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ABSTRACT
Enteroendocrine cells (EECs) in the intestine regulate many aspects of whole-body physiology and metabolism. EECs

sense luminal and circulating nutrients and respond by secreting hormones that act on multiple organs and organ

systems, such as the brain, gallbladder, and pancreas, to control satiety, digestion, and glucose homeostasis. In addition,

EECs act locally, on enteric neurons, endothelial cells, and the gastrointestinal epithelium, to facilitate digestion and

absorption of nutrients. Many recent reports raise the possibility that EECs and the enteric nervous system may

coordinate to regulate gastrointestinal functions. Loss of all EECs results in chronic malabsorptive diarrhea, placing EECs

in a central role regulating nutrient absorption in the gut. Because there is increasing evidence that EECs can directly

modulate the efficiency of nutrient absorption, it is possible that EECs are master regulators of a feed-forward loop

connecting appetite, digestion, metabolism, and abnormally augmented nutrient absorption that perpetuates metabolic

disease. This review focuses on the roles that specific EEC hormones play on glucose, peptide, and lipid absorption

within the intestine. J Nutr 2020;150:10–21.
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Introduction

Enteroendocrine cells (EECs) are critical regulators of whole-
body physiology and metabolism. EECs are found scattered
throughout the gastrointestinal (GI) epithelium and secrete
more than 20 distinct hormones in response to nutrient
ingestion. Although EECs comprise only ∼1% of the intestinal
epithelium, collectively they make up the largest endocrine
organ in the body. EEC hormones enter circulation and act
on multiple organs and organ systems, such as the brain,
gallbladder, and pancreas, to regulate metabolic processes
including the central control of feeding behavior, bile secretion,
and glucose homeostasis, respectively. Several excellent reviews
have summarized the various types of hormone-producing
EECs, the regulation of hormone release, and their subsequent
physiologic roles (1–4).

Some EEC hormones also act locally, on enteric neurons,
endothelial cells, and the GI epithelium, to facilitate digestion
and absorption of nutrients. Absorption of carbohydrates,
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proteins, and fats has been extensively studied and reviewed in
detail elsewhere (5–9). However, the role of EECs in regulating
the efficiency of nutrient absorption by enterocytes is not well
understood. It became clear that EECs were essential regulators
of nutrient absorption when a series of children were reported
with intractable malabsorptive diarrhea upon ingestion of any
enteral nutrition (10, 11). Biopsies revealed a near-total absence
of EECs throughout the small and large intestine in these
children, with otherwise grossly normal intestinal architecture.
To sustain life, children with enteric anendocrinosis require
parenteral nutrition, or small-bowel transplant. Sequencing of
these patients revealed point mutations in Neurogenin 3 (NEU-
ROG3), the basic helix–loop–helix transcription factor required
for EEC formation (12). Although only a handful of cases have
been reported to date, these patients uncovered an unexpected
requirement for EECs in the regulation of nutrient absorption.

Enteric anendocrinosis was modeled in mice by deleting
Neurog3 specifically in the intestinal epithelium (13). Similar to
the human patients, mice lacking Neurog3 did not develop any
EECs, failed to match their littermates in weight gain, and most
died before weaning. These mice absorbed glucose following an
oral glucose tolerance test but suffered from steatorrhea and
displayed impaired lipid absorption. This fat malabsorption was
not explained by changes in pancreatic enzyme secretion, sug-
gesting that EECs are essential for normal nutrient absorption.
A subset of EECs coexpress cholecystokinin (CCK), secretin,
glucose-dependent insulinotropic peptide (GIP), glucagon-like
peptide (GLP) 1 (GLP1), peptide YY (PYY), and neurotensin
(NTS) (14). Formation of this subset of EECs is dependent on
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the transcription factor Arx (15). Loss of Arx also caused lipid
malabsorption in the early postnatal period (16, 17); however,
mouse models have overall demonstrated mild phenotypes with
loss of any single hormone.

