
Review of Denoising Diffusion Probabilistic Models

Minji Kim Hyeon Lee

University of North Carolina, Chapel Hill

February 19, 2024

1 Introduction

What do generative models do? In the machine learning literature, “generation” refers to sampling

X from the ground truth probability distribution of the target data Pdata,

X ∼ Pdata,

obtaining a data point that was not observed or used during the learning process. In practice, X

usually represents complicated data such as images, texts, audios, or even movies. An important

class of generative models is probabilistic generative models; they aim to learn the data distribution

itself, finding a parameterized function

fθ(Z) ∼ Pdata,

where Z is a random variable from a noise space. In other words, it aims to learn a mapping from

Z to a random variable of the data distribution.

There exist other types of generative models depending on the tasks. For example, non-

probabilistic generative models such as Generative Adversarial Networks (GANs) (Goodfellow et al.

(2014)) can be used when one requires samples from the population distribution but the distribu-

tion itself is not of interest. On the other hand, one may wish to request the model to generate

images based on certain descriptions; these procedure is called conditional generation. The last

example is sequential generation, which is useful for generating long text data or generating musics.

In this report, we restrict our attention to the ground problem to generate samples just from the

data distribution Pdata.

A Diffusion model is a type of probabilistic generative models which has garnered considerable

attention from researchers due to its capacity for generating high-quality samples comparable to

those produced by Generative Adversarial Networks (GANs), while also generating a diversity of

samples akin to Variation Autoencoders (VAE) (Kingma and Welling (2014)) and Normalizing

Flows (Rezende and Mohamed (2015)). Denoising diffusion models were initially introduced by

Sohl-Dickstein et al. (2015), and early related work focusing on score-matching was developed by

1

Song and Ermon (2019). Ho et al. (2020) significantly advanced this field by successfully producing

high-quality training results in generative imaging.

In this report, we aim to deliver what are the diffusion models and how variational inference

is employed in its learning procedure. To understand diffusion models’ strengths and weaknesses,

we also review core ideas of the other three popular generative models mentioned above. Figure

1 summarizes their relative strengths and weaknesses, which will become clear as we learn their

model structures in the later sections. Most of the contents in this report is derived from these

papers and Prince (2023).

Figure 1: Strengths and Weaknesses of Generative Models, (Image from NVIDIA, link)

This report is organized as follows. We first discuss performance measures illustrated in Fig-

ure 1, and briefly review the core ideas of GAN, VAE, and normalizing flows. Section 3 provides

a comprehensive overview and introduce the structure of the diffusion probabilistic model. Sec-

tion 4 summarizes statistical techniques used for efficient optimization, while Section 5 delves into

the reparameterization strategy that facilitates effective training and sampling algorithms. Addi-

tionally, we include special notes on two key aspects: First, we examine what information about

the data distribution the model learns through the denoising process, revealing that it primarily

learns the score function of the input data distribution. Second, we discuss how diffusion models

approximate the solution to a specific stochastic differential equation.

2 Related Works

2.1 Performance measure for generative models

Goodness of generative models is subjective and there are different criteria depending on the specific

tasks. However, four performance measures listed below are most fundamental and applicable to

most of the generative models.

• High Quality Samples: The generated samples should be indistinguishable from the data

that the model learned.

2

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/

• Fast Sampling Once the model was trained, generating new samples from the model should

be computationally efficient.

• Mode Coverage/Diversity The model should generate new samples from the entire data

space, rather than drawing samples from a relatively small region of the data space.

• Probabilistic Model It is a strength for models to learn probability of data points, as the

probability can be used for further analysis such as anomaly detection.

As we will see in the later sections, GAN is a non-probabilistic model and all other three models

are probabilistic models. As the opposite of the term mode coverage, the phenomenon where a

trained model generates samples from a small part of the data space is called mode collapse; GAN

is well-known for its susceptibility to model collapse, because it aims to generate samples that are

not distinguishable from the training data set without accounting for how the training data points

are likely to occur within the model. In contrast, VAE and normalizing flows are fast and evenly

generate samples from the data space, but they are limited to generate high quality samples due to

their simplicity of the model and the latent space, respectively. A diffusion model lies in between

them in the sense that it is capable of generating high quality samples from the entire data space,

at the cost of higher computational expense.

