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A theory comprises two sets of relationships, one that links constructs that constitute the
substance of the theory, and another that maps constructs onto phenomena that can be directly
observed and measured (Bagozzi & Phillips, 1982; Costner, 1969). In organizationa behavior
(OB) research, theory development emphasi zes rel ationships among constructs but devotes
relatively little attention to relationships between constructs and measures (Schwab, 1980).
These latter relationships are crucia to theory development, because they provide the means by
which constructs become accessible to empirical research and theories are rendered testable.
Moreover, because the relationships between constructs and measures are integral to atheory,
theory testing isincompl ete unless these relationships are scrutinized. Thus, the relationships
between constructs and measures constitute an auxiliary theory that itself is subject to empirical
testing and falsification (Costner, 1969; Cronbach & Meehl, 1955; Schwab, 1980).

Relationships between constructs and measures are the essence of construct validity. At
its most fundamental level, construct validity concerns the degree to which a measure captures
its intended theoretical construct (Cronbach & Meehl, 1955). Although the notion of construct
validity is straightforward, procedures used to assess construct validity are complex and have
evolved considerably during the past severa decades. These procedures present a potentialy
bewildering array of choices for OB researchers confronted with crucia task of establishing the
correspondence between theoretical constructs and their measures.

This chapter provides a chronological treatment of approaches to construct validation.
The chapter begins by defining constructs and measures, the basic elements of construct
validation. Construct validity is then defined and distinguished from other forms of validity.
Next, approaches to construct validation are discussed, focusing on formulations of the

relationship between constructs and measures and statistical procedures to assess reliability and
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convergent and discriminant validity. These approaches are organized chronologically in terms
of classical approaches prevalent from the 1950s through the 1970s, modern approaches of the
1980s and 1990s, and emerging approaches that capture recent developments and future trends.
The chapter concludes with recommendations for assessing and enhancing the construct validity
of measures used in OB research.
Definitions

This section offers definitions of the terms construct, measure, and construct validity.
Definitions of these terms have evolved over the years, as evidenced by successive publications
of the American Psychological Association standards for educational and psychological testing
(American Psychological Association, 1966, 1985, 1999) and treatises on construct validity by
Campbell (1960, 1996), Cronbach (1971, 1989; Cronbach & Meehl, 1955), and Messick (1975,
1981, 1995). However, the nuances that mark this evolution are anchored in core ideas that have
remained stable. This stability isreflected in the definitions adopted here, which provide a
consistent backdrop against which to track the development of construct validation procedures.
Construct

A construct is a conceptual term used to describe a phenomenon of theoretical interest
(Cronbach & Meehl, 1955; Edwards & Bagozzi, 2000; Messick, 1981). Constructs are terms
researchersinvent to describe, organize, and assign meaning to phenomena relevant to adomain
of research (Cronbach & Meehl, 1955; Messick, 1981; Nunnally, 1978; Schwab, 1980).
Although constructs are literally constructed, or put together, by researchers (Nunnally, 1978;
Schwab, 1980), the phenomena constructs describe are real and exist independently of the
researcher (Arvey, 1992; Cook & Campbell, 1979; Loevinger, 1957; MacCorquodale & Meehl,

1948; Messick, 1981). For example, attitudes such as job satisfaction and organizational
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commitment are real subjective experiences of people in organizations, and characteristics of
socia relationships such as trust and conflict are real to people engaged in those relationships.
Although constructs refer to real phenomena, these phenomena cannot be observed directly or
objectively. Rather, researchers view these phenomena through the distorted epistemol ogical
lenses that constructs provide and rely on flawed measures that yield imperfect empirical traces
(Cook & Campbell, 1979; Loevinger, 1957; Messick, 1981). This definition represents a critical
realist perspective on the meaning of constructs (Bhaskar, 1978; Cook & Campbell, 1979). Itis
realist because it asserts that constructs refer to actual psychological and social phenomena that
exist separately from our attempts to study them, and it is critical because it recognizes that these
phenomena cannot be assessed with complete accuracy, due to imperfections in our sensory and
methodological apparatus (Cook & Campbell, 1979; Delanty, 1997; Loevinger, 1957; Messick,
1981; Zuriff, 1998).
Measure

A measureis an observed score gathered through self-report, interview, observation, or
some other means (DeVellis, 1991; Edwards & Bagozzi, 2000; Lord & Novick, 1968; Messick,
1995). Put simply, ameasure is a quantified record, such as an item response, that serves as an
empirical representation of a construct. A measure does not define a construct, asin strict
operationalism (Campbell, 1960; Cronbach & Meehl, 1955), but rather is one of various possible
indicators of the construct, all of which are considered fallible (Messick, 1995). As defined here,
ameasureis not an instrument used to gather data, such as a questionnaire, interview script, or
observation protocol, nor isit the process by which data are generated and gathered (Alreck &
Settle, 1995; Rea & Parker, 1992; Sudman, Bradburn, & Schwarz, 1996). Rather, ameasureis an

observed record or trace that serves as imperfect empirical evidence of a construct.
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Construct Validity