Many EEC hormones have partially overlapping functions,
and some peptides produced by EECs are also produced
by peripheral and central neurons. In addition, several EEC
peptides, including CCK, GIP, GLP1, GLP2, serotonin (5-
hydroxytryptophan; 5-HT), and somatostatin (SST), are known
to trigger the release of hormones stored in neighboring EECs
(Figure 1). These factors make it difficult to isolate specific roles
for each hormone in the regulation of nutrient absorption.

Most EEC hormones signal via specific G protein–coupled
receptors (GPCRs) on their target cell and elicit a response
by regulating levels of cAMP and/or intracellular calcium (18)
(Table 1). EEC hormones signal directly to a wide variety
of tissues throughout the body. This enables a coordinated,
systemic response to the digestion of a meal. The incretin hor-
mones GIP and GLP1 are classic examples of this coordinated
response as they signal to the pancreas to regulate insulin
secretion in response to luminal stimuli (19). However, EEC
hormones have a much broader range of action. GIP and GLP1
have also been shown to signal to the heart, brain, adrenal
cortex, kidney, lung, endothelial cells, skeletal muscle, bone,
adipose, and intestine (19, 20–23). Similarly, many other EEC
hormones exert effects on a wide array of organs (summarized
in Table 1). Some EEC hormones also have direct effects on
the GI epithelium to influence ion transport, water secretion,
and nutrient absorption. Enterocytes respond directly to 5-HT
(24), GIP (25), secretin (26), CCK (27), SST (28), NTS (29), and
PYY (30). Importantly, despite numerous reports of GLP1 and
GLP2 influencing nutrient absorption (described later), these
effects require an intermediate cell type. Neither the GLP1
receptor nor the GLP2 receptor is expressed by enterocytes,
but both are enriched on other EECs (31, 32), endothelial
cells, and enteric neurons (22, 33). In fact, many EEC hormone
receptors are expressed on enteric neurons (34), some EECs
extend basal processes termed neuropods to physically interact
with enteric neurons and glia (35), and some EECs even synapse
directly with vagal afferents using glutamate (36) to rapidly
communicate information about the nutrient status of the
gut. Although there are some well-established EEC to enteric
nervous system (ENS) signals that control GI functions, such
as motility, blood flow, and smooth muscle contraction (30,
37–40), the extent to which EECs and the ENS coordinate to
regulate nutrient absorption remains unknown.

It has been known for decades that EECs are essential for
nutrient absorption, but the exact mechanism for this is still
unknown. This is in part due to the difficulty of studying direct
effects of EEC hormones on nutrient absorption in vivo because
hormones act systemically on the central nervous system (CNS),
pancreas, and other tissue types. Most of our current under-
standing of nutrient absorption derives from intestinal perfusion
of animal models or analysis of intestinal tissue dissected
from rodents. However, animal models are inherently low-
throughput and may not always recapitulate human physiology
or pathophysiology. Isolated intestinal epithelial cell lines, such
as Caco-2 cells, which form a polarized epithelial monolayer
(41), have proven useful in studying epithelial-specific responses
to EEC hormones. However, Caco-2 cells were derived from
colon adenocarcinoma, and it is well established that many
cancers respond abnormally to hormonal signals. Intestinal
organoids, derived from mouse or human intestinal stem cells
(enteroids) (42) or generated via the directed differentiation of

pluripotent stem cells [human intestinal organoids (HIOs)] (43),
are exciting new in vitro models of intestinal physiology (44–
46). Organoids and enteroids differentiate to produce all major
intestinal epithelial cell types, including Paneth cells, goblet cells,
EECs, and absorptive enterocytes, and thus can be used to study
nutrient transport (47–49). In addition, EECs within enteroids
(47, 50) and HIOs (51) secrete hormones, including the incretins
GLP1 and GIP, in response to nutrient stimuli. Enteroids, which
can be generated from human biopsy specimens or transgenic
mice, can also be grown as monolayer cultures with the apical
surface exposed, providing a valuable tool to isolate epithelial-
only mechanisms regulating nutrient absorption. However,
in vivo, nutrient absorption is intimately tied to the enteric
neurons and blood vessels in the submucosa, and enteroids
lack these supporting structures. HIOs codifferentiate with
mesenchymal cells, can be engineered to incorporate an ENS,
and can be functionally matured by engrafting into the
mouse kidney capsule to generate smooth muscle (52) and
innervated submucosal and myenteric plexi (53). Functional
human intestinal tissues derived from HIOs or from human
surgical specimens, in combination with rodent models, should
allow for a dissection of the epithelial–neural cross-talk that
regulates nutrient absorption.