2.2 Generative Adversarial Network

A Generative Adversarial Network (GAN) comprises two machines, a generator and a discrimina-

tor. A generator g(z,θ) takes a random noise z from a base distribution and generates a fake data

x = g(z,θ). A discriminator f(x,ϕ) takes either a real or a fake data x and returns the logit of

the probability that the data comes from the real observations. Two machines go into a 2-player

game: a discriminator tries to best classify inputs into real and fake observations, and a generator

tries to forge new observations so the discriminator cannot distinguish them from the real data.

Suppose we adopt the Bernoulli log-likelihood as the loss, that is,

l (p̂, y) = −(1− y) log(1− p̂)− y log(p̂) (1)

where y = 0 if the data was real and y = 1 if the data was fake.

In each iteration of training, the discriminator learns the parameter ϕ from the set of real

observations {x1, · · · ,xn} and the set of fake observations {x∗
1, · · · ,x∗

m} by minimizing the average

loss as follows.

ϕ̂ := argmin
ϕ


m∑
j=1

− log
[
1− sign

(
f(x∗

j ,ϕ)
)]
−

n∑
i=1

log
[
sign (f(xi,ϕ))

] (2)

The generator learns the parameter θ by maximizing the minimum loss that a discriminator can

3

yield:

θ̂ := argmax
θ

min
ϕ


m∑
j=1

− log
[
1− sign (f(g(zj ,θ),ϕ))

]
−

n∑
i=1

log
[
sign (f(xi,ϕ))

]
 . (3)

2.3 Normalizing Flow

The purpose of normalizing flow is to learn a function f(·,ϕ) such that the distribution of f(Z,ϕ)

best mimics the sample distribution, where Z follows a pre-specified distribution which is usually

chosen as standard multivariate normal distribution. If f(·,ϕ) is one-to-one, the density of X =

f(Z,ϕ) is given as

fX(x) =

∣∣∣∣∂f(z,ϕ)∂z

∣∣∣∣−1

fZ(z), z = f−1(x,ϕ). (4)

We estimate ϕ by maximizing likelihood of observed data {x1, · · · ,xn}. For zi = f−1(xi,ϕ), i =

1, · · · , n,

ϕ̂ : = argmax
ϕ

{
n∑

i=1

log

(∣∣∣∣∂f(zi,ϕ)

∂zi

∣∣∣∣−1

fZ(zi)

)}

= argmin
ϕ

{
n∑

i=1

log

(∣∣∣∣∂f(zi,ϕ)

∂zi

∣∣∣∣)
} (5)

An important assumption for this formulation is that f(·,ϕ) is invertible. Because it is difficult to

maintain a function being invertible while allowing it to be flexible at the same time, we factor the

function as the composition of sequence of simple, invertible functions.

x = f(z,ϕ) = fK
(
fK−1

(
· · · f2 (f1(z,ϕ1),ϕ2) , · · ·ϕk−1

)
,ϕK

)
. (6)

Writing the sequence in the reverse order gives a function that maps X to Z. This formulation ex-

plains the name “normalizing flow”, because the sequence of functions flows the sample distribution

towards a normal distribution.

z = f−1(x,ϕ) = f−1
1

(
f−1
2

(
· · · f−1

K−1

(
f−1
K (z,ϕK),ϕK−1

)
, · · ·ϕ2

)
,ϕ1

)
. (7)

Normalizing flows compute exact likelihood of thus are capable of generating high-quality sam-

ples

2.4 Variational Autoencoder

A Variational Autoencoder (VAE) models the distribution of data X through a lower dimensional

latent variable Z with a simple and known distribution. Suppose pϕ(x|z) models the conditional

4

density function of x given z. Then we have

pϕ(x) =

∫
pϕ(x|z)p(z)dz (8)

and the model learns the parameter ϕ by maximizing log-likelihood of the sample {x1, · · · ,xn}

n∑
i=1

log

∫
pϕ(xi|zi)p(zi)dzi. (9)

The distribution of Z is usually chosen to be a standard multivariate normal distribution.

Nevertheless, direct optimization of Equation (9) over ϕ is not straightforward because it in-

volves an integral with respect to a complicated function pϕ(x|z). VAE overcomes this challenge

by approximating the reverse relationship pϕ(z|x) using a normal distribution qθ(z|x) which is

easy to manipulate. Let us denote by Nx(µ,Σ) the density function of normal distribution with

the corresponding mean and variance:

Nx(µ,Σ) = |2πΣ|−1/2 exp

(
−1

2
(x − µ)⊤Σ−1(x − µ)

)
.