Construct validity refers to the correspondence between a construct and a measure taken
as evidence of the construct (Cronbach & Meehl, 1955; Nunnally, 1978; Schwab, 1980).
Construct validity does not refer to the inherent properties of a measure or instrument. Instead, it
concerns the degree to which a measure represents a particular construct and allows credible
inferences regarding the nature of the construct (Cronbach, 1971; Cronbach & Meehl, 1955).
Thus, a particular measure may demonstrate different degrees of construct validity depending on
the construct for which the measure is taken as evidence. Moreover, construct validity is not an
all-or-nothing phenomenon, such that a measure that demonstrates certain propertiesis deemed
construct valid. Rather, construct validity is a matter of degree based on the cumulative evidence
bearing on the correspondence between a construct and measure (Cronbach & Meehl, 1955).
Finally, construct validation is not atask that is accomplished and then set aside. To the contrary,
construct validation is an ongoing process, such that each application of an instrument provides
further evidence regarding the construct validity of the instrument and the measures it generates
(Cronbach, 1989; Nunnally, 1978).

Construct validity may be separated into trait validity and nomological validity
(Campbell, 1960). Trait validity focuses on the relationship between the construct and measure
isolated from the broader theory in which the construct is embedded. Evidence for trait validity is
provided by convergence of measures intended to represent the same construct and divergence
among measures designed to represent different constructs. Convergence of measures sharing the
same method (e.g., all self-report) indicates reliability, whereas convergence of measures using
different methods represents convergent validity (Campbell, 1960; Campbell & Fiske, 1959).

Divergence among measures using the same or different methods demonstrates discriminant
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validity (Campbell, 1960; Campbell & Fiske, 1959). Reliability and convergent validity provide
evidence for a construct acting as a common cause of the measures, and discriminant validity
provides evidence against the intrusion of other unintended constructs (Messick, 1995).
Nomological validity is based on evidence that measures of a construct exhibit relationships with
measures of other constructs in accordance with relevant theory (Carmines & Zeller, 1979;
Cronbach & Meehl, 1955). Thus, nomological validity entails the evaluation of a measure within
abroader theory that describes the causes, effects, and correlates of the construct and how they
relate to one another (Campbell, 1960; Cronbach & Meehl, 1955).

Construct validity may be distinguished from content validity and criterion-oriented
validity (Nunnally, 1978). Content validity is the degree to which a measure represents a
particular domain of content. Content validity is achieved by defining the content domain of
interest, selecting or developing items that represent the domain, and assembling theitemsinto a
test, survey, or other instrument. Content validity is not assessed using empirical or statistical
procedures, but instead relies on “appeals to reason” (Nunnally, 1978, p. 93) that the procedures
used to develop an instrument ensure that important content has been adequately sampled and
represented.’ Criterion-oriented validity refers to the relationship between the measure of
interest and some criterion measure deemed important, such as job performance. Criterion-
oriented validity places less emphasis on the conceptual interpretation of a measure than on its
ability to predict a criterion.

Construct validity may be distinguished from other forms of validity that are vital to the
research process. Cook and Campbell (1979) organize these forms of validity into three broad
categories. Statistical conclusion validity is whether a study can establish the presence and

magnitude of the relationship between two variables. Interna validity concerns whether the
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relationship between a presumed cause and effect is free from aternative explanations that
implicate other causes or methodological artifacts. Finally, external validity is whether the
findings from a study can be generalized to other samples, settings, and time frames. Because
these forms of validity do not bear directly on the relationships between constructs and measures,
they are not discussed further in this chapter (for thorough treatments, see Cook & Campbell,
1979; Cook, Campbell, & Peracchio, 1990).
Construct Validation Approaches

The past several decades have brought significant developments in procedures used to
assess construct validity. These developments are signified by increasingly sophisticated views
of the relationship between constructs and measures and advances in statistical procedures for
assessing reliability and convergent and discriminant validity. Methods for studying nomological
validity have advanced as well, but these advancements have tracked general developmentsin
analyzing relationships among constructs, as marked by the evolution from anaysis of variance
to multiple regression, path analysis, and structural equation modeling (Cohen, 1968; Joreskog,
1974; Werts & Linn, 1970; Williams & James, 1994). These devel opments implicate the whole
of applied statistics, and reviewing them is well beyond the scope of this chapter. Rather, the
following discussion tracks the evolution of three core e ements of construct validation: (a) the
specification of the relationship between constructs and measures; (b) reliability; and (c)
convergent and discriminant validity. These three elements provide a focused treatment of
construct validation approaches and encompass many important analytical developments that
deal specifically with mapping constructs onto measures. Moreover, these aspects of construct
validation should be addressed prior to investigating nomological validity, because if ameasure

does not display construct validity when examined inisolation, it is unwise to embed the
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measure within a broader theoretical framework. Thus, the elements of construct validation
examined in this chapter are natural precursorsto the essential task of nomological validation
(Cronbach & Meehl, 1955).