It is well established that EECs have apical nutrient sensors
and release their hormone granules upon nutrient stimulus
and that these hormones have endocrine function on a range
of organs. However, the paracrine role of these hormones in
the regulation of nutrient absorption is only beginning to be
understood (Figure 1). A better understanding of the roles
of individual hormones in regulating nutrient absorption is
essential not only for patients who have EEC defects but also
for development of new therapeutics that control nutrient ab-
sorption and homeostasis. EECs and their hormones are known
to be altered in obese patients and those with type 2 diabetes.
Current therapies that target EEC biology have largely focused
on the incretin hormones GLP1 and GIP and their effects on
insulin secretion (54), but collectively, EECs produce and secrete
more than 12 distinct peptides in addition to GLP1 and GIP
that have potential therapeutic benefits. There have been no
concerted efforts to target the control of nutrient absorption by
EECs; however, the finding that incretin therapy unexpectedly
improved postprandial dyslipidemia (55, 56) suggests this is
an avenue worth exploring. As more therapeutics are being
designed that target EEC hormones, a thorough compilation of
the known roles that EECs play on glucose, peptide, and fatty
acid absorption is essential and is the focus of this review.

EEC Regulation of Glucose Absorption

Intestinal glucose absorption is predominantly mediated by
the apical sodium glucose cotransporter 1 (SGLT1), which
transports 1 glucose or galactose molecule along with 2 Na+

ions from the intestinal lumen into the intestinal epithelial
cell (57, 58). The inwardly directed enterocyte Na+ gradient
is required for SGLT1-mediated glucose transport and is
maintained by the apical Na+/H+ exchanger (NHE3) and
basolateral Na+/K+ ATPase pump (58). Glucose is then
transported out of the cell by facilitated diffusion via basolateral
glucose transporter 2 (GLUT2) (59). Whereas SGLT1 is the
predominant apical glucose transporter under normal mixed
meal conditions, GLUT2 can translocate to the apical brush
border to assist in glucose absorption in response to high
luminal sugar concentrations (60–64).

EEC regulation of nutrient absorption 11
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FIGURE 1 Overview of EEC receptor localization and known roles in nutrient absorption. Note that this figure has been simplified for clarity; see
text for details. (A) EECs sense luminal nutrients and secrete hormones (colored circles) in response. These hormones can enter the bloodstream
to affect distant targets or act in paracrine fashion (drawn in B–E) with neighboring enterocytes (yellow), enteric neurons (black), or endothelial
cells (red). EECs can also be stimulated to release hormone by basolateral stimulation of GPCRs from neighboring EECs and neuropeptides or
neurotransmitters. Some EECs also directly synapse with enteric neurons to rapidly communicate information about the nutrient status of the
gut. This figure is simplified to show a representative EEC. (B) EEC hormones influence glucose absorption directly and indirectly via enteric
neurons. GIP promotes glucose absorption via SGLT1 and GLUT2 within the enterocyte. CCK decreases glucose absorption directly within the
enterocyte. GLP2 acts on enteric neurons to stimulate glucose absorption. 5-HT decreases glucose absorption, although it is unclear whether
this occurs directly or indirectly via action on enteric neurons. The dashed arrow indicates that GLUT2 can translocate to the apical surface to
assist with high luminal glucose concentrations. (C) EEC hormones influence amino acid and peptide absorption directly and indirectly via enteric
neurons. GIP augments di- and tripeptide absorption via PEPT1. GLP2 promotes amino acid absorption in a mechanism that requires enteric
neurons. 5-HT dampens amino acid absorption, although it is unclear whether this occurs directly at the enterocyte or requires enteric neurons.
(D) EEC hormones influence lipid absorption directly and indirectly via enteric neurons. NTS, SCT, and PYY act directly on the enterocyte. NTS and
SCT promote lipid absorption, whereas PYY inhibits lipid absorption. GLP1 and GLP2 affect lipid absorption and chylomicron production indirectly
via enteric neurons. GLP1 inhibits lipid absorption, whereas GLP2 promotes fatty acid absorption, chylomicron production, and chylomicron
release. (E) A number of other hormones are known to influence enterocyte function either directly or indirectly. More experiments are required
to assign specific roles in nutrient absorption and expand our knowledge of EEC regulation of nutrient absorption. CCK, cholecystokinin; CD36,
fatty acid translocase; EEC, enteroendocrine cell; GIP, gastric inhibitory polypeptide/glucose-dependent insulinotropic peptide; GLP1, glucagon-
like peptide 1; GLP2, glucagon-like peptide 2; GLUT2, glucose transporter 2; GPCR, G protein–coupled receptor; NTS, neurotensin; PEPT1,
peptide transporter 1; PYY, peptide YY; SCT, secretin; SGLT1, sodium glucose cotransporter 1; SST, somatostatin; 5-HT, 5-hydroxytryptophan.