Then,

qθ(z|x) ≈ pϕ(z|x), qθ(z|x) = Nz

(
µ(x,θ),Σ(x,θ)

)
. (10)

Lastly, equipped with the manageable function qθ, we make one more approximation to handle the

likelihood function by introducing evidence lower bound (ELBO) as follows.

log pϕ(x) = log

∫
pϕ(x|z)p(z)dz

= log

∫
pϕ(x|z)p(z)

qθ(z|x)
qθ(z|x)

dz

≥
∫

qθ(z|x) log
(
pϕ(x|z)p(z)

qθ(z|x)

)
dz

=

∫
qθ(z|x) log (pϕ(x|z)) dz −DKL

(
qθ(z|x)

∥∥p(z))
=: ELBO(x;ϕ,θ).

(11)

Here the inequality in the third line is given by Jensen’s inequality. ELBO can be better estimated

than log pϕ(x) itself. First, the second Kullback-Leibler divergence term is instantly computable

because both qθ(z|x) and p(z) are normal density functions and Kullback-Leibler divergence be-

tween two normal distributions has a closed form. The first integral term still involves an integral,

but now we can easily sample a point z from the normal distribution qθ(·|xi) for some randomly

chosen xi and estimate the integral by∫
qθ(z|x) log (pϕ(x|z)) dz ≈ log (pϕ(xi|z)) . (12)

5

Two parameters θ and ϕ play different roles in maximizing log-likelihood. Given a fixed value of

ϕ, maximizing ELBO with respect to θ tightens the lower bound. On the other hand, maximizing

ELBO with respect to ϕ for the given θ maximizes the lower bound of log-likelihood. As a result,

the estimated parameters are

(
ϕ̂, θ̂

)
= argmax

ϕ,θ

{
n∑

i=1

∫
qθ(zi|xi) log (pϕ(xi|zi)) dzi −DKL

(
qθ(zi|xi)

∥∥p(zi)
)}

(13)

Once we have learned a VAE, the model generates a new sample point by drawing z from N(0, I)

and then drawing z from pϕ(x|z).
The framework is named an autoencoder because the it has the encoder qθ(z|x) and the decoder

pϕ(x|z). The model is variational because it approximates the encoding probability with a family

of simple and known distributions.

3 Diffusion model

The main framework of a diffusion model is to construct a parameterized Markov chain and to

train the chain through variational inference to produce samples matching the data distribution

after finite time. Transitions of this chain are learned to reverse the diffusion process, which is

a Markov chain that gradually adds noise to the data in the opposite direction of sampling until

signal is destroyed. This is illustrated in Figure 2, where the latent variables obtained by adding

noise to data sample x are denoted as z1, . . . ,zT . The essential idea behind the diffusion model

is to (i) systematically and slowly destroy structure in a data distribution through an

iterative forward diffusion process, and then (ii) learn a reverse diffusion process that

restores structure in data (Sohl-Dickstein et al. (2015)).

x0 . . . zt−1 zt . . . zT

q(zt|zt−1)

q(zt−1|zt) ≈ p(zt−1|zt,ϕt)

Figure 2: The directed graphical model illustrating diffusion model.

Technically, a diffusion model works as follows. Firstly, the diffusion model sequentially adds

small Gaussian noises to the sample point x to obtain a sequence of noisy data z1, · · · , zT . We

denote this process by q(zt|zt−1). After a large number of steps T , zT becomes approximately a

white noise. The goal of a diffusion model is to maximize the likelihood of the observed samples

6

x1, · · · ,xI , assuming ziT come from the standard normal distribution:

ϕ̂1,··· ,T := argmax
ϕ1,··· ,T

I∑
i=1

q(xi)

= argmax
ϕ1,··· ,T

I∑
i=1

∫
q(xi|ziT)q(ziT)dziT .

(14)

Hypothetically, we can compute the density of the data from the reverse process q(zt−1|zt) as

follows:

q(x) =

∫
q(x|zT)q(zT)dzT

=

∫
q(x|z1)q(z1|z2) · · · q(zT−1|zT)q(zT)dz1,··· ,T .

(15)

However, in practice, the exact form of q(zt−1|zt) is neither known to us nor tractable. In addition,

the high-dimensional integral is not straightforward to evaluate. A diffusion model overcomes these

difficulties by first approximating each q(zt−1|zt) by a normal density function

q(zt−1|zt) ≈ p(zt−1|zt,ϕt)

= Nzt−1

[
ft(zt,ϕ), σ

2
t I
] (16)

where the mean ft(zt,ϕ) is trained as a neural network from the data and the variance σ2
t is pre-

specified. The second challenge of handling the high-dimensional integral is resolved by substituting

the integral by the Evidence Lower Bound (ELBO).

