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Studies that combine moderation and mediation are prevalent in basic and applied psychology
research. Typically, these studies are framed in terms of moderated mediation or mediated
moderation, both of which involve similar analytical approaches. Unfortunately, these ap-
proaches have important shortcomings that conceal the nature of the moderated and the
mediated effects under investigation. This article presents a general analytical framework for
combining moderation and mediation that integrates moderated regression analysis and path
analysis. This framework clarifies how moderator variables influence the paths that constitute
the direct, indirect, and total effects of mediated models. The authors empirically illustrate
this framework and give step-by-step instructions for estimation and interpretation. They
summarize the advantages of their framework over current approaches, explain how it
subsumes moderated mediation and mediated moderation, and describe how it can accom-
modate additional moderator and mediator variables, curvilinear relationships, and structural
equation models with latent variables.
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Moderation and mediation are prevalent in basic and
applied psychology research (Baron & Kenny, 1986; Holm-
beck, 1997; James & Brett, 1984; MacKinnon, Lockwood,
Hoffman, West, & Sheets, 2002; Shrout & Bolger, 2002).
Moderation occurs when the effect of an independent vari-
able on a dependent variable varies according to the level of
a third variable, termed a moderator variable, which inter-
acts with the independent variable (Baron & Kenny, 1986;

J. Cohen, 1978; James & Brett, 1984). Moderation is in-
volved in research on individual differences or situational
conditions that influence the strength of the relationship
between a predictor and an outcome, such as studies show-
ing that the effects of life events on illness depend on
personality (S. Cohen & Edwards, 1989; Taylor & Aspin-
wall, 1996). Mediation indicates that the effect of an inde-
pendent variable on a dependent variable is transmitted
through a third variable, called a mediator variable. In the
language of path analysis (Alwin & Hauser, 1975), media-
tion refers to an indirect effect of an independent variable on
a dependent variable that passes through a mediator variable
(Shrout & Bolger, 2002). Mediation is illustrated by re-
search on the theory of reasoned action (Ajzen, 2001; Ajzen
& Fishbein, 1980), which stipulates that the effects of
attitudes on behavior are mediated by intentions.

Researchers often conduct analyses intended to combine
moderation and mediation. In some situations, these analy-
ses are framed in terms of mediated moderation, in which a
moderating effect is transmitted through a mediator variable
(Baron & Kenny, 1986). For example, studies examining
intentions as a mediator of the effects of attitudes on be-
havior have framed attitudes as an interaction between the
expectancy that the behavior will result in an outcome and
the valence of that outcome (Ajzen, 2001). On the basis of
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this premise, intentions serve as a mediator of the effect of
the interaction between expectancy and valence on be-
havior. In other situations, analyses are characterized as
moderated mediation, such that a mediating effect is
thought to be moderated by some variable (Baron &
Kenny, 1986). For instance, research on the role of social
support in the stress process indicates that social support
can attenuate the effects of stressful life events on psy-
chological stress, reduce the effects of psychological
stress on illness, or both (S. Cohen & Wills, 1985; Gore,
1981). As such, social support moderates the mediated
effects of stressful life events on illness transmitted through
psychological stress.

Currently, researchers use various methods to combine
moderation and mediation. In some cases, moderation and
mediation are analyzed separately, and results from these
analyses are interpreted together to describe the combined
effects of moderation and mediation. In other cases, the
sample is split into subgroups that represent different levels
of the moderator variable, and mediation is examined within
each subgroup (Wegener & Fabrigar, 2000). In still other
cases, the causal steps procedure for assessing mediation is
adapted to incorporate moderator variables, testing whether
a previously significant moderator effect is no longer sig-
nificant after controlling for a mediator variable (Baron &
Kenny, 1986). Unfortunately, these methods suffer from
various methodological problems that seriously undermine
their utility.

This article presents a general analytical framework for
combining moderation and mediation that subsumes medi-
ated moderation and moderated mediation and overcomes
problems with current methods. This framework integrates
moderated regression analysis and path analysis; expresses
mediation in terms of direct, indirect, and total effects; and
shows how paths that constitute these effects vary across
levels of the moderator variable. We incorporate the prin-
ciple of simple slopes from moderated regression analysis
(Aiken & West, 1991) to test direct, indirect, and total
effects at selected levels of the moderator variable (Stolzen-
berg, 1980; Tate, 1998). We illustrate the framework with
categorical and continuous moderator variables applied to
each path involved in the direct, indirect, and total effects of
a basic mediated model. We conclude by discussing the
strengths and limitations of this approach and suggesting
areas for further development.

Procedures for Combining Moderation and
Mediation: Review and Critique of Current Methods

Researchers have combined moderation and mediation by
using various approaches. Our review of current empirical
research in psychology identified three primary approaches:
(a) the piecemeal approach, in which moderation and me-
diation are analyzed separately and their results are inter-

preted jointly; (b) the subgroup approach, in which the
sample is split into subgroups based on the moderator
variable, and mediation is analyzed within each subgroup;
and (c) the moderated causal steps approach, in which the
causal steps procedure for testing mediation (Baron &
Kenny, 1986) is adapted to test moderation before and after
controlling for the mediator variable. In this section, we
review and critique these approaches.

To identify the approaches examined here, we searched
articles published in prominent psychology journals from
1986 to 2004, when the search was conducted. The starting
date of 1986 marks the publication of Baron and Kenny
(1986), one of the first sources to discuss procedures for
combining moderation and mediation. We searched journals
covering various substantive areas of psychology, including
Addictive Behavior, Behavior Genetics, Child Development,
Developmental Psychology, Health Psychology, Journal of
Abnormal Psychology, Journal of Applied Psychology,
Journal of Counseling Psychology, Journal of Consulting
and Clinical Psychology, Journal of Personality and Social
Psychology, and Organizational Behavior and Human De-
cision Processes. For these journals, we used the PsycINFO
database to locate articles with the terms moderate, moder-
ating, or moderation combined with the terms mediate,
mediating, or mediation by searching abstracts and, when
available, full text. This search produced 225 articles,
which we examined to identify studies that combined
moderation and mediation in their analyses and results.
This screening yielded 83 studies, of which 19 used the
piecemeal approach, 26 used the subgroup approach, and
44 used the moderated causal steps approach, which
respectively represent 23%, 31%, and 53% of the studies
we located (the sum of these percentages exceeds 100%
because 6 studies used more than one approach). Al-
though not exhaustive, this search suggests that the three
approaches we discuss are representative of the methods
currently used to combine moderation and mediation in
psychology research.

Piecemeal Approach

One common approach to combine moderation and me-
diation involves analyzing moderation and mediation in
piecemeal fashion and interpreting their results jointly. With
this approach, moderation is usually tested with analysis of
variance (ANOVA) or regression analysis, in which the
dependent variable Y is regressed on the independent vari-
able X, the moderator variable Z, and their product XZ, as
follows:

Y � b01 � bX1X � bZ1Z � bXZ1XZ � eY1. (1)

In Equation 1, the test of the coefficient on XZ (i.e., bXZ1) is
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used to infer moderation.1 Mediation is tested separately,
typically with the causal steps procedure (Baron & Kenny,
1986), in which the relationships among X, Y, and the
mediator variable M are analyzed as follows: (a) Y is re-
gressed on X, (b) M is regressed on X, and (c) Y is regressed
on both X and M. These regression equations can be written
as follows:

Y � b02 � bX2X � eY2. (2)

M � a03 � aX3X � eM3. (3)

Y � b04 � bX4X � bM4M � eY4. (4)

Although the criteria for establishing mediation with the
causal steps procedure have evolved (Baron & Kenny,
1986; Judd & Kenny, 1981; Kenny, Kashy, & Bolger,
1998), most researchers apply the following four conditions
outlined by Baron and Kenny (1986): (a) X should relate to
Y in Equation 2, such that bX2 is significant; (b) X should
relate to M in the Equation 3, such that aX3 is significant; (c)
M should relate to Y in Equation 4, such that bM4 is signif-
icant; and (d) the relationship between X and Y in Equation
4 (i.e., bX4) should be nonsignificant or significantly smaller
than the relationship between X and Y in Equation 2 (i.e.,
bX2). Assuming the first three conditions are satisfied, com-
plete mediation is inferred if bX4 is not significant, whereas
partial mediation is concluded if bX4 remains significant but
is significantly smaller than bX2.

The piecemeal approach to analyzing moderation and
mediation suffers from two primary problems. First, the
approach does not reveal which of the paths relating X, M,
and Y vary as a function of Z. To illustrate, consider the
mediated model in Figure 1A. This model has three paths
that correspond to the regression coefficients in Equations 3
and 4. In terms of path analysis (Alwin & Hauser, 1975), the
direct effect of X on Y is bX4, and the indirect (i.e., mediated)
effect of X on Y is the product of aX3 and bM4. In principle,
any of these paths could vary across levels of the moderator
variable Z. For instance, if aX3 or bM4 vary across levels of
Z, then Z moderates the mediated effect of X on Y transmit-
ted through M. On the other hand, if bX4 varies across levels
of Z but aX3 and bM4 do not, then Z moderates the direct
effect rather than the mediated effect of X on Y. These
distinctions are concealed when the moderating effect of Z
is assessed using Equation 1, which indicates whether Z
moderates the overall relationship between X and Y without
revealing which paths that constitute this relationship are
influenced by Z.

Second, most studies that apply the piecemeal approach
use the causal steps procedure to assess mediation (Baron &
Kenny, 1986), which has several limitations of its own. For
instance, requiring a significant relationship between X and
Y in the first step can obscure a mediated effect that is

accompanied by a direct effect of opposite sign (Collins,
Graham, & Flaherty, 1998; MacKinnon, Krull, & Lock-
wood, 2000). Returning to the model in Figure 1A, the
direct and indirect effects of X on Y sum to the total effect,
such that bX4 � aX3bM4 � bX2 (Alwin & Hauser, 1975). As
shown in Equation 2, bX2 is used to evaluate the overall
relationship between X and Y in the first step of the causal
steps procedure. Hence, if bX4 and aX3bM4 are opposite in
sign, bX2 could fail to reach significance even when it
comprises significant countervailing effects. This limitation
is resolved when the first condition of the causal steps
procedure is dropped (Kenny et al., 1998), but this condition
is still used in most studies that apply the causal steps
procedure.