SGLT1 trafficking to the apical membrane is regulated, in
part, by cAMP levels (65). Peptides that signal through Gαs-
coupled GPCRs, such as GIP, raise intracellular cAMP and
stimulate glucose absorption in the proximal small intestine
(66). Treatment of intestinal tissue with a GIP antagonist
attenuated the additive effect of GIP on glucose absorption
but did not inhibit glucose uptake (66, 67), indicating that
GIP augments, but is not required for, glucose absorption.
In addition to upregulating SGLT1, GIP also boosts GLUT2-
mediated glucose transport. Vascular infusion of GIP stimulated
basolateral export of glucose via GLUT2 (68) and increased

GLUT2 translocation to the apical surface (60). Interestingly,
the in vivo situation is more complex. GIP also raises
intracellular cAMP levels in SST-expressing EECs, triggering
hormone release, which in turn slowed gut motility and reduced
glucose absorption in mice (69). In the study by Ogawa et al.
(69), inhibition of SST increased glucose absorption in vivo
but not ex vivo. This suggested that the effect of SST was
mediated by pancreatic or CNS pathways and that SST does
not significantly impact enterocyte glucose absorption.

The receptors for GLP1 and GLP2 are also Gαs-coupled,
but their intestinal expression is limited to some populations of
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EECs, enteric neurons, and endothelial cells within the lamina
propria of the gut mucosa (22, 31, 33, 38, 32). This indicates
that any effects of GLP1 or GLP2 on nutrient absorption
are driven by an intermediate cell or signal acting on the
enterocyte. GLP1 and GLP2 are often cosecreted from the same
EEC, but genetic and pharmacologic manipulations of GLP1
or GLP1 receptor indicate GLP1 does not play a significant
role in intestinal glucose absorption (66, 69, 60, 68). On the
other hand, GLP2 robustly increases the capacity of glucose
absorption. GLP2 upregulates SGLT1 expression in neighboring
enterocytes via enteric neurons (89) and stimulates Na+–
glucose transport (91). GLP2 also augments GLUT2-mediated
basolateral export (68) and increases translocation of GLUT2
to the apical brush border (60, 61, 92) to increase the rate of
glucose absorption.

NTS and PYY are also often cosecreted with GLP1 and
GLP2 (128). In contrast to GLP1 and GLP2, the receptors for
NTS (NTR1) (29) and PYY (NPY1R) (30) are expressed by
epithelial cells within the GI tract in addition to their expression
by enteric neurons. However, there have been no reports of PYY
influencing glucose absorption, and pharmacological inhibition
of NTS did not affect in vivo glucose transport (68). This
suggests that individual hormones, even if cosecreted, have
distinct distribution and functions to coordinately regulate
postprandial digestion and absorption.