3.1 Encoder (Forward Pass, Model Setting)

A diffusion model is composed of an encoder and a decoder. Unlike the Variational Autoencoder

(VAE) model, the encoder in a diffusion model is prespecified, representing the process of gradually

adding noise to the data x and simulating its diffusion. To be specific, one can formulate the

forward process as follows:

z1 =
√
1− β1x+

√
β1ϵ1

zt =
√
1− βtzt−1 +

√
βtϵt, ∀t ∈ 2, . . . , T,

(17)

where ϵt follows a standard normal distribution. The hyperparameters βt ∈ [0, 1] determine the

magnitude of the added noise. Here we note the following properties.

• We can derive the following distributions:

q(z1|x) = N (
√
1− β1x, β1I),

q(zt|zt−1) = N (
√
1− βtzt−1, βtI), ∀t ∈ 2, . . . , T.

(18)

7

This is a Markov chain.

• With enough steps, i.e. large T , all traces of the original data are removed, and the condi-

tional distribution q(zT |x) and marginal distribution q(zT) both become the standard normal

distribution. Indeed, the ultimate goal of this forward pass is to gradually convert the data

distribution into a well behaved distribution by repeated application of Markov diffusion

kernel.

• One can directly sample zt given x without computing intermediate variables z1, . . . ,zt−1.

That is, by iteratively substituting variables, one can obtain

zt =
√
αtx+

√
1− αtϵ,

q(zt|x) = N (
√
αtx, (1− αt)I),

(19)

where αt = Πt
s=1(1− βs) and ϵ is a sample from standard normal distribution. This q(zt|x)

is known as the diffusion kernel.

In summary, for any starting point x, variable zt is normally distributed with a known mean

and variance.

3.2 Conditional Distributions

Before we proceed with learning the reverse process of the diffusion model, we examine here the

true reverse probabilities that are of our interest. We first note that the marginal distribution of

zt can be computed using the diffusion kernel,

q(zt) =

∫
q(zt|x)p(x)dx. (20)

However, it is difficult to know p(x) in practice, and consequently q(zt) can not be obtained in a

closed form. The conditional distribution of the reverse process can then be written as

q(zt−1|zt) =
q(zt|zt−1)q(zt−1)

q(zt)
, (21)

as a result of the Bayes’ rule. Again, this is intractable since we cannot compute the marginal

distributions in (20).

We then focus on the conditional diffusion distribution, defined as q(zt−1|zt,x). As we do know

q(zt−1|x), which is just an diffusion kernel, we can utilize this to compute the conditional diffusion

distribution in a closed form.

Lemma 1.

(a) N (Aw,B) ∝ N
(
(A⊤B−1A)−1A⊤B−1v, (A⊤B−1A)−1

)
,

(b) N (a,A) · N (b,B) ∝ N
(
(A−1 +B−1)−1(A−1a+B−1b), (A−1 +B−1)−1

) (22)

8

Theorem 2.

q(zt−1|zt,x) = N (
1− αt−1

1− αt

√
1− βtzt +

√
αt−1βt

1− αt
x,

βt(1− αt−1)

1− αt
I).

Proof.

q(zt−1|zt,x) =
q(zt|zt−1,x)q(zt−1|x)

q(zt|x)
∝ q(zt|zt−1)q(zt−1|x)

= N
(√

1− βtzt−1, βtI
)
N (
√
αt−1x, (1− αt−1)I)

∝ N
(

1√
1− βt

zt,
βt

1− βt
I

)
N (
√
αt−1x, (1− αt−1)I)

(23)

Applying Lemma 1, we obtain the result.

We highlight here that this fact in Theorem 2 is then used to train the decoder.

3.3 Decoder (Backward pass, Model Learning)

When we train a diffusion model, it learns the reverse process, i.e. the backward map between

zt and zt−1. This network is trained to gradually remove noise, originating the term ‘denoising

diffusion probabilistic model’. To generate a new data example x, we draw a sample from q(zT),

which is simply a standard normal distribution, and then process it through the decoder models.