Another limitation of the causal steps procedure is that it
does not directly test the mediated effect of X on Y, as
represented by the product aX3bM4 (MacKinnon et al.,
2002). The coefficients that constitute this product are tested
separately under the second and third conditions of the
procedure, but these tests can yield results that differ from
the test of the product itself (MacKinnon et al., 2002; Shrout
& Bolger, 2002). For a model with a single mediator vari-
able, as in Figure 1A, the mediated effect can be tested by
evaluating the change in the relationship between X and Y
between the first and fourth steps, based on the equality
aX3bM4 � bX2 � bX4 (Kenny et al., 1998). However, appli-
cations of the causal steps procedure usually test whether
bX2 and bX4 each differ from zero, not whether they differ
from one another. These and other limitations of the causal
steps procedure (Collins et al., 1998; MacKinnon et al.,
2002; Shrout & Bolger, 2002) are inherited by approaches
that use the procedure when combining mediation and mod-
eration, such as the piecemeal approach.

Subgroup Approach

Another common approach used to combine moderation
and mediation involves splitting the sample into subgroups
that represent different values of the moderator variable and
assessing mediation within each subgroup. In some cases,

1 Throughout this article, subscripts on regression coefficients
indicate the variable to which the coefficient is assigned and the
equation in which the coefficient is estimated. Hence, bX1 refers to
the coefficient on X estimated in Equation 1. Intercepts are sub-
scripted with a zero followed by the equation number in which the
intercept is estimated, and residual terms are subscripted with the
dependent variable to which the residual applies (i.e., Y or M) and
the number of the equation from which the residual is obtained.
Finally, coefficients from equations that use Y as the dependent
variable are symbolized with the letter “b,” whereas coefficients
from equations that use M as the dependent variable are symbol-
ized with the letter “a.” This notation system yields a unique label
for each coefficient and immediately identifies the equation used to
estimate the coefficient.
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Figure 1. The basic mediated model and seven models that combine moderation and mediation.
Panel A shows the basic mediated model. Panel B adds Z as a moderator of the path from X to M,
which is the first stage of the mediated effect of X on Y. Panel C uses Z as a moderator of the path
from M to Y, which is the second stage of the mediated effect of X on Y. Panel D integrates Panels
B and C by specifying Z as a moderator of the first and second stages of the mediated effect. Panel
E treats Z as a moderator of the path from X to Y, which is the direct effect of X on Y. Panels F and
G add Z as a moderator of the first and second stages, respectively, of the mediated effect of X on
Y. Panel H combines moderation of the direct effect with moderation of the first and second stages
of the mediated effect, thereby moderating each path of the total effect of X on Y. For each panel,
paths are labeled with coefficients from the regression equations used to estimate the model. For
simplicity, the panels omit paths that lead directly from Z to M, to Y, or to both (these paths are
implied by the regression equations for each model, where Z itself appears in each equation where
it is used as a moderator variable).
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the moderator variable refers to experimental conditions or
naturally occurring subgroups, such as men and women,
whereas in other cases a continuous moderator variable is
dichotomized to form subgroups. Within each subgroup,
mediation is usually assessed with the causal steps proce-
dure, as summarized above (Baron & Kenny, 1986), or, in
some instances, by testing the two paths that constitute the
mediated effect and inferring support for mediation if both
paths are significant (MacKinnon et al., 2002). If evidence
for mediation differs between the subgroups, it is concluded
that mediation is moderated by the subgrouping variable.
The subgroup approach has been recommended in method-
ological discussions of moderation within the context of
mediation (Wegener & Fabrigar, 2000) and structural equa-
tion modeling (Rigdon, Schumaker, & Wothke, 1998).

The subgroup approach has several drawbacks. First,
under standard assumptions, analyses conducted within
each subgroup have lower statistical power than would be
available from the full sample (J. Cohen, 1988). This re-
duction in statistical power has implications for tests of
mediation in each subgroup. For instance, when the causal
steps procedure is applied, low statistical power decreases
the likelihood that the first three conditions will be satisfied
and, conversely, increases the likelihood that the fourth
condition will erroneously indicate complete mediation,
which is evidenced by a nonsignificant relationship between
X and Y when M is controlled. Given the generally modest
levels of statistical power in psychology research (Maxwell,
2004; Rossi, 1990), procedures that sacrifice power should
be avoided.

Second, as noted earlier, studies that use the subgroup
approach often form subgroups by dichotomizing a contin-
uous moderator variable. This practice discards information,
often yields biased parameter estimates, and further reduces
statistical power (Maxwell & Delaney, 1993; Stone-Romero
& Anderson, 1994). Although the dichotomization of con-
tinuous variables has been criticized for decades (J. Cohen,
1983; MacCallum, Zhang, Preacher, & Rucker, 2002; Max-
well & Delaney, 1993), this practice continues in psychol-
ogy research and is common among studies that use the
subgroup approach.

Third, the subgroup approach does not provide tests of
differences in mediation across levels of the moderator
variable. Typically, studies that use the subgroup approach
conclude that mediation is moderated when the conditions
for mediation are satisfied in one subgroup but not in the
other. Examining whether mediation is supported in either
subgroup does not indicate whether mediation differs be-
tween the subgroups. Recall that, for the model in Figure
1A, the mediated effect of X on Y through M is represented
by the product aX3bM4. Hence, moderated mediation would
be reflected by differences in this product between sub-
groups, not by whether this product differs from zero in
either subgroup. Studies that use the subgroup approach

sometimes test differences in individual paths between sub-
groups but rarely test the difference in the product that
represents the mediated effect.

Finally, studies that apply the subgroup approach usually
assess mediation with the causal steps procedure (Baron &
Kenny, 1986) and therefore suffer from its limitations (Col-
lins et al., 1998; MacKinnon et al., 2002; Shrout & Bolger,
2002). Some studies that apply the subgroup approach an-
alyze mediation within each subgroup by testing the product
of the paths that constitute the mediated effect, but these
studies are the exception rather than the rule.

Moderated Causal Steps Approach

A third approach combines moderation and mediation by
adding product terms to the regression equations involved in
the causal steps procedure (Baron & Kenny, 1986; Muller,
Judd, & Yzerbyt, 2005). Studies that apply this approach
typically begin by using regression analysis to establish that
Z moderates the relationship between X and Y, correspond-
ing to Equation 1. At the second step, most studies examine
whether Z moderates the effect of X on M, as captured by
the following regression equation:

M � a05 � aX5X � aZ5Z � aXZ5XZ � eM5. (5)

The coefficient on XZ (i.e., aXZ5) indicates the extent to
which the relationship between X and M varies across levels
of Z. In the final step, most studies add M to Equation 1,
yielding the following equation:

Y � b06 � bX6X � bZ6Z � bXZ6XZ � bM6M � eY6. (6)

This equation is used to establish that M is related to Y, as
evidenced by bM6, and to assess whether the XZ interaction
captured by bXZ6 is no longer significant, which is taken as
evidence that M mediates the effect of the XZ interaction on
Y. Some studies modify this procedure either by testing
whether the coefficient on X (i.e., bX6) rather than that on XZ
remains significant or by testing the coefficients on X, Z, and
XZ as a set. Other studies use alternative versions of Equa-
tion 6 that replace XZ with MZ or that contain both XZ and
MZ (Muller et al., 2005).

The moderated causal steps approach suffers from a
number of shortcomings. Some of these shortcomings par-
allel those associated with the basic causal steps procedure.
For instance, a nonsignificant interaction between X and Z in
Equation 1 does not rule out the possibility that Z exerts
moderating effects of opposite sign on the direct and indi-
rect effects relating X to Y. In addition, the moderated causal
steps approach does not directly estimate the extent to
which Z influences the indirect effect of X on Y transmitted
through M. Most studies examine the moderating effect of Z
on the relationship between X and M, as indicated by aXZ5 in
Equation 5; but studies rarely examine the moderating effect
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of Z on the relationship between M and Y or consider how
the product representing the indirect effect of X on Y varies
across levels of Z.

Other shortcomings of the moderated causal steps ap-
proach go beyond those of the causal steps procedure itself.
In particular, most studies that use the moderated causal
steps approach examine moderation for only a subset of the
paths linking X to Y. Support for moderation of one path can
change when terms representing moderation for other paths
are estimated. For instance, adding MZ to Equation 6 to
estimate the moderating effect of Z on the path from M to Y
will generally change the coefficient on XZ, which in turn
can lead to different conclusions regarding the extent to
which M mediates the moderating effect of Z on the rela-
tionship between X and Y. Moreover, hypothesizing that Z
moderates a subset of the paths relating X to Y implies that
the other paths are not moderated. Unless moderation is
tested for each path, hypotheses concerning the moderating
effects of Z are shielded from potentially disconfirming
evidence.

Another problem with the moderated causal steps ap-
proach is that testing whether the coefficient on XZ remains
significant when M is controlled does not reveal how M
influences the form of the interaction between X and Z,
which is described by the coefficients on X, Z, and XZ as a
set (Aiken & West, 1991). For example, assume that the
coefficient estimates from Equation 1 indicate an ordinal
interaction in which a positive relationship between X and Y
becomes stronger as Z increases. If controlling for M ren-
ders the coefficient on XZ nonsignificant, then it follows that
the relationship between X and Y no longer varies as a
function of Z; however, it remains unclear whether the
relationship is positive, negative, or null. These distinctions
have substantive implications that are disregarded by focus-
ing solely on the coefficient on XZ.

A final problem is that studies that use the moderated
causal steps approach rarely report coefficients relating X,
M, and Y at specific levels of Z. These coefficients can be
derived by using principles for computing simple slopes
(Aiken & West, 1991) and are essential to interpreting the
nature of the moderating effects of Z on the paths linking X,
M, and Y. These paths can also be used to assess the
magnitudes of the indirect effect and direct effect at differ-
ent levels of Z to determine which effect dominates the total
effect and how the relative contributions of the direct effect
and indirect effect depend on Z. This evidence is essential to
substantive interpretation but is generally disregarded by
studies that use the moderated causal steps approach.