Not all EECs promote the absorption of nutrients. 5-HT,
which classically promotes intestinal water and ion secretion,
has been shown to inhibit Na+-dependent galactose absorption
(124), although it remains unclear whether this is a direct
effect on enterocytes or occurs via enteric neurons. In addition,
infusion of CCK inhibited glucose absorption by reducing the
localization of SGLT1 to the brush border (27, 74). This effect
required CCK-A receptors and was independent of enteric
neurons. Because many EEC hormones are cosecreted upon
exposure to nutrients, multiple layers of regulation are in place
to ensure optimal absorption.

EEC Regulation of Protein Absorption

Dietary proteins are digested into single amino acids, dipeptides,
and tripeptides by various proteases throughout the proximal
GI tract (5, 9). The apical membrane of enterocytes contains
a number of transporters for single amino acids, which can
be electroneutral or coupled to Na+, H+, K+, or Cl– (5, 129).
However, the majority of dietary protein absorption occurs via
peptide transporter 1 (PEPT1) (9). PEPT1 transports intact di-
and tripeptides with a H+ ion (130, 131). Therefore, PEPT1 is
sensitive to pH, the membrane potential of the cell, and intact
Na+/H+ exchange (132). Within the enterocyte, cytoplasmic
proteases cleave di- and tripeptides to single amino acids. Single
amino acids, especially glutamine, glutamate, and aspartate, are
the major source of energy for the enterocyte and promote
proliferation, cell survival, and barrier function (133, 134). The
remainder of dietary amino acids are exported into circulation
via distinct basolateral transporters (5, 9, 129). Some of the
basolateral transporters operate bidirectionally so that arterial
amino acids can be delivered to the enterocyte in times of
nutrient scarcity (5, 129).

Very few studies have investigated EEC regulation of protein
absorption, which is surprising given the importance of amino
acids in intestinal metabolism. Like SGLT1, PEPT1 is electrically
coupled and dependent on Na+/H+ exchange. Therefore, it is
reasonable to expect that some of the same EEC hormones,
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GPCRs, and mechanisms that affect glucose absorption may
also affect activity of PEPT1. In support of this, GIP signaling
augmented PEPT1-mediated dipeptide absorption by activating
cAMP and phosphoinositide-3 kinase signaling pathways
(25, 77).

GLP2 is emerging as an important regulator of intestinal
physiology (135). GLP2 stimulated absorption of several amino
acids, including lysine, in a mechanistic target of rapamycin
complex 1–sensitive manner. This effect was mediated by enteric
neurons (90), suggesting a complex regulation of amino acid
sensing at the submucosal level. Despite being cosecreted with
GLP2 and sharing receptor expression on enteric neurons, GLP1
had no effect on peptide absorption via PEPT1 (77) nor amino
acid transport (90).

Similar to its effect on sugar transport, 5-HT reduced Na+–
leucine transport (124), although it is unclear whether this effect
required enteric neurons or whether 5-HT affects transport of
other amino acids or small peptides.

Additional pathways by which EECs directly regulate
protein absorption or coordinate with enteric neurons to
regulate protein absorption have not yet been investigated.

EEC Regulation of Lipid Absorption

EEC regulation of lipid absorption begins with secretion of CCK
and secretin from the proximal small intestine in response to
luminal fatty acids. CCK and secretin are important regulators
of bile, bicarbonate, and pancreatic enzyme secretion, which
are essential for emulsification and hydrolysis of dietary fat.
The water–lipid interface of the luminal emulsion is sensitive
to hydrolysis by lipases. Triacylglycerides are the predominant
component of dietary fat. Pancreatic lipase, assisted by colipase,
hydrolyzes dietary triacylglycerides into 2-monoacylglycerol
and free fatty acids, which then combine with bile salts,
phospholipids, and cholesterol to form micelles (6, 7). Micelles
carry hydrolyzed 2-monoacylglycerol and free fatty acids to the
brush border of the enterocyte, where they can then be taken
up via carrier-independent diffusion at high concentrations or
via carrier-dependent transport (8, 136). Two well-studied lipid
transport proteins are fatty acid binding protein and CD36
(also known as fatty acid translocase or SR-B2) (8, 137–
140). Once inside the enterocyte, fatty acids are re-esterified
to triacylglycerides at the endoplasmic reticulum and then
can be retained as cytoplasmic lipid droplets (8) or packaged
with apolipoproteins, including the essential ApoB-48, into
chylomicrons for export to the lacteal. In addition to assisting
with fatty acid uptake into the enterocyte, CD36 plays a role in
chylomicron formation (140, 141). Chylomicron synthesis and
secretion is a complex process that has been reviewed in detail
(7, 142, 143).