As seen in Section 3.2, it is difficult to know the true reverse distribution q(zt−1|zt) of the

diffusion process. We approximate these as normal distributions and set the following model:

p(zT) = N (0, I),

p(zt−1|zt,ϕt) = N (ft(zt,ϕt), σ
2
t I)

p(x|z1,ϕ1) = N (f1(z1,ϕ1), σ
2
1I),

(24)

where ϕt, t = 1, . . . , T are parameters to learn and ft(zt,ϕt) is a neural network model that predicts

the mean of the normal distribution for the preceding latent variable zt−1 given zt. Here, {σ2
t } are

predetermined parameters.

To train the model, we generate new examples from p(x) as follows. First, sample zT from

p(zT). Then, sample zT−1 from p(zT−1|zT ,ϕT), and repeat this until we finally generate x from

p(x|z1,ϕ1). Now we can approximate the probability of training dataset {xi} as follows. First,

the entire joint probability of x and latent variables z1,··· ,T is

p(x, z1,··· ,T |ϕ1,··· ,T) = p(x|z1,ϕ1)

T∏
t=2

p(zt−1|zt,ϕt) · p(zT). (25)

9

The marginal probability of x is obtained by integrating Equation (25) over all the latent variables:

p(x|ϕ1,··· ,T) =

∫
p(x, z1,··· ,T |ϕ1,··· ,T)dz1,··· ,T . (26)

To train the model, we maximize the log-likelihood of the training data {xi} with respect to the

parameters ϕ:

ϕ̂1,··· ,T = argmax
ϕ1,··· ,T

[
I∑

i=1

log
[
p(xi|ϕ1,··· ,T)

]]
. (27)

4 Evidence Lower Bound (ELBO)

The exact optimization problem in (27) is intractable because of the integral involved in Equation

(26). We make a detour around this difficulty using evidence lower bound (ELBO).

log
[
p(x|ϕ1,··· ,T)

]
= log

[∫
p(x, z1, · · · , zT |ϕ1,··· ,T)dz1,··· ,T

]
= log

[∫
q(z1,··· ,T |x)

p(x, z1, · · · , zT |ϕ1,··· ,T)

q(z1,··· ,T |x)
dz1,··· ,T

]
≥
∫

q(z1,··· ,T |x) log
[
p(x, z1, · · · , zT |ϕ1,··· ,T)

q(z1,··· ,T |x)

]
dz1,··· ,T

=: ELBO[ϕ1,··· ,T]

(28)

Next, we simplify the whole joint probabilities of x and z1,··· ,T in Equation (28) in terms of the

conditional probabilities between x,ϕ, and consecutive latent variables zt and zt−1.

log

[
p(x, z1,··· ,T |ϕ1,··· ,T)

q(z1,··· ,T |x)

]
= log

[
p(x|z1,ϕ1)

∏T
t=2 p(zt−1|zt,ϕt) · p(zT)

q(z1|x)
∏T

t=2 q(zt|zt−1)

]

= log

[
p(x|z1,ϕ1)

q(z1|x)

]
+ log

[∏T
t=2 p(zt−1|zt,ϕt)∏T

t=2 q(zt|zt−1)

]
+ log [p(zT)] .

(29)

In the middle term, the numerator p(zt−1|zt,ϕt) is given as the normal density with mean

f [zt,ϕt]. To make the denominator q(zt|zt−1) more accessible, we rewrite the term as

q(zt|zt−1) = q(zt|zt−1,x) =
q(zt−1|zt,x)q(zt|x)

q(zt−1|x)
.

10

As a result,

log

[
p(x, z1,··· ,T |ϕ1,··· ,T)

q(z1,··· ,T |x)

]
= log

[
p(x|z1,ϕ1)

q(z1|x)

]
+ log

[
T∏
t=2

p(zt−1|zt,ϕt)

q(zt−1|zt,x)
· q(zt−1|x)

q(zt|x)

]
+ log [p(zT)]

= log [p(x|z1,ϕ1)] + log

[
T∏
t=2

p(zt−1|zt,ϕt)

q(zt−1|zt,x)

]
+ log

[
p(zT)

q(zT |x)

]

= log [p(x|z1,ϕ1)] +
T∑
t=2

log

[
p(zt−1|zt,ϕt)

q(zt−1|zt,x)

]
+ log

[
p(zT)

q(zT |x)

]

≈ log [p(x|z1,ϕ1)] +
T∑
t=2

log

[
p(zt−1|zt,ϕt)

q(zt−1|zt,x)

]

(30)

Here the last term log
[

p(zT)
q(zT |x)