A General Path Analytic Framework for Combining
Mediation and Moderation

The general framework presented here builds on current
approaches to combining moderation and mediation while

avoiding their attendant problems. This framework draws
from methodological work that addresses moderation in the
context of mediation, path analysis, and structural equation
models (Baron & Kenny, 1986; James & Brett, 1984; Stol-
zenberg, 1980; Tate, 1998). In particular, we frame media-
tion in terms of a path model, express relationships among
variables in the model by using regression equations, and
incorporate moderation by supplementing these equations
with the moderator variable and its product with the inde-
pendent variable and the mediator variable (Baron &
Kenny, 1986; James & Brett, 1984). We show how these
equations can be integrated to represent moderation of the
direct, indirect, and total effects of the model (Stolzenberg,
1980; Tate, 1998). This integration relies on reduced form
equations (Johnston, 1984), which are derived by substitut-
ing the regression equation for the mediator variable into the
equation for the dependent variable. We demonstrate how
these reduced form equations can be used to express direct,
indirect, and total effects at selected levels of the moderator
variable (Tate, 1998).

Our framework extends prior work on moderation and
mediation in several key respects. First, the framework
incorporates each of the logical possibilities that result when
a moderator variable influences one or more of the paths of
the basic mediated model in Figure 1A. Prior discussions of
moderation and mediation have addressed only a subset of
these possibilities. Second, we show that combining mod-
eration and mediation does not yield a single path model but
instead produces a set of models that each portray direct,
indirect, and total effects at a particular level of the mod-
erator variable. This perspective emphasizes that evidence
for mediation varies according to the level of the moderator
variable under consideration. Third, we point out that mod-
els that specify moderation of both paths of an indirect
effect implicitly introduce a nonlinear effect for the mod-
erating variable. This point has not been mentioned in
discussions of such models (Baron & Kenny, 1986; James
& Brett, 1984; Muller et al., 2005), yet it has important
implications for conceptualizing and interpreting modera-
tion of indirect effects. Finally, we demonstrate how to
derive confidence intervals and conduct significance tests
for direct, indirect, and total effects at selected levels of the
moderator variable. These procedures have been discussed
for mediated models that exclude moderation (MacKinnon
et al., 2002; Shrout & Bolger, 2002; Sobel, 1982) but have
not been addressed for models that combine moderation and
mediation.

The general framework presented here subsumes both
moderated mediation and mediated moderation. As noted
earlier, moderated mediation refers to a mediated effect that
varies across levels of a moderator variable. In path analytic
terms, moderated mediation means that either or both of the
paths from X to M and from M to Y, which constitute the
indirect effect of X on Y, vary across levels of the moderator
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variable Z. Our framework accommodates moderation of
these paths and therefore applies directly to moderated
mediation. Mediated moderation means that an interaction
between an independent and moderator variable affects a
mediator variable that in turn affects an outcome variable.
The interaction between the independent and moderator
variables signifies that the effect of the independent variable
on the mediator variable depends on the level of the mod-
erator variable. Hence, in path analytic terms, mediated
moderation indicates that the path from X to M varies across
levels of Z, whereas the path from M to Y is unaffected by
Z. Viewing moderated mediation and mediated moderation
in terms of path analysis reveals that, when moderated
mediation refers to moderation of the path from X to M but
not of the path from M to Y, moderated mediation and
mediated moderation are equivalent from an analytical
standpoint, and any distinction between them is a matter of
conceptual framing. When moderated mediation involves
moderation of the path from M to Y, moderated mediation
and mediated moderation are not analytically equivalent.
The partial overlap between moderated mediation and me-
diated moderation adds to the confusion surrounding these
terms (Muller et al., 2005). This confusion can be avoided
by combining moderation and mediation by using the gen-
eral path analytic framework developed here. With this
framework, whether results are interpreted in terms of mod-
erated mediation, mediated moderation, or neither depends
on the conceptual orientation and tastes of the researcher.

Because the framework we present relies on ordinary least
squares (OLS) regression and path analysis, the statistical
assumptions underlying these procedures merit attention
(Berry, 1993; Bohrnstedt & Carter, 1971; J. Cohen, Cohen,
West, & Aiken, 2003; Kenny, 1979; Pedhazur, 1997). These
assumptions are summarized as follows: (a) Variables are
measured without error; (b) measures are at the interval level;
(c) residuals are normally distributed with zero mean and
constant variance; (d) residuals are uncorrelated with one an-
other and with the predictor variables in the equation in which
each residual appears; (e) relationships among variables are
unidirectional, thereby ruling out reciprocal relationships and
feedback loops; (f) relationships among variables are additive
and linear. Our framework adopts the first five assumptions,
and we later discuss how the framework can be adapted when
these assumptions are violated. The additivity assumption,
which states that the dependent variable is an additive function
of the predictor variables, is violated when predictor variables
interact (J. Cohen et al., 2003). This violation is addressed by
introducing product terms into the regression equation, as in
Equation 1. Regression equations with product terms are non-
additive with respect to variables but are additive with respect
to parameters (Berry, 1993; Neter, Wasserman, & Kutner,
1989) and therefore can be estimated with OLS regression. The
regression equations that constitute our framework involve
linear relationships, thereby incorporating the linearity as-

sumption, and we later discuss how the framework can be
modified to accommodate nonlinear relationships.

Finally, a fundamental assumption underlying our frame-
work is that the causal relationships among variables are
correctly specified. If an important relationship is omitted or
the functional form of a relationship is not properly repre-
sented, the estimates produced by our framework can be
biased. Like any application of regression analysis or path
analysis, our framework does not itself generate evidence
that establishes causality. Rather, it yields estimates of
relationships among variables under the assumption that the
causal structure of these relationships is correctly specified
(Bohrnstedt & Carter, 1971; Duncan, 1975; Heise, 1969).
This assumption is based on theory and research design and
must be made prior to data analysis, given that the causal
structure of a model dictates the equations and parameters
that should be estimated (Duncan, 1975; Pedhazur, 1997).
Conditions for establishing causality have been discussed
extensively (Holland, 1986, 1988; Little & Rubin, 2000;
Marini & Singer, 1988; Pearl, 2000; Rubin, 1974, 1978;
Shadish, Cook, & Campbell, 2002; Sobel, 1996; West,
Biesanz, & Pitts, 2000) and have implications for interpret-
ing results from our framework. We return to these issues at
the conclusion of this article.

Basic Mediated Model

The point of departure for our general framework is the
basic mediated model shown in Figure 1A. As noted earlier,
this model depicts a direct effect of X on Y and an indirect
effect of X on Y mediated by M. The direct and indirect
effects of X on Y can be integrated into a single equation by
substituting Equation 3 into Equation 4, which yields

Y � b04 � bX4X � bM4�a03 � aX3X � eM3� � eY4

� b04 � bX4X � a03bM4 � aX3bM4X � bM4eM3 � eY4

� b04 � a03bM4 � �bX4 � aX3bM4�X � eY4 � bM4eM3. (7)

Equation 7 is a reduced form equation, which refers to an
equation in which the terms on the right side are exclusively
exogenous variables (Johnston, 1984). The compound coeffi-
cient for X is the sum of the direct effect bX4 and the indirect
effect aX3bM4, which together capture the total effect of X on Y.
Our framework builds on the basic mediated model by adding
product terms involving Z to Equations 3 and 4 and deriving
reduced form equations that show how Z influences the paths
linking X, M, and Y and their associated indirect and total
effects. We begin with models in which Z moderates either or
both of the paths that constitute the indirect effect of X on Y
transmitted through M. We highlight these models because
they subsume both mediated moderation and moderated me-
diation. We then consider models in which Z also moderates
the direct effect of X on Y, culminating with a model in which
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all three paths that form the indirect and direct effects of X on
Y are moderated by Z.

First Stage Moderation Model

The initial moderated model we consider is shown in
Figure 1B and incorporates Z as a moderator of the path
from X to M.2 We call this first stage moderation because
the moderating effect applies to the first stage of the indirect
effect of X on Y. The regression equation for Y is provided
by Equation 4, the same as that for the basic mediated
model. The regression equation for M is given by Equation
5, which is typically used to evaluate the second condition
of the moderated causal steps approach. Substituting Equa-
tion 5 into Equation 4 gives the reduced form equation for
Y for the first stage moderation model:

Y � b04 � bX4X � bM4�a05 � aX5X � aZ5Z � aXZ5XZ � eM5� � eY4

� b04 � bX4X � a05bM4 � aX5bM4X � aZ5bM4Z � aXZ5bM4XZ

� bM4eM5 � eY4

� b04 � a05bM4 � �bX4 � aX5bM4�X � aZ5bM4Z � aXZ5bM4XZ

� eY4 � bM4eM5. (8)

Comparing Equation 8 with Equation 7 shows that the
reduced form equation for the first stage moderation model
adds Z and XZ as predictors of Y. The implications of these
additional predictors can be seen by rewriting Equation 8 in
terms of simple paths, which are analogous to simple slopes
in moderated regression analysis (Aiken & West, 1991):

Y � b04 � a05bM4 � aZ5bM4Z � �bX4 � aX5bM4 � aXZ5bM4Z�X

� eY4 � bM4eM5

� �b04 � �a05 � aZ5Z�bM4� � �bX4 � �aX5 � aXZ5Z�bM4�X

� eY4 � bM4eM5. (9)

Whereas Equation 7 captures the indirect effect of X on Y as
aX3bM4, Equation 9 represents the indirect effect with the
compound term (aX5 � aXZ5Z)bM4. In this manner, Equation
9 shows that the path linking X to M, which is the first stage
of the indirect effect of X on Y, varies as a function of Z. In
contrast, the direct effect of X on Y, represented by bX4, is
unaffected by Z. Equation 9 also shows that the intercept
varies as a function of Z because of the contribution of aZ5Z.
Selected values of Z can be substituted into Equation 9 to
recover simple paths and effects that vary according to the
level of Z. The use of these paths with the intercept from
Equation 9 allows the simple paths and effects to be plotted
to reveal the form of the moderating effect of Z.