Absorption of dietary fat is regulated by many factors,
including EEC hormones. Mice with deletion of the transcrip-
tion factor Arx do not generate CCK, GIP, secretin, PYY,
NTS, or GLP1-producing EECs (15), and they suffer from
lipid malabsorption in the early postnatal period (16, 17),
reminiscent of loss of all EECs (13). Interestingly, the mice that
survive weaning no longer display signs of lipid malabsorption
(16), suggesting that the combined actions of multiple hormones
are important for suckling high-fat milk but are dispensable for
survival on low-fat unpurified diet.

In support of this, mice lacking CCK (73), the secretin
receptor (SCTR) (119), or NTS (29) display no overt phenotype
in the postnatal period or as adults when fed a normal

unpurified diet. However, when challenged with a high-fat
diet, mice lacking CCK (72) or SCTR (26) are resistant to
weight gain, and mice lacking NTS display some impaired lipid
absorption, although not profound malabsorption (29). Mice
lacking CCK displayed some impaired triglyceride absorption,
although this appeared to be independent of pancreatic enzyme
secretion. There are few data suggesting CCK directly influences
enterocyte lipid handling or chylomicron production. It is likely
that CCK promotes weight gain on a high-fat diet by influencing
adipokine secretion (72), with additional work required to
determine the role of CCK within intestinal lipid processing.
The intestines of mice lacking SCTR showed reduced transcripts
of genes involved in fatty acid metabolism and chylomicron
production. Furthermore, exogenous SCT increased fatty acid
uptake in isolated jejunal cells, suggesting a direct action on
enterocyte lipid absorption (26). NTS also directly increased
enterocyte lipid absorption (29). In addition, NTS augmented
lipid absorption across the intestinal epithelium and into the
lymph (104), and it was shown to modulate the inverse relation
between fatty acid absorption and AMP-activated protein
kinase signaling in the intestine (29). This observation indicates
it may be possible that increased levels of NTS predict metabolic
disease (29).

Interestingly, although NTS is often cosecreted with PYY,
GLP1, and GLP2 (128), all 4 peptides have distinct effects on
dietary lipid absorption. NTS and GLP2 have been associated
with dyslipidemia, whereas PYY and GLP1 have been associated
with improved lipemia. Enterocytes express receptors for NTS
and PYY, whereas effects of GLP1 and GLP2 are mediated by
enteric neurons, endothelial cells, or other EECs.

It has been difficult to elucidate the effect of PYY on fat
absorption due to overlapping affinity of PYY and neural-
produced neuropeptide Y (NPY) to the NPY family of receptors
(113), which are expressed throughout the GI tract, ENS, and
CNS (109). In addition, the dipeptidyl peptidase 4-cleaved
fragment PYY(3–36) exhibits potent anorexic effects in the
brain (105). However, in vitro experiments have revealed
that basolateral addition of PYY to intestinal cells reduces
apolipoprotein synthesis and chylomicron formation (115),
suggesting that PYY may be inversely correlated with fat
absorption.