]
is approximated to zero, because for sufficiently large T , both

p(zT) and q(zT |x) are approximately standard normal densities. We obtain the following simplified

version of ELBO by substituting (30) into the definition of ELBO:

ELBO[ϕ1,··· ,T]

≈
∫

q(z1,··· ,T |x)

(
log [p(x|z1,ϕ1)] +

T∑
t=2

log

[
p(zt−1|zt,ϕt)

q(zt−1|zt,x)

])
dz1,··· ,T

=

∫
q(z1|x) log [p(x|z1,ϕ1)] dz1

−
T∑
t=2

∫
q(zt|x)q(zt−1|zt,x) log

[
q(zt−1|zt,x)

p(zt−1|zt,ϕt)

]
dzt−1dzt

(31)

The first integral term will be replaced by the empirical expectation of log [p(x|z1,ϕ1)] with a

single sample from the distribution q(z1|x), that is,∫
q(z1|x) log [p(x|z1,ϕ1)] dz1 ≈ log [p(x|z∗

1,ϕ1)] (32)

where z∗
1 ∼ q(z1|x). The second integral term can be further simplified as follows.

∫
q(zt|x)q(zt−1|zt,x) log

[
q(zt−1|zt,x)

p(zt−1|zt,ϕt)

]
dzt−1dzt

=

∫
q(zt|x)DKL [q(zt−1|zt,x)∥p(zt−1|zt,ϕt)] dzt

= Eq(zt|x) [DKL [q(zt−1|zt,x)∥p(zt−1|zt,ϕt)]]

(33)

Recall that q(zt−1|zt,x) and p(zt−1|zt,ϕt) are normal probability densities. Kullback-Leibler

11

divergence between two normal distributions can be calculated in a Rao-Blackwellized fashion with

closed form expressions instead of high variance Monte Carlo estimates (Ho et al. (2020)).

Lemma 3. Suppose p(x) = Nx(a,A) and q(x) = Nx(b,B) are d-dimensional normal distribu-

tions. Then the KL-divergence between p and q is given as follows.

DKL [p∥q] = 1

2

(
tr
[
B−1A

]
− d+ (a − b)⊤B−1(a − b) + log

[
|B|
|A|

])
. (34)

If A = σaId and B = σbId, KL-divergence is further simplified as

DKL [p∥q] = 1

2

(
1

σb
∥a − b∥2 + d

(
σa
σb
− 1 + log

(
σa
σb

)))
.

Applying Lemma 3 to our problem yields:

Lt−1 := DKL [q(zt−1|zt,x)∥p(zt−1|zt,ϕt)]

=
1

2σ2
t

∥∥∥∥1− αt−1

1− αt

√
1− βtzt +

√
αt−1βt

1− αt
x− ft[zt,ϕt]

∥∥∥∥2 + C
(35)

for some constant C that does not depend on ϕ1,··· ,T . Finally, we again replace the expectation with

respect to z1,··· ,T in Equation (31) by the empirical expectation, by drawing z∗
it from q(z∗

it|xi), i =

1, · · · , I, t = 1, · · · , T .

L[ϕ1,··· ,T] ≈
I∑

i=1

(
− log

[
Nxi

[
f1 [z

∗
i1,ϕ1] , σ

2
1I
]]

+
T∑
t=2

1

2σ2
t

∥∥∥∥1− αt−1

1− αt

√
1− βtz

∗
it +

√
αt−1βt

1− αt
xi − ft[z

∗
it,ϕt]

∥∥∥∥2
)
.

(36)

5 Reparameterization and the resulting algorithms

The loss function in (36) can be decomposed in to the following parts:

Reconstruction term : log
[
Nxi

[
f1 [zi1,ϕ1] , σ

2
1I
]]

(Target) mean of q(zt−1|zt,x) :
1− αt−1

1− αt

√
1− βtzit +

√
αt−1βt

1− αt
xi

Predicted zt−1 : ft[zit,ϕt].

(37)

Here, each xi is the ith data point and zit is the associated latent variable at diffusion step t. This

loss function can be used to train a network for each diffusion time step. It minimizes the

difference between the estimated ft[zit,ϕt] of the hidden variable at the previous time step and the

most likely value that it took given the ground truth de-noised data x. However, the optimization

12

can be further simplified by reparameterizing the target and the network so that the model aims

to predict the noise, instead of the hidden variable.