Second Stage Moderation Model

In the second stage moderation model, Z moderates the
path from M to Y, as illustrated in Figure 1C. The regression

equation for M is provided by Equation 3, whereas the
regression equation for Y is as follows:

Y � b010 � bX10X � bM10M � bZ10Z

� bMZ10MZ � eY10. (10)

Equation 10 contains Z and MZ to represent the moderating
effect of Z on the effect of M on Y. Substituting Equation 3
into Equation 10 yields the reduced form equation for Y
associated with the second stage moderation model:

Y � b010 � bX10X � bM10�a03 � aX3X � eM3�

� bZ10Z � bMZ10�a03 � aX3X � eM3�Z � eY10

� b010 � bX10X � a03bM10 � aX3bM10X � bM10eM3 � bZ10Z

� a03bMZ10Z � aX3bMZ10XZ � bMZ10ZeM3 � eY10

� b010 � a03bM10 � �bX10 � aX3bM10�X � �bZ10 � a03bMZ10�Z

� aX3bMZ10XZ � eY10 � bM10eM3 � bMZ10ZeM3. (11)

Like the reduced form equation for the first stage moderation
model (i.e., Equation 8), the reduced form equation for the
second stage moderation model includes Z and XZ as predic-
tors. However, the coefficients on these terms differ across the
two equations. The implications of these differences can be
seen by rewriting Equation 11 in terms of simple paths:

Y � b010 � a03bM10 � �bZ10 � a03bMZ10�Z

� �bX10 � aX3bM10 � aX3bMZ10Z�X

� eY10 � bM10eM3 � bMZ10ZeM3

� �b010 � bZ10Z � a03�bM10 � bMZ10Z��

� �bX10 � aX3�bM10 � bMZ10Z��X

� eY10 � bM10eM3 � bMZ10ZeM3. (12)

Comparing Equation 12 with Equation 9 shows that,
whereas the first stage moderation model captures the indi-
rect effect of X on Z as (aX5 � aXZ5Z)bM4, the second stage

2 In this article, we depict the moderating effects of Z as arrows
from Z to the paths from X to M, M to Y, and X to Y. This approach
to depicting moderation captures the notion that Z influences the
magnitude of the relationship between the other variables in the
model, which is consistent with how moderation is defined (Aiken
& West, 1991). We should note, however, that moderation is
symmetric, such that either of the variables involved in a two-way
interaction can be cast as the moderator variable. For instance, if Z
moderates the relationship between X and M, then it can also be
said that X moderates the relationship between Z and M. Desig-
nating X or Z as the moderator variable is a matter of framing, and
the relevant statistical procedures are the same regardless of
whether X or Z is framed as the moderator variable. For the
purposes of the framework developed here, we frame Z as the
moderator variable.
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moderation model depicts this effect as aX3(bM10 � bMZ10Z).
As such, the portion of the indirect effect involving the path
from M to Y varies as a function of Z. As before, the direct
effect of X on Y (i.e., bX4 in Equation 9, bX10 in Equation 12)
does not vary as a function of Z. The intercept of the
reduced form equation is also affected by Z, as evidenced by
the terms bZ10Z and bMZ10Z in Equation 12. By substituting
values of Z into Equation 12, simple paths and effects can be
derived and plotted to determine the form of the moderating
effect of Z.

First and Second Stage Moderation Model

A model that combines first stage and second stage mod-
eration is shown in Figure 1D. The regression equations for
this model are Equation 5 for M and Equation 10 for Y.
Substituting Equation 5 into Equation 10 yields the follow-
ing reduced form equation:

Y � b010 � bX10X � bM10�a05 � aX5X � aZ5Z � aXZ5XZ � eM5� � bZ10Z

� bMZ10�a05 � aX5X � aZ5Z � aXZ5XZ � eM5�Z � eY10

� b010 � bX10X � a05bM10 � aX5bM10X � aZ5bM10Z � aXZ5bM10XZ

� bM10eM5 � bZ10Z � a05bMZ10Z � aX5bMZ10XZ � aZ5bMZ10Z
2

� aXZ5bMZ10XZ 2 � bMZ10ZeM5 � eY10

� b010 � a05bM10 � �bX10 � aX5bM10�X � �bZ10 � aZ5bM10 � a05bMZ10�Z

� aZ5bMZ10Z
2 � �aXZ5bM10 � aX5bMZ10�XZ � aXZ5bMZ10XZ 2

� eY10 � bM10eM5 � bMZ10ZeM5. (13)

Unlike the reduced form equations for the first stage mod-
eration model and the second stage moderation model, the
reduced form equation for the first and second stage mod-
eration model includes Z2 and XZ2 as predictors. These
additional terms indicate that the moderating effect of Z on
the relationship between X and Y varies as a function of Z
itself. This point is revealed by rewriting Equation 13 as
follows:

Y � b010 � a05bM10 � �bX10 � aX5bM10�X

� �bZ10 � aZ5bM10 � a05bMZ10 � aZ5bMZ10Z�Z

� �aXZ5bM10 � aX5bMZ10 � aXZ5bMZ10Z�XZ

� eY10 � bM10eM5 � bMZ10ZeM5. (14)

Equation 14 shows that the coefficient on the interaction
term XZ is the compound expression (aXZ5bM10 �
aX5bMZ10 � aXZ5bMZ10Z). Hence, the magnitude of the in-
teraction effect is influenced by the level of Z, as indicated
by the term aXZ5bMZ10Z. In contrast, the coefficient on XZ is

aXZ5bM4 for the first stage moderation model and aX3bMZ10

for the second stage moderation model. For these two mod-
els, the interaction effect does not vary according to the
level of Z.

The nature of the moderating effect of Z in the first and
second stage moderation model is further clarified by re-
writing Equation 14 in terms of simple paths, which yields
the following:

Y � �b010 � a05bM10 � �bZ10 � aZ5bM10 � a05bMZ10�Z � aZ5bMZ10Z
2�

� �bX10 � aX5bM10 � �aXZ5bM10 � aX5bMZ10�Z � aXZ5bMZ10Z
2�X

� eY10 � bM10eM5 � bMZ10ZeM5

� �b010 � bZ10Z � �a05 � aZ5Z��bM10 � bMZ10Z��

� �bX10 � �aX5 � aXZ5Z��bM10 � bMZ10Z��X

� eY10 � bM10eM5 � bMZ10ZeM5. (15)

Equation 15 shows that Z affects both of the paths that
constitute the indirect effect of X on Y, which is represented
by the compound term (aX5 � aXZ5Z)(bM10 � bMZ10Z). As
with the previous two models, the direct effect of X on Y,
which is represented by bX10, is unaffected by Z. The
intercept of the reduced form equation is again influenced
by Z, as shown by the terms bZ10Z, aZ5Z, and bMZ10Z in
Equation 15. Substituting values of Z into Equation 15
produces simple paths and effects that show the form of the
moderating effect associated with Z.

Direct Effect Moderation Model

We now demonstrate how Z can be incorporated as a
moderator of the direct effect of X on Z, laying the founda-
tion for models that combine moderation of direct and
indirect effects. Applying moderation to the direct effect of
the basic mediated model yields the direct effect moderation
model shown in Figure 1E. The regression equation for M is
Equation 3, and the regression Equation for Y is Equation 6,
which is typically used to assess the third and fourth con-
ditions of the moderated causal steps approach. Substituting
Equation 3 into Equation 6 gives the following reduced
form equation:

Y � b06 � bX6X � bZ6Z

� bXZ6XZ � bM6�a03 � aX3X � eM3� � eY6

� b06 � bX6X � bZ6Z � bXZ6XZ

� a03bM6 � aX3bM6X � bM6eM3 � eY6

� b06 � a03bM6 � �bX6 � aX3bM6�X

� bZ6Z � bXZ6XZ � eY6 � bM6eM3. (16)

In Equation 16, the coefficient on XZ is simply bXZ6, as
opposed to the compound coefficients that result when Z
moderates either or both stages of the indirect effect. Re-
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writing Equation 16 in terms of simple paths yields the
following:

Y � b06 � a03bM6 � bZ6Z � �bX6 � aX3bM6 � bXZ6Z�X

� eY6 � bM6eM3

� �b06 � bZ6Z � a03bM6� � ��bX6 � bXZ6Z� � aX3bM6�X

� eY6 � bM6eM3. (17)

Equation 17 shows that the direct effect of X on Y, repre-
sented by (bX6 � bXZ6Z), varies across levels of Z, whereas
the indirect effect captured by aX3bM6 does not depend on Z.
Equation 17 also shows that the intercept is influenced by Z
due to the term bZ6Z.

First Stage and Direct Effect Moderation Model

We now add direct effect moderation to models in which
the indirect effect is moderated. We start by adding direct
effect moderation to the first stage moderation model, yield-
ing the first stage and direct effect moderation model in
Figure 1F. For this model, the equations for M and Y are
Equation 5 and Equation 6, respectively. Substituting Equa-
tion 5 into Equation 6 produces the following reduced form
equation:

Y � b06 � bX6X � bZ6Z � bXZ6XZ

� bM6�a05 � aX5X � aZ5Z � aXZ5XZ � eM5� � eY6

� b06 � bX6X � bZ6Z � bXZ6XZ

� a05bM6 � aX5bM6X � aZ5bM6Z � aXZ5bM6XZ

� eY6 � bM6eM5

� b06 � a05bM6 � �bX6 � aX5bM6�X � �bZ6 � aZ5bM6�Z

� �bXZ6 � aXZ5bM6�XZ � eY6 � bM6eM5. (18)

As with the previous models, the moderating effect of Z for the
first stage and direct effect moderation model can be clarified
by rewriting Equation 18 in terms of simple paths:

Y � b06 � a05bM6 � �bZ6 � aZ5bM6�Z

� ��bX6 � aX5bM6� � �bXZ6 � aXZ5bM6�Z�X

� eY6 � bM6eM5

Y � �b06 � bZ6Z � �a05 � aZ5Z�bM6�

� ��bX6 � bXZ6Z� � �aX5 � aXZ5Z�bM6�X

� eY6 � bM6eM5. (19)

Like Equation 9 for the first stage moderation model, Equa-
tion 19 indicates that the first stage of the indirect effect of

X on Y varies as a function of Z, as captured by the term
(aX5 � aXZ5Z)bM6. However, Equation 19 shows that the
direct effect of X on Y also depends on Z, due to the term
(bX6 � bXZ6Z). The intercept in Equation 19 is also affected
by Z, as reflected by the terms bZ6Z and aZ5Z.