Patients with type 2 diabetes are often prescribed drugs
such as exenatide or sitagliptin that enhance or mimic the
action of GLP1. These drugs are prescribed primarily for the
incretin effect on the pancreas to assist in glucose homeostasis;
however, they also reduce postprandial lipemia, indicating
that GLP1 may influence lipid absorption (55). Humans
given a single dose of either sitagliptin (144) or exenatide
(82) displayed an acute decrease in intestinal apolipoprotein
production independent of insulin. Rodent loss-of-function
models have also demonstrated the requirement of GLP1
receptor in the regulation of postprandial lipoprotein synthesis
and secretion (83). Furthermore, administration of exogenous
GLP1 abolished postprandial plasma lipemia in humans (84)
and reduced intestinal lymph flow, triglyceride absorption,
and apolipoprotein production in rats (85). The mechanism
by which GLP1 modulates lipid absorption likely involves
signaling to vasculature, enteric neurons, and other EEC
hormones that can act directly on the enterocyte.

Although GLP1 and GLP2 are cosecreted following a
meal, they have opposing effects on lipid absorption and
postprandial lipemia. Whereas GLP1 inhibits chylomicron
synthesis and secretion, GLP2 promotes lipid absorption and is
linked to postprandial dyslipidemia. Exogenous administration
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of GLP2 results in enhanced lipid absorption with increased
postprandial dyslipidemia and hepatic steatosis (86, 87, 93,
145). Furthermore, GLP2 promotes lipid absorption and
chylomicron production via CD36 (94). Once chylomicrons
are packaged within the enterocyte, GLP2 helps regulate
their release (93) via endothelial NO signaling (88). Despite
being secreted in equal amounts, the half-life of GLP2 is
much longer than that of GLP1 (55). This potentially enables
GLP2 to dominate over GLP1 (86), thus promoting overall
absorption of dietary fats. The metabolic effects of GLP1
and GLP2 on lipid metabolism are reviewed in greater detail
elsewhere (55, 56).

Whereas GLP1 has been targeted as an attractive therapy
for metabolic disease, this is not the case for the other incretin
hormone, GIP. GIP can exacerbate postprandial dyslipidemia
(83) and diet-induced obesity, likely due to expression of the
GIP receptor on adipocytes (19). The role of GIP in intestinal
lipid absorption has not been directly investigated, despite its
ability to augment glucose and di-/tripeptide absorption. Oral
glucose is able to mobilize stored cytoplasmic lipid droplets
to synthesize and secrete chylomicrons (146) via an unknown
mechanism. Because glucose is a potent secretagogue for GIP
(147), the role of this hormone in lipid metabolism warrants
future study.

Conclusions

EECs are often dysregulated in obesity and type 2 diabetes
and are the subject of extensive pharmacological development,
with the goals of reducing hunger, improving satiety, improving
insulin secretion and peripheral insulin sensitivity, increasing
energy expenditure, and reducing dyslipidemia (54). Because
there is increasing evidence that EECs can directly modulate the
efficiency of nutrient absorption, it is possible that EECs are at
the center of a feed-forward loop connecting appetite, digestion,
metabolism, and abnormally augmented nutrient absorption
that perpetuates metabolic disease.

Although the gut–brain axis has received much attention in
recent years, it was generally appreciated that the endocrine
hormones secreted from EECs first circulate in the blood
to then act on CNS targets minutes later. However, it is
increasingly apparent that EECs and enteric neurons are
intimately connected within the GI mucosa. Some EECs sprout
basolateral projections, termed neuropods, to directly connect
with enteric glia (35) and enteric neurons (148). Using these
neuropods, some EECs can even transmit a signal to the brain
in just 1 vagal synapse (36), opening a new field of investigation
into EEC–ENS communication. Many EEC receptors are
localized on enteric neurons; conversely, neuropeptides secreted
from enteric neurons can stimulate hormone release from
EECs (149). This bidirectional communication in turn informs
enterocyte nutrient absorption, with the classical examples of
GLP1 and GLP2 regulation of lipid absorption. A high-fat
diet alters the myenteric innervation in the small intestine
(150), raising the possibility of a feed-forward loop involving
GLP2 and augmented lipid absorption in the pathogenesis of
metabolic disease.

In summary, there is an accumulating body of evidence
indicating that nutrient absorption is influenced by EEC–GPCR
signaling, and at least some mechanisms might be dependent on
coordinate actions of EECs, enteric neurons, and the enterocyte,
representing future therapeutic possibilities for malabsorptive
and metabolic disorders.
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