5.1 Reparameterization

The original diffusion update was given by (19). One can rewrite it in terms of the data x such

that

x =
1
√
αt

zt +

√
1− αt√
αt

ϵ. (38)

Substituting this into the target terms in (37) yields

1− αt−1

1− αt

√
1− βtzt +

√
αt−1βt

1− αt
x

=
1− αt−1

1− αt

√
1− βtzt +

√
αt−1βt

1− αt
(

1
√
αt

zt +

√
1− αt√
αt

ϵ)

=

(
(1− αt−1)

√
1− βt

1− αt
+

βt

(1− αt)
√
1− βt

)
zt −

βt√
1− αt

√
1− βt

ϵ

=
1√

1− βt
zt −

βt√
1− αt

√
1− βt

ϵ,

(39)

where we have used the fact that
√
αt√

αt−1
=
√
1− βt.

Then, the network should also be reparameterized. We replace the model ẑt−1 = f [zt,ϕt] with

a new model ϵ = gt[zt,ϕt], which predicts the noise ϵ that was mixed with x to create zt:

f [zt,ϕt] =
1√

1− βt
zt −

βt√
1− αt

√
1− βt

gt[zt,ϕt]. (40)

Combining the reparameterization of the target and the network, the loss function given in (36)

can be rewritten as

L[ϕ1,··· ,T]

=

I∑
i=1

(
− log

[
Nxi

[
f1 [zi1,ϕ1] , σ

2
1I
]]

+

T∑
t=2

β2
t

(1− αt)(1− βt)2σ2
t

∥gt[zit,ϕt]− ϵit∥2
)

=
I∑

i=1

(
1

2σ2
1

∥xi − ft[zi1,ϕ1]∥
2 + Ci +

T∑
t=2

β2
t

(1− αt)(1− βt)2σ2
t

∥gt[zit,ϕt]− ϵit∥2
)

=

I∑
i=1

T∑
t=1

β2
t

(1− αt)(1− βt)2σ2
t

∥gt[zit,ϕt]− ϵit∥2 + Ci,

(41)

where we substituted in (38) and (40) for t = 1.

13

5.2 Algorithms

In practice, to solve the optimization problem, we can ignore the scaling factor and the constants.

This leads to straightforward algorithms for both training the model and sampling as in Algo-

rithms 1 and 2. These algorithms are simple to implement and naturally augments the dataset, as

we can reuse every original data point xi as many times as we want at each time step with different

noise ϵ (Prince (2023)).

Algorithm 1 Training
1: repeat
2: x ∼ q(x)
3: t ∼ Uniform({1, . . . , T}) ▷ sample random timestep
4: ϵ ∼ N (0, I)
5: Take gradient descent step on

∇θ

∥∥ϵ− gt
(√

αtx+
√
1− αtϵ,ϕt

)∥∥2
6: until converged

Algorithm 2 Sampling

1: zT ∼ N (0, I)
2: for t = T, . . . , 2 do
3: ϵ ∼ N (0, I) if t > 1, else ϵ = 0

4: ẑt−1 =
1√
1−βt

(
zt − βt√

1−αt
gt[zt,ϕt]

)
5: zt−1 = ẑt−1 + σtϵ ▷ add noise to the next input
6: end for
7: return x = 1√

1−β1

(
z1 − β1√

1−α1
g1[z1,ϕ1]

)

5.3 Special note on the connection to the Langevin dynamics

What information about the data distribution does the model learn through the denoising pro-

cess? An interesting note can be made to say that “Diffusion models approximate the solution to

stochastic differential equations.” To understand it, we note the following concepts.

• The score function is defined as the gradient vector of the log of the probability density

function,

∇x log p(x). (42)

The score matching (SM) technique aims to train the model to learn the Score function.

• Denoising autoencoder model (DAE) aims to learn the model X̂ = fθ(Z), where Z is a noise

random variable. This represents a one-step denoising process. In contrast, diffusion models

employ a more gradual approach, iteratively adding noise and learning the reverse procedure.

• Interestingly, Vincent (2011) has shown that the denoising autoencoder model (DAE) shares

the same objective function with the denoising score matching (DSM) technique, as well as

14

that of the SM technique.

– DSM aims to learn the Score function of the conditional probability distribution q(z|x).
If the noise follows N (0, σ2), then the score function of the conditional probability dis-

tribution is

s(z|x) = x− z

σ2
. (43)

– When a machine learning model is optimized to learn the score function of the above

conditional probability distribution, it becomes capable of estimating the relative mag-

nitude of injected noise in comparison to the variance when it receives noise-added data

as input. Consequently, the model learns the trajectory from the corrupted information

Z towards the original data X, effectively learning the path of data restoration.