Second Stage and Direct Effect Moderation Model

Combing direct effect moderation with second stage mod-
eration yields the second stage and direct effect moderation
model in Figure 1G. For this model, the regression equation
for M is Equation 3, and the regression equation for Y is the
following:

Y � b020 � bX20X � bM20M � bZ20Z

� bXZ20XZ � bMZ20MZ � eY20. (20)

Equation 20 contains both XZ and MZ, thereby capturing the
moderating effects of Z on the relationships of X and M with
Y. Substituting Equation 3 into Equation 20 gives the re-
duced form equation:

Y � b020 � bX20X � bM20�a03 � aX3X � eM3� � bZ20Z

� bXZ20XZ � bMZ20�a03 � aX3X � eM3�Z � eY20

� b020 � bX20X � a03bM20 � aX3bM20X � bM20eM3 � bZ20Z

� bXZ20XZ � a03bM20Z � aX3bMZ20XZ � bMZ20ZeM3 � eY20

� b020 � a03bM20 � �bX20 � aX3bM20�X � �bZ20 � a03bMZ20�Z

� (bXZ20 � aX3bMZ20)XZ � eY20 � bM20eM3 � bMZ20ZeM3.

(21)

As before, the moderating effect of Z is highlighted by
rewriting Equation 21 in terms of simple paths:

Y � b020 � a03bM20 � �bZ20 � a03bMZ20�Z

� ��bX20 � aX3bM20� � �bXZ20 � aX3bMZ20�Z�X

� eY20 � bM20eM3 � bMZ20ZeM3

� �b020 � bZ20Z � a03�bM20 � bMZ20Z��

� ��bX20 � bXZ20Z� � aX3�bM20 � bMZ20Z��X

� eY20 � bM20eM3 � bMZ20ZeM3. (22)

As with Equation 12 for the second stage moderation
model, Equation 22 shows that the second stage of the
indirect effect of X on Y depends on Z, as indicated by the
term aX3(bM20 � bMZ20Z). However, Equation 22 adds
moderation of the direct effect of X on Y, as captured by
the term (bX20 � bXZ20Z). The intercept in Equation 22
also varies across levels of Z because of the terms bZ20Z
and bMZ20Z.
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Total Effect Moderation Model

Finally, the model in Figure 1H combines moderation of
the first and second stages of the indirect effect with mod-
eration of the direct effect. We call this model the total
effect moderation model, given that a total effect represents
the combination of direct and indirect effects (Alwin &
Hauser, 1975). For the total effect moderation model, the
regression equation for M is provided by Equation 5, and the
regression equation for Y is Equation 20. Substituting Equa-
tion 5 into Equation 20 gives the reduced form equation for
the total effect moderation model:

Y � b020 � bX20X � bM20�a05 � aX5X � aZ5Z � aXZ5ZX � eM5� � bZ20Z

� bXZ20XZ � bMZ20�a05 � aX5X � aZ5Z � aXZ5XZ � eM5�Z � eY20

� b020 � bX20X � a05bM20 � aX5bM20X � aZ5bM20Z � aXZ5bM20XZ

� bM20eM5 � bZ20Z � bXZ20XZ � a05bMZ20Z � aX5bMZ20XZ

� aZ5bMZ20Z
2 � aXZ5bMZ20XZ 2 � bMZ20ZeM5 � eY20

� b020 � a05bM20 � �bX20 � aX5bM20�X � �bZ20 � aZ5bM20 � a05bMZ20�Z

� aZ5bMZ20Z
2 � �bXZ20 � aXZ5bM20 � aX5bMZ20�XZ � aXZ5bMZ20XZ 2

� eY20 � bM20eM5 � bMZ20ZeM5. (23)

Like the reduced form equation for the first and second
stage moderation model, the reduced form equation for
the total effect moderation model contains Z 2 and XZ 2,
such that the moderating effect of Z on the relationship
between X and Y depends on the level of Z. This can be
seen by expressing Equation 23 in a form similar to
Equation 14:

Y � b020 � a05bM20 � �bX20 � aX5bM20�X

� �bZ20 � aZ5bM20 � a05bMZ20 � aZ5bMZ20Z�Z

� �bXZ20 � aXZ5bM20 � aX5bMZ20 � aXZ5bMZ20Z�XZ

� eY20 � bM20eM5 � bMZ20ZeM5. (24)

Like Equation 14, Equation 24 shows that the coefficient on
the interaction term XZ depends on the level of Z, as
reflected by the term aXZ5bMZ20Z.

The moderating effects of Z embodied by the total effect
moderation model can be seen by rewriting Equation 24 in
terms of simple paths, as follows:

Y � �b020 � a05bM20 � �bZ20 � aZ5bM20 � a05bMZ20�Z � aZ5bMZ20Z
2�

� �bX20 � aX5bM20 � �bXZ20 � aXZ5bM20 � aX5bMZ20�Z

� aXZ5bMZ20Z
2�X � eY20 � bM20eM5 � bMZ20ZeM5

� �b020 � bZ20Z � �a05 � aZ5Z��bM20 � bMZ20Z�� � ��bX20

� bXZ20Z� � �aX5 � aXZ5Z��bM20 � bMZ20Z��X � eY20

� bM20eM5 � bMZ20ZeM5. (25)

Equation 25 shows that Z affects the two paths that consti-

tute the indirect effect of X on Y, as indicated by the term
(aX5 � aXZ5Z)(bM20 � bMZ20Z), as well as the path repre-
senting the direct effect of X on Y, which corresponds to the
term (bX20 � bXZ20Z). The reduced form equation also
shows that Z affects the intercept through bZ20Z, aZ5Z, and
bMZ20Z. Hence, substituting values of Z into Equation 25
yields simple paths and effects that can be analyzed and
plotted to determine the form of the moderating effect of Z
on the direct, indirect, and total effects of X on Y, as we later
demonstrate.

Model Estimation and Interpretation

The equations for the models summarized above can be
estimated with OLS regression, and coefficients from the
equations can be tested with conventional procedures (J.
Cohen et al., 2003; Pedhazur, 1997). However, the re-
duced form equations contain products of regression co-
efficients, which must be tested with procedures that take
into account sampling distributions of products of ran-
dom variables. One procedure is based on methods for
deriving the variance of the product of two random
variables (Bohrnstedt & Goldberger, 1969; Goodman,
1960), of which the Sobel (1982) approach is perhaps the
best known (MacKinnon et al., 2002). With this proce-
dure, the product of two regression coefficients is divided
by the square root of its estimated variance, and the
resulting ratio is interpreted as a t statistic. Although this
procedure is useful, it relies on the assumption that the
sampling distribution of the product of two random vari-
ables is normal, given that the procedure uses only the
variance to represent the distribution of the product. This
assumption is tenuous because the distribution of a prod-
uct is nonnormal, even when the variables constituting
the product are normally distributed (Anderson, 1984).

The foregoing assumption can be relaxed with the boot-
strap (Efron & Tibshirani, 1993; Mooney & Duval, 1993;
Stine, 1989). The bootstrap generates a sampling distribu-
tion of the product of two regression coefficients by repeat-
edly estimating the coefficients with bootstrap samples,
each of which contains N cases randomly sampled with
replacement from the original sample, in which N is the size
of the original sample. Coefficient estimates from each
bootstrap sample are used to compute the product, and these
products are rank ordered to locate percentile values that
bound the desired confidence interval (e.g., the 2.5 and 97.5
percentiles for a 95% confidence interval). Confidence in-
tervals constructed in this manner should be adjusted for
any difference between the product from the full sample and
the median of the products estimated from the bootstrap
samples, yielding a bias-corrected confidence interval
(Efron & Tibshirani, 1993; Mooney & Duval, 1993; Stine,
1989). When constructing confidence intervals, a minimum
of 1,000 bootstrap samples should be used to accurately
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locate the upper and lower bounds of the 95% confidence
interval (Efron & Tibshirani, 1993; Mooney & Duval,
1993). The bootstrap has been used to test indirect effects in
mediated models (MacKinnon, Lockwood, & Williams,
2004; Shrout & Bolger, 2002) and can be extended to
models that combine mediation and moderation, as we later
illustrate.

As noted earlier, simple effects can be computed by
substituting selected values of Z into the reduced form
equations. When Z is a continuous variable, we recom-
mend the use of values that are substantively or practi-
cally meaningful (e.g., a clinical cutpoint). If such values
cannot be identified, we suggest the use of representative
scores in the distribution of Z, such as one standard
deviation above and below its mean (Aiken & West,
1991). When Z is a categorical variable, scores used to
code Z should be used to obtain simple effects for each
category. Simple effects represented by single paths can
be tested with procedures for simple slopes (Aiken &
West, 1991), and simple effects that involve products of
paths, such as simple indirect and total effects, can be
tested with confidence intervals derived from the boot-
strap. The form of the moderating effects of Z can be
further clarified by plotting simple paths and simple
effects for the selected values of Z.

Empirical Example

Sample and Measures

The following example uses data from 1,307 respondents
who were surveyed on work and family issues (Edwards &
Rothbard, 1999; Kossek, Colquitt, & Noe, 2001). Of the
respondents (age: M � 39 years), most were women (66%),
Caucasian (86%), married (66%), and had completed an
undergraduate program (66%). Respondents held various
jobs ranging from clerical and blue collar positions to pro-
fessional, medical, administrative, and faculty positions.

