− 1
ω1(m, 0)

where

∂mω3(0, 0) = ω3(0, n) +

(
n

1

)
ω3(1, n) + . . .+

(
1

n− 1

)
ω3(n− 1, 1) + ω3(n, 0)

and this implies

ω3(n, 0) = −ω3(0, n) + ∂mω3(0, 0)−
((

n

1

)
ω3(1, n) + . . .+

(
1

n− 1

)
ω3(n− 1, 1)

)
.

We would like to show that the right hand side of this equation is always in our
generating set. To do so will acquire an additional proof by induction. The m = 2
case follows from the above calculation for a term of the form ω3(2, 0). Now suppose,
for the case when m = n− 1:

∂n−1ω3(0, 0) = ω3(0, n− 1) +

(
n

1

)
ω3(1, n− 2) + · · ·+

(
1

n

)
ω3(n− 2, 1) + ω3(n− 1, 0)

which implies

ω3(n− 1, 0) = ω3(0, n− 1) + ∂n−1ω3(0, 0)−
((

n− 1

1

)
ω3(1, n− 2) + · · ·+

(
1

n− 1

)
ω3(n− 2, 1)

)
∈ 〈ω3(0, 0), ω3(0, 1)〉S .

Then, for the case when m = n, we may write

∂nω3(0, 0) = ∂(∂n−1ω3(0, 0)) = ω3(0, n) +

(
n

1

)
ω3(1, n− 1) + · · ·+

(
1

n

)
ω3(n− 1, 1) + ω3(n, 0)

implying

ω3(n, 0) = −ω3(0, n) + d(∂n−1ω3(0, 0))− (

(
n

1

)
ω3(1, n− 1) + · · ·+

(
1

n

)
ω3(n− 1, 1))

where

∂ω3(0, n− 1) = ω3(1, n− 1) + ω3(0, n)



INVARIANTS OF THE BOSONIC GHOST ALGEBRA UNDER FINITE GROUP ACTION 19

so it follows that
ω3(1, n− 1) = ∂ω3(0, n− 1)− ω3(0, n)

which in our generating set, by definition. Also,

∂ω3(n− 1, 0) = ω3(n− 1, 1) + ω3(n, 0)

implies
ω3(n− 1, 1) = ∂ω3(n− 1, 0)− ω3(n, 0)

which, according to our hypothesis, is also in our generating set. So we may con-
clude, for the entire right hand expression:

−ω3(0, n)+∂mω3(0, 0)−(

(
n

1

)
ω3(1, n−1)+· · ·+

(
1

n

)
ω3(n−1, 1)) ∈ 〈ω3(0, 0), ω3(0, 1)〉S

In other words, ω3(n, 0) ∈ 〈ω1(0, 0), ω2(0, 0), ω3(0, 0), ω3(0, 1)〉S .

With this result we may return to our original proof, where we left off with this
expression:

ω3(m, 0) = −(m− 1)◦
◦ω1(0, 0)ω3(1,m− 3)◦

◦ − ◦
◦ω1(1, 0)ω3(0,m− 3)◦

◦

− −5

6
(m− 1)ω3(3,m− 3)− ω3(m− 1, 1)− ω1(m− 1, 1)− ω1(m, 0)

Simplifying and solving for the ω3(0,m) term, we obtain

ω3(0,m) = ∂mω3(0, 0)− (

(
m

1

)
o3(1,m− 1) + · · ·+

(
1

m

)
ω3(m− 1, 1))

= +(m− 1)◦
◦ω1(0, 0)ω3(1,m− 3)◦

◦ − ◦
◦ω1(1, 0)ω3(0,m− 3)◦

◦

+
5

6
(m− 1)ω3(3,m− 3) + ω3(m− 1, 1) + ω1(m− 1, 1)− ω1(m, 0)

∈ 〈ω3(0, 0), ω3(0, 1)〉S .
�
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