– DAE sharing the same objective function means that through the denoising process, the

DAE model ultimately learns the score function of the input data distribution.

• Langevin dynamics can produce samples from a probability density p(x) using the score

function ∇x log p(x). That is, given a fixed step size η, and an initial value x ∼ π(x) with π

being a prior distribution, the Langevin method recursively computes the following,

xt ← xt−1 +
η

2
∇x log p(xt) +

√
ηϵt−1, (44)

where ϵt−1 ∼ N (0, I). Then, the distribution of xT equals p(x) when η → 0 and T →∞.

• Let us revisit our sampling procedure in Algorithm 2. To sample zt−1 ∼ p(zt−1|zt,ϕt), we

compute

zt−1 =
1√

1− βt

(
zt −

βt√
1− αt

gt[zt,ϕt]

)
+ σtϵ. (45)

As we have the fact that the denoising model ulitmately learns the score function of the input

data distribution, it can be viewed as the reverse Langevin procedure of (44).

• The squared norm objective loss given in (41) resembles denoising score matching (DSM)

over multiple noise scales indexed by t. Also, the loss (41) can be viewed as the variational

bound for the process defined in (40), which is a Langevin-like process. By combining these

two observations, optimizing an objective resembling DSM is equivalent to using variational

inference to fit the finite-time marginal of a sampling chain resembling Langevin dynamics.

.

In this part, we briefly introduced how this ϵ-prediction parameterization resembles Langevin

dynamics and simplifies the diffusion model’s variational bound to an objective that resembles

denoising score matching (Ho et al. (2020)). Moreover, we note that the sampling algorithm of the

Diffusion Model approximates the Langevin Monte Carlo (LMC) algorithm, which is a numerical

solution to the stochastic differential equation known as the Langevin equation!

15

6 Conclusion

Diffusion models represent a significant breakthrough in the generative modeling domain, offering

a novel approach to data generation that balances quality and diversity. Their method of mapping

data through latent variables and the reverse denoising process demonstrate the advanced capabil-

ities of these models. This report has followed a structured exploration, beginning with the initial

introduction of denoising diffusion models by Sohl-Dickstein et al. (2015). The loss function could

be simplified based on the evidence lower bound (ELBO), which leads to a least-squares formula-

tion. Additionally, this report has elucidated the link to the score-matching method as introduced

in Song and Ermon (2019) and its resemblance to Langevin dynamics (Ho et al. (2020)), further

highlighting the nature of diffusion models.

As this field continues to mature, the potential applications of diffusion models in various

domains like image and audio generation, and even in more complex data forms, are expansive. The

ongoing development and refinement of these models will undoubtedly be a pivotal area of research,

contributing substantially to the advancements in machine learning and artificial intelligence.

References

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.

and Bengio, Y. (2014), ‘Generative adversarial nets’, Advances in neural information processing

systems 27.

Ho, J., Jain, A. and Abbeel, P. (2020), ‘Denoising diffusion probabilistic models’, Advances in

neural information processing systems 33, 6840–6851.

Kingma, D. P. and Welling, M. (2014), Auto-encoding variational bayes, in ‘Proceedings of the

International Conference on Learning Representations (ICLR)’.

Prince, S. J. (2023), Understanding Deep Learning., MIT PRESS.

Rezende, D. and Mohamed, S. (2015), Variational inference with normalizing flows, in ‘International

conference on machine learning’, PMLR, pp. 1530–1538.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N. and Ganguli, S. (2015), Deep unsupervised

learning using nonequilibrium thermodynamics, in ‘International conference on machine learn-

ing’, PMLR, pp. 2256–2265.

Song, Y. and Ermon, S. (2019), Generative Modeling by Estimating Gradients of the Data Distri-

bution, Curran Associates Inc., Red Hook, NY, USA.

Vincent, P. (2011), ‘A connection between score matching and denoising autoencoders’, Neural

Computation 23(7), 1661–1674.

16

	Introduction
	Related Works
	Performance measure for generative models
	Generative Adversarial Network
	Normalizing Flow
	Variational Autoencoder

	Diffusion model
	Encoder (Forward Pass, Model Setting)
	Conditional Distributions
	Decoder (Backward pass, Model Learning)

	Evidence Lower Bound (ELBO)
	Reparameterization and the resulting algorithms
	Reparameterization
	Algorithms
	Special note on the connection to the Langevin dynamics

	Conclusion