We examine a mediated model in which feedback from
family members is posited to influence commitment to
family both directly and indirectly through satisfaction with
family. These effects are moderated by either gender or
family centrality to demonstrate the use of categorical and
continuous moderator variables, respectively. Feedback was
measured with five items that described reactions to perfor-
mance of the family role (e.g., My family thinks what I do at
home is outstanding). Satisfaction with family was mea-
sured with three items that described positive feelings to-
ward the family (e.g., In general, I am satisfied with my
family life). Commitment was measured with eight items
that described psychological attachment to the family (e.g.,
I feel a great sense of commitment to my family). Family
centrality was assessed with six items that described the
importance of family to life as a whole (e.g., The most

important things that happen in life involve family). All
items used 7-point response scales in which higher scores
represented greater endorsement of the item (1 � strongly
disagree, 7 � strongly agree). Prior to analysis, all contin-
uous measures were mean centered, whereas gender was
coded 0 for men and 1 for women (Aiken & West, 1991).3

Analyses

For illustration, we analyzed the total effect moderation
model, the most general of the eight models shown in Figure
1. This model is represented by Equations 5 and 20, which
were estimated using SPSS (Version 14.0; 2005, SPSS
Inc.). The regression module was used to estimate coeffi-
cients for the full sample, and the constrained nonlinear
regression (CNLR) module was used to estimate coeffi-
cients from 1,000 bootstrap samples. Unlike the regression
module, the CNLR module contains an algorithm that draws
bootstrap samples, estimates regression coefficients for each
sample, and writes the coefficients to an output file. We
used the default loss function of the CNLR module, which
minimizes the sum of squared residuals, thereby producing
OLS coefficient estimates.

Individual coefficients from Equations 5 and 20 were
tested using the standard errors reported by the regression
module. Expressions that contained products of coefficients,
such as indirect and total effects, were tested with bias-
corrected confidence intervals based on the bootstrap coef-
ficient estimates generated by the CNLR module. These
confidence intervals were constructed by opening the SPSS
output files, resaving them as Microsoft Excel files, and
opening these files with Excel 2003. Using Equation 25,
formulas were written into the Excel file to compute simple
paths, indirect effects, and total effects at selected levels of
the moderator variables (0 and 1 for gender, one standard
deviation above and below the mean for centrality). These
formulas were applied to coefficient estimates from each
bootstrap sample, producing 1,000 estimates of each simple
path, indirect effect, and total effect. Additional formulas

3 As an alternative to dummy coding, researchers could use
effect coding or contrast coding when independent or moderator
variables are nominal or ordinal. For instance, if a moderator
variable represents two experimental groups of equal size, then
assigning effect codes of �0.5 and 0.5 to Z will produce coeffi-
cients on X and M that represent average effects of these variables.
Simple paths could be recovered by substituting �0.5 and 0.5 into
the equations for the model being tested. This and other coding
options for nominal and ordinal variables are discussed by West,
Aiken, and Krull (1996). Regardless of the coding method used, it
should be emphasized that, when a regression equation contains
product terms, the coefficients on the variables that constitute the
product represent conditional effects, such that the coefficient on
each variable represents the effect of that variable when the other
variable in the product equals zero (Aiken & West, 1991).
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were used to compute differences between each path and
effect across levels of the moderator variable, which were
also applied to the 1,000 bootstrap estimates. The Excel
percentile function was used to locate the 2.5 and 97.5
percentiles of the paths and effects computed from the
bootstrap estimates, establishing the bounds of the 95%
confidence interval. These bounds were adjusted with
formulas reported by Stine (1989, p. 277), which were
also written into the Excel file, to obtain bias-corrected
confidence intervals. These confidence intervals were
used to test indirect effects, total effects, and differences
in these effects across levels of the moderator variables
such that, if the 95% confidence interval excluded 0, the
quantity being tested was declared statistically signifi-
cant. A sample of the SPSS regression and CNLR syntax
used to produce regression and bootstrap estimates is
provided in the Appendix, and all SPSS and Excel files
are available online at http//:dx.doi.org/10.1037/1082-
989X.12.1.1.supp

Regression results are reported in Table 1, and simple
effects are given in Table 2, including effects that represent
the three paths of the basic mediated model as well as the
indirect and total effects of the model. Models depicting
simple paths are shown in Figure 2, and plots of simple
effects are given in Figure 3 and Figure 4. Plots of the first
stage of the indirect effect used (a05 � aZ5Z) as the intercept
and (aX5 � aXZ5Z) as the slope (Aiken & West, 1991). For
the second stage, the intercept and slope were derived by
rewriting Equation 20 as follows:

Y � �b020 � bZ20Z � �bX20 � bXZ20Z�X�

� �bM20 � bMZ20Z�M � eY20. (26)

Equation 26 shows that the slope relating M to Y is (bM20 �
bMZ20Z), which matches the second stage of the indirect
effect in Equation 25. Equation 26 also indicates that the
intercept of the function relating M to Y, represented by the
compound term [b020 � bZ20Z � (bX20 � bXZ20Z)X], de-
pends on the level of X. For plotting purposes, we suggest
the use of the mean of X to compute the intercept. When X

is mean-centered, as in the present illustration, the mean of
X equals 0, and the intercept simplifies to (b020 � bZ20Z).
Plots for the direct, indirect, and total effects were based on
Equation 25, which expresses the direct effect as (bX20 �
bXZ20Z), the indirect effect as (aX5 � aXZ5Z)(bM20 �
bMZ20Z), and the total effect as [(bX20 � bXZ20Z) � (aX5 �
aXZ5Z)(bM20 � bMZ20Z)]. These expressions were used as
the slopes for each effect. All three effects shared the
common intercept of [b020 � bZ20Z � (a05 � aZ5Z)(bM20 �
bMZ20Z)], which equals the expected value of Y when X
equals 0 for each effect. For display purposes, the axes for
each figure were converted back to their original (i.e., un-
centered) scales, which facilitates interpretation but does
not alter the form of the plotted interaction (Aiken & West,
1991, p. 15).

Table 1
Coefficient Estimates

Moderator
variable aX5 aZ5 aXZ5 R2 bX20 bM20 bZ20 bXZ20 bMZ20 R2

Gender 0.81** �0.05 �0.14** 0.45** 0.28** 0.31** 0.06 �0.13** �0.01 0.42**

Centrality 0.65** 0.17** �0.05* 0.46** 0.12** 0.22** 0.33** �0.05** �0.09** 0.57**

Note. N � 1,307. Entries under columns labeled aX5, aZ5, and aXZ5 are unstandardized coefficient estimates from Equation 5, which uses satisfaction as
the dependent variable. Entries under columns labeled bX20, bM20, bZ20, bXZ20, and bMZ20 are unstandardized coefficient estimates from Equation 20, which
uses commitment as the dependent variable. Coefficients in the first row are from equations that use gender as the moderator variable, and coefficients in
the second row are from equations that use centrality as the moderator variable.
* p � .05. ** p � .01.

Table 2
Analysis of Simple Effects

Moderator
variable

Stage Effect

First Second Direct Indirect Total

Gender
Men 0.81** 0.31** 0.28** 0.25** 0.53**

Women 0.67** 0.30** 0.15** 0.20** 0.35**

Differences 0.14** 0.01 0.13** 0.05 0.18**

Centrality
Low 0.70** 0.30** 0.17** 0.21** 0.38**

High 0.60** 0.14** 0.07** 0.08** 0.15**

Differences 0.10* 0.16** 0.10** 0.13** 0.23**

Note. N � 1,307. For rows labeled men, women, low, and high, table
entries are simple effects computed from Equation 25 using coefficient
estimates from Table 1. Zs � 0 and 1 for men and women, respectively;
Z � �0.91 and 0.91 for low and high centrality, respectively (i.e., one
standard deviation above and below the mean of the centered centrality
variable). For gender, differences in simple effects were computed by
subtracting the effects for women from the effects for men. For centrality,
differences in simple effects were computed by subtracting the effects for
high centrality from the effects for low centrality. Tests of differences for
the first stage, second stage, and direct effect are equivalent to tests of aXZ5,
bMZ20, and bXZ20, respectively, as reported in Table 1. Tests of differences
for the indirect and total effect were based on bias-corrected confidence
intervals derived from bootstrap estimates.
* p � .05. ** p � .01.
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Results for Gender Moderation

We first consider results for gender as the moderator
variable. Coefficient estimates in Table 1 show that gender
moderated the path from feedback to satisfaction (aXZ5 �
�0.14, p � .01), the path from feedback to commitment
(bXZ20 � �0.13, p � .01), but not the path from satisfaction
to commitment (bMZ20 � �0.01, p 	 .05). Equation 25 was
applied to coefficients in Table 1 to compute simple effects,
as reported in Table 2 and portrayed in Figures 2A and 2B.
For men, Z � 0, and the first stage, second stage, and direct
effect reduce to aX5, bM20, and bX20, respectively, which
equal 0.81, 0.31, and 0.28. The indirect effect for men
equals the product of the first and second stages, or 0.81 

0.31 � 0.25, and the total effect equals the sum of the direct
and indirect effects, or 0.28 � 0.25 � 0.53. For women,
Z � 1, such that the first stage of the indirect effect becomes
aX5 � aXZ5 � 0.81 � 0.14 � 0.67, the second stage becomes
bM20 � bMZ20 � 0.31 � 0.01 � .030, and the direct effect
becomes bX20 � bXZ20 � 0.28 � 0.13 � 0.15. As for men,
the indirect effect for women equals the product of the first
and second stages, or 0.67 
 0.30 � 0.20, and the total
effect is the sum of the direct and indirect effects, or 0.15 �
0.20 � 0.35. Comparing these effects for men and women
shows that the first stage of the indirect effect was stronger
for men (0.81 � 0.67 � 0.14, p � .01), whereas the second
stage did not differ for men and women (0.31 � 0.30 �
0.01, p 	 .05). When multiplied, the first and second stages
did not produce a significant difference in the indirect effect
for men and women (0.25 � 0.20 � 0.05, p 	 .05).

However, the direct effect was stronger for men than for
women (0.28 � 0.15 � 0.13, p � .01) and, when combined
with the indirect effect, produced a larger total effect for
men (0.53 � 0.35 � 0.18, p � .01).

Differences in these effects are depicted as simple slopes in
Figures 3A through 3E. As seen by comparing Figures 3A and
3C, the moderating effect of gender on the first stage was not
sufficient to produce a meaningful difference in slopes for the
indirect effect because of the absence of a moderating effect of
gender on the second stage indicated by Figure 3B. Comparing
Figures 3C and 3D further shows that the difference in slopes
for the direct effect was the primary reason for the difference
in slopes for the total effect in Figure 3E. Thus, gender mod-
erated the direct effect of feedback on commitment and the first
stage of the indirect effect of feedback on commitment medi-
ated by satisfaction, and these differences were sufficient to
produce a larger total effect for men.

Results for Centrality Moderation

For centrality as the moderator variable, coefficient esti-
mates in Table 1 show that centrality moderated the path
from feedback to satisfaction (aXZ5 � �0.05, p � .05), the
path from satisfaction to commitment (bMZ20 � �0.09, p �
.01), and the feedback to commitment (bXZ20 � �0.05, p �
.01). Coefficients in Table 1 were again used to compute
simple effects, which are reported in Table 2 and depicted in
Figures 2C and 2D. For low centrality (i.e., one standard

(text continues on page 17)

Figure 2. Mediated models showing simple effects for men and women and for low and high
centrality. For each model, X represents feedback, M signifies satisfaction, and Y indicates com-
mitment. Coefficients in boldface were significantly different (p � .05) across levels of the
moderator variable (i.e., gender for Panels A and B, centrality for Panels C and D). Panels A and
B show that gender moderated the paths from feedback to satisfaction and satisfaction to commit-
ment, both of which were larger for men than for women. Panels C and D indicate that centrality
moderated all three paths relating feedback, satisfaction, and commitment, which were larger when
centrality was low than when it was high.
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Figure 3. Plots of simple paths and effects with gender as the moderator variable. In Panel A, the slope
of the first stage of the mediated effect is steeper for men than for women. However, as seen in Panels
B and C, the slopes of the second stage and indirect effect, respectively, do not differ for men and women. In
contrast, Panel D depicts a steeper slope of the direct effect for men than for women. Finally, Panel E, which
combines the simple slopes in Panels C and D, shows that the total effect was steeper for men than for women.



Figure 4. Plots of simple paths and effects with centrality as the moderator variable. In Panels A
and B, the first and second stages, respectively, of the mediated effect had steeper slopes when
centrality was low rather than when it was high. Correspondingly, the indirect effect depicted in
Panel C was steeper for low centrality. The direct effect shown in Panel D was also steeper when
centrality was low. Finally, as would be expected, the total effect in Panel E, which combines the
indirect and direct effects, was steeper for low centrality than for high centrality.



deviation below the mean), Z � �0.91, such that the first
stage of the indirect effect (aX5 � aXZ5Z) equals 0.65 �
0.05(–0.91) � 0.70. The second stage of the indirect effect
(bM20 � bMZ20Z) equals 0.22 � 0.09(�0.91) � 0.30. Fi-
nally, the direct effect (bX20 � bXZ20Z) equals 0.12 �
0.05(�0.91) � 0.17. The indirect effect for low centrality
equals the product of the first and the second stages, or
0.70 
 0.30 � 0.21, and the total effect equals the sum of
the direct and indirect effects, or 0.17 � 0.21 � 0.38. For
high centrality (i.e., one standard deviation above the
mean), Z � 0.91, and the first stage of the indirect effect
equals 0.65 � 0.05(0.91) � 0.60, the second stage equals
0.22 � 0.09(0.91) � 0.14, and the direct effect is 0.12 �
0.05(0.91) � 0.07. The indirect effect equals the product of
the first and second stages, or 0.60 
 0.14 � 0.08, and the
total effect is the sum of the direct and indirect effects, or
0.07 � 0.08 � 0.15.

Differences in the effects for low and high centrality
indicate that the first stage of the indirect effect was stronger
for low centrality (0.70 � 0.60 � 0.10, p � .05) and,
similarly, the second stage of the indirect effect was also
stronger for low centrality (0.30 � 0.14 � 0.16, p � .01).
These differences contributed to a significantly stronger
indirect effect for low centrality (0.21 � 0.08 � 0.13, p �
.01). The direct effect was also stronger for low centrality
(0.17 � 0.07 � 0.10, p � .01) and, when added to the
indirect effect, produced a stronger total effect for low
centrality (0.38 � 0.15 � 0.23, p � .01).4

Figures 4A through 4E show differences in simple slopes
for low and high centrality. Figure 4A shows that, for the
first stage of the indirect effect, the relationship between
feedback and satisfaction was steeper for respondents who
reported low rather than high centrality, and high centrality
respondents reported higher satisfaction across all levels of
feedback. Similarly, as shown in Figure 4B, the relationship
between satisfaction and commitment was steeper for low
centrality respondents, and commitment was higher at all
levels of satisfaction for high centrality respondents. This
pattern held for the indirect, direct, and total effects in
Figures 4C, 4D, and 4E, respectively, each of which indi-
cated a steeper slope between feedback and commitment for
low centrality respondents and a higher intercept for high
centrality respondents. Hence, centrality moderated each
path of the mediated model relating feedback, satisfaction,
and commitment, such that the indirect and direct effects
relating feedback to commitment were stronger when cen-
trality was low, although commitment was higher at all
levels of feedback when centrality was high.

Discussion

This article presents a general framework for combining
moderation and mediation that integrates moderated regres-
sion analysis and path analysis. The framework can incor-

porate moderation into any combination of paths that con-
stitute a mediated model. The framework also translates
results from regression equations used to estimate model
parameters into expressions that show how individual paths
and their associated direct, indirect, and total effects vary
across levels of the moderator variable. Confidence inter-
vals and significance tests are provided for individual paths
and direct, indirect, and total effects, as well as comparisons
of paths and effects across levels of the moderator variable.
To facilitate interpretation, simple slopes for each path and
effect can be plotted to reveal the form of the moderating
effects. Thus, the framework presented here offers a
straightforward approach for analyzing models that com-
bine moderation and mediation, yielding detailed results for
individual paths of the model along with summary results
for the indirect and total effects indicated by the model.

The general framework presented here offers several ad-
vantages over current approaches used to combine moder-
ation and mediation. First, the framework pinpoints the
paths of a mediated model that are moderated and yields
statistical tests of moderation for each path. Second, the
framework clarifies the form of each moderating effect with
tests of simple paths and corresponding plots of simple
slopes. Third, the framework gives estimates of the indirect
effect transmitted through the mediator variable and shows
how this effect varies across levels of the moderator vari-
able. Fourth, the framework shows how moderation of
indirect and direct effects can be combined to assess mod-
eration of the total effect captured by the model.

Finally, our framework subsumes moderated mediation
and mediated moderation and clarifies how these terms
relate to one another. Specifically, when moderated media-
tion refers to a first-stage moderation model, moderated
mediation and mediated moderation are analytically equiv-
alent. In this case, we concur with Muller et al. (2005), who
concluded that moderated mediation and mediated moder-
ation are “two sides of the same coin” (p. 862). Unlike
Muller et al., however, we argue that interpreting a first-
stage moderation model in terms of moderated mediation or
mediated moderation is strictly a matter of conceptual fram-
ing. Muller et al. proposed that moderated mediation and
mediated moderation can be distinguished on the basis of

4 For continuous moderator variables such as centrality, it might
seem that tests of differences in effects, such as those reported in
Table 2, would depend on the scores used to represent low and
high values because the use of scores that are further apart will
produce larger differences in effects. However, increasing the gap
between the scores increases the standard error of the difference
between the effects, such that tests comparing effects at low and
high scores remain the same. This property holds for simple slopes
compared with conventional procedures (Aiken & West, 1991) as
well as effects compared with the confidence intervals derived
from the bootstrap.
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the change in the coefficient on XZ when M and MZ are
added to a regression equation that uses Y as the dependent
variable and X, Z, and XZ as predictors. According to Muller
et al. (2005), an increase in the coefficient on XZ signifies
moderated mediation, whereas a decrease indicates medi-
ated moderation. However, Muller et al. further stated that
this pattern holds only for special cases of moderated me-
diation and mediated moderation. For instance, Muller et al.
indicated that an increase in the XZ coefficient represents
moderated mediation only when the total effect relating X to
Y is not moderated by Z, which means that moderation of
the indirect effect must be offset by opposing moderation of
the direct effect. Muller et al. also stated that a decrease in
the XZ coefficient signifies mediated moderation only when
the total effect of X on Y is moderated by Z, which precludes
cases in which moderation of the indirect effect is accom-
panied by opposing moderation of the direct effect. In
contrast, we assert that mediated moderation points to mod-
eration of the first stage of an indirect effect; moderated
mediation involves moderation of the first stage, the second
stage, or both stages of the indirect effect; and neither
mediated moderation nor moderated mediation stipulates
whether the direct effect is moderated. The partial overlap
between moderated mediation and mediated moderation
undermines attempts to distinguish them empirically. In-
stead, we recommend that researchers translate moderated
mediation and mediated moderation into moderated path
models, evaluate the models on the basis of their own
merits, and forgo attempts to determine whether results
support moderated mediation versus mediated moderation.

Although our framework has several advantages over
current approaches for combining moderation and media-
tion, it has several limitations that signify areas for further
development. One limitation is that we presented the frame-
work in its simplest terms, incorporating a single moderator
variable into the basic mediated model in Figure 1A. None-
theless, the logic underlying the framework can be extended
to more complex mediated models and multiple moderator
variables. For example, additional mediator variables can be
examined by using regression equations analogous to Equa-
tion 5 and by adding each mediator variable and its product
with Z to Equation 20. The resulting reduced form equation
will show how the indirect effect of the independent vari-
able through each mediator variable is influenced by the
moderator variable. Likewise, additional independent and
dependent variables can be examined by using Equations 5
and 20 as a foundation, and the resulting reduced form
equations will show how the individual paths and the direct,
indirect, and total effects of the model vary across levels of
the moderator variable. The framework can also be adapted
to include different moderators for each path or multiple
moderator variables for one or more paths, which can be
added to Equations 5 and 20 as appropriate. Thus, although
we have presented our framework in simple terms, the

principles upon which it is based can be applied to more
complex models.

Other limitations involve the assumptions underlying our
framework, which might not be satisfied in practice. For
instance, because it relies on regression analysis and path
analysis, our framework incorporates the assumption that
variables are measured without error. Violations of this
assumption can be addressed by using structural equation
modeling with latent variables, which takes measurement
error into account (Bollen, 1989; Jöreskog & Sörbom,
1996). The regression equations that underlie our frame-
work can be translated into structural equations in which X,
Y, M, and Z are replaced by their latent variable counter-
parts. If Z is a categorical variable, such as gender, moder-
ation can be analyzed by using the multiple groups proce-
dure (Jöreskog & Sörbom, 1996; Rigdon et al., 1998). This
procedure is similar to the subgroup approach discussed
earlier but includes tests of differences in parameters be-
tween subgroups as well as estimates of direct, indirect, and
total effects for each subgroup. If Z is continuous, then the
required analytical procedures are more involved because of
the complexities of estimating interactions with continuous
latent variables in structural equation modeling (Jöreskog &
Yang, 1996; Li et al., 1998; Marsh, Wen, & Hau, 2004;
Schumacker, & Marcoulides, 1998). Nonetheless, the basic
logic of our framework remains applicable.

Another assumption underlying our framework is that
variables are measured at the interval level. When the in-
dependent or moderator variables are ordinal or categorical,
dummy variables can be used in the regression equations
entailed by our framework (J. Cohen et al., 2003; Pedhazur,
1997), as illustrated by our example with gender as a
moderator variable. When the dependent variable is ordinal
or categorical, probit or logistic regression can be used
(Hosmer & Lemeshow, 2000; MacKinnon & Dwyer, 1993).
For an ordinal or categorical mediator variable, dummy
variables can be used when the mediator variable is a
predictor, as in Equation 20, and probit or logistic regres-
sion can be used when the mediator variable is an outcome,
as in Equation 5 (Goodman, 1979). Methods are available
for calculating direct, indirect, and total effects in path
models with ordinal and categorical variables (Winship &
Mare, 1984), and these methods can be extended to compute
effects at selected levels of moderator variables.

Our framework also assumes that residuals are normally
distributed with zero mean and constant variance and are
uncorrelated with one another and with the independent
variables in the equation where each residual appears. De-
viations from normality can be handled with the bootstrap,
and nonconstant variance signifies heteroscedasticity, which
can be addressed with generalized least squares (Kennedy,
1998) or weighted least squares (J. Cohen et al., 2003).
Methods for handling correlations among residuals and
between residuals and independent variables have been de-
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veloped (Bohrnstedt & Carter, 1971; J. Cohen et al., 2003;
James & Singh, 1978; Kennedy, 1998; Kenny, 1979; Ped-
hazur, 1997). In principle, these methods can be applied to
the framework presented here, although to our knowledge,
the performance of these methods for models that combine
moderation and mediation has not been extensively studied.

Path analysis and regression analysis also rest on the
assumption that relationships among variables are additive,
linear, and unidirectional. We previously explained how our
framework addresses violations of the additivity assumption
by using product terms that produce regression equations
that are nonadditive with respect to variables but additive
with respect to parameters (Berry, 1993; Neter et al., 1989).
Violations of the linearity assumption can be handled in a
similar manner, given that curvilinearity can be viewed as a
special case of moderation in which the effect of an inde-
pendent variable depends on the level of the independent
variable itself. On the basis of this logic, X can be substi-
tuted for Z in the equations that constitute our framework,
and reduced form equations can be used to identify the paths
of the model that are curvilinear functions of X. Simple
paths that capture the effects of X on Y at specified levels of
X can be computed by taking derivatives of the reduced
form equations with respect to X and substituting values of
X into the resulting expression (cf. Aiken & West, 1991).
When relationships are reciprocal, nonrecursive modeling
procedures can be extended to incorporate moderation
(Berry, 1984; Bollen, 1989; James & Singh, 1978; Jöreskog
& Sörbom, 1996; Kenny, 1979).

A final assumption underlying our framework is that the
causal structure of the model is correctly specified. We
make no claim that results from our framework prove that a
particular model is correct, given that models with alterna-
tive causal flows might fit the data equally well (Lee &
Hershberger, 1990; MacCallum, Wegener, Uchino, & Fab-
rigar, 1993). Moreover, the conditions that justify the causal
assumptions embedded in a model must be addressed before
the model is analyzed, given that the causal structure of the
model dictates the equations that should be estimated (Dun-
can, 1975; Pedhazur, 1997). One useful approach to evalu-
ate causality for models such as those in our framework has
been developed by Rubin and colleagues (Holland, 1986,
1988; Little & Rubin, 2000; Rubin, 1974, 1978) and has
been called the Rubin causal model (RCM). The RCM
defines a causal effect in counterfactual terms as the differ-
ence between scores on an outcome variable if an individual
had been observed at different levels of the predictor vari-
able. This definition is counterfactual in that an individual
cannot be observed at different levels on the predictor
variable at the same instant. Instead, each individual is
observed at one level of the predictor variable, and scores on
the outcome variable across individuals are compared to
infer the magnitude of the causal effect. Such inferences
rely on the assumption that individuals are equivalent in all

respects other than their standing on the predictor variable.
This assumption is defensible when individuals are ran-
domly assigned to levels of the predictor variable, as when
the variable distinguishes treatment and control groups in a
true experiment. Without randomization, this assumption is
difficult to defend, although it becomes more tenable when
individuals are matched on variables that might be con-
founded with the predictor or when such variables are
statistically controlled (Rubin, 1974, 1978).

Applications of the RCM to models that involve media-
tion (Holland, 1988; Robins & Greenland, 1992; Rubin,
2004) reveal basic difficulties in drawing causal inferences.
For example, in a single study, individuals cannot be ran-
domly assigned to both the independent variable and the
mediator variable, given that the latter is a measured out-
come of the former. When individuals are not randomly
assigned to the mediator variable, they may differ in ways
other than their standing on that variable. If these differ-
ences are correlated with the dependent variable, estimates
of the paths from the independent and mediator variables to
the dependent variable are biased (Holland, 1988). This bias
can be lessened by statistically controlling for variables that
are correlated with the mediator and the dependent vari-
ables, although this approach is generally inferior to ran-
domization (Shadish et al., 2002). Alternately, relationships
among the independent, mediating, and dependent variables
can be estimated in separate randomized experiments, and
the resulting relationships can be combined to estimate path
models that use meta-analysis (Hunter & Schmidt, 1996;
Viswesvaran & Ones, 1995), although effect sizes from
such studies will partly reflect the strength of the manipu-
lations that happen to be chosen by the researcher. In short,
the requirements for inferring causality from mediated mod-
els, regardless of whether such models incorporate moder-
ation, are daunting and should be carefully considered when
interpreting results from our framework.

Summary and Conclusion

Studies that combine moderation and mediation are wide-
spread in psychology research. Methods currently used to
combine moderation and mediation have important limita-
tions that conceal the nature of the underlying moderated
and mediated effects. The general framework developed
here overcomes these limitations and clarifies how the in-
dividual paths that constitute a model and their associated
direct, indirect, and total effects vary across levels of a
moderator variable. We developed and illustrated this
framework by using a basic mediated model with one mod-
erator variable and showed how results from the framework
avoid problems with current approaches used to combine
moderation and mediation. We also described how the
framework can be extended to handle more complex models
and how violations of assumptions underlying the frame-

19MODERATION AND MEDIATION



work can be addressed. In summary, the framework pre-
sented here promises to offer better substantive answers to
theoretical questions that combine moderation and media-
tion.
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Appendix

Sample SPSS REGRESSION and CNLR Syntax

The following SPSS syntax produces results for feedback (fbkc) as the independent variable, satisfaction (satc) as the
mediator variable, commitment (comc) as the outcome variable, and gender (gen) as the moderator variable. All continuous
variables are mean-centered, as indicated by the letter c in the variable names. Product variables use names that concatenate
the names of the variables that constitute the product (e.g., fbkcgen). Regression results for Equations 5 and 20 are produced
by the REGRESSION procedure, and bootstrap estimates are generated by the constrained nonlinear regression (CNLR)
procedure. The CNLR syntax should specify the same random number seed (e.g., 54321) for Equations 5 and 20 in the SET
lines and use coefficient estimates from the REGRESSION procedure as starting values in the MODEL PROGRAM line.
The COMPUTE PRED and CNLR lines specify the independent and dependent variables, respectively. Each OUTFILE
produces 1,001 rows of coefficient estimates, the first containing estimates from the full sample and the remaining rows
containing estimates from the 1,000 bootstrap samples. The CNLR syntax requires SPSS version 14.0.2 or later.

* REGRESSION syntax for Equation 5.
REGRESSION
/DEPENDENT satc /*Dependent variable*/
/METHOD�ENTER fbkc gen fbkcgen /*Independent variables*/.

* REGRESSION syntax for Equation 20.
REGRESSION
/DEPENDENT comc /*Dependent variable*/
/METHOD�ENTER fbkc satc gen fbkcgen satcgen /*Independent variables*/.

* CNLR syntax to produce bootstrap estimates for Equation 5.
SET RNG�MT MTINDEX�54321 /*Merseene Twister random number generator, seed set at 54321*/.
MODEL PROGRAM a05�.04 aX5�.81 aZ5�-.05 aXZ5�-.14 /*Starting values for coefficients*/.
COMPUTE PRED � a05 � aX5*fbkc � aZ5*gen � aXZ5*fbkcgen /*Coefficients and independent variables*/.
CNLR satc /*CNLR procedure, dependent variable*/
/OUTFILE�FBKGEN05.SAV /*File for bootstrap coefficient estimates*/
/BOOTSTRAP�1000 /*Number of bootstrap samples*/.

* CNLR syntax to produce bootstrap estimates for Equation 20.
SET RNG�MT MTINDEX�54321 /*Merseene Twister random number generator, seed set at 54321*/.
MODEL PROGRAM b020�-.03 bX20�.28 bM20�.31 bZ20�.06 bXZ20�-.13 bMZ20�-.01 /*Starting values for coefficients*/.
COMPUTE PRED � b020 � bX20*fbkc � bM20*satc � bZ20*gen � bXZ20*fbkcgen � bMZ20*satcgen /*Coefficients and independent variables*/.
CNLR comc /*CNLR procedure, dependent variable*/
/OUTFILE�FBKGEN20.SAV /*File for bootstrap coefficient estimates*/
/BOOTSTRAP�1000 /*Number of bootstrap samples*/.
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