For expository purposes, the construct validation approaches discussed here are separated
chronologically into classical, modern, and emerging approaches to construct validation. The
boundary between classical and modern approaches roughly coincides with the advent of
confirmatory factor analysis (CFA), and the boundary between modern and emerging approaches
is marked by developments that increase the complexity of the relationship between constructs
and measures and relax traditional assumptions that underlie analytical procedures used for
construct validation. Aswill become evident, the classification of construct validation
approaches into these three time frames reflects their usage in the OB literature more than their
development in the statistical literature. For instance, although CFA isthe hallmark of modern
approaches to construct validation, its development predates its general use in the OB literature
by over a decade (Joreskog, 1969). Likewise, some approaches that are just beginning to emerge
in the OB literature, such as generalizability theory (DeShon, 2002), can be traced back more
than three decades (Cronbach, Gleser, Nanda, & Rgaratnam, 1972). These time lags are natural
for the development and use of methodological proceduresin general, and it is hoped that this
chapter will help accelerate the diffusion of recently developed construct validation procedures
in OB research.

Classical Approaches

Classical approaches to construct validation are rooted in seminal work on measurement

and psychometric theory of the 1950s and 1960s (e.g., Campbell, 1960; Campbell & Fiske, 1959;

Cronbach & Meehl, 1955; Lord & Novick, 1968; Nunnally, 1967). Thiswork laid the foundation
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for conceptualizing and analyzing relationships between constructs and measures and established
the language of construct validation. These approaches are discussed below.

Relationship between constructs and measures. The fundamenta equation of classical
measurement theory (Gulliksen, 1950; Lord & Novick, 1968) is as follows:

Xi=T+g Q)
where X; is the ith measure of T, T is an unobserved true score, and g is measurement error,
which encompasses all sources of variance in X; other than T. It is assumed that g is arandom
variable with zero mean and is uncorrelated with T and with the true scores and errors of other
measures (Lord & Novick, 1968). Figure 1 portrays the relationships between a single true score
and three measures, along with their associated error terms (in this and subsequent figures,
variables that signify constructs are represented by circles, and variables that represent measures
are indicated by squares). Aswill be seen, Figure 1 provides a useful point of departure for
comparing classical measurement theory to modern and emerging approaches to construct

validation.

The interpretation of Equation 1 in terms of the rel ationship between a construct and
measure hinges on the meaning of the true score T. In classical measurement theory (Lord &
Novick, 1968; Nunnally, 1978), atrue score istypically defined as the hypothetical average of an
infinite number of scores for a particular subject. Asthe number of scores constituting the
average approaches infinity, the proportion of error variance in the average approaches zero.

Therefore, atrue score may be interpreted as a subject’ s score on X; that is free from random
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measurement error. This score might not accurately represent the value of the construct, because
any systematic errorsin X, such as mean bias or floor and ceiling effects, become part of the
hypothetical average that defines the true score (Cronbach et a., 1972). Thus, atrue score may
be interpreted as the value of a construct for a subject if: () the measure X; is unbiased, such that
repeated measures of X; converge on the correct value of the construct; and (b) measurement
errors are uncorrelated with the construct, such that errors do not tend to be positive or negative
depending on the level of the construct (Lord & Novick, 1968). These assumptions are adopted
in the following discussion, thereby framing T as the value of the construct of interest.

Equation 1 allows several useful derivations that provide the basis for understanding the
correspondence between constructs and measures. We begin with the variance of X;, which may
be written as:

V(X)=V(T +e)

=V(T)+V(e) + 2C(T,e)

=V(T) +V(e) 2
where V(.) and C(.) refer to the variance and covariance, respectively, of a given term for
multiple subjects. Equation 2 follows from standard rules of covariance algebraand the
assumption that T and g are uncorrelated. From Equation 2, it can be seen that the variance of a
measure is the sum of the variance of the true score and the variance of measurement error.
Because atrue score signifies an error-free measure of a construct, V(T ) indicates the amount of
variance in X that is attributable to the construct. Naturally, it is desirable for V(T ) to be large
relativeto V(e).

Next, consider the covariance of X; with T, which captures the magnitude of the

relationship between a measure and its associated construct:
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C(X.,T) = C[(T + &),T]
=C(T,T)+C(T,e)
=V(T). (3)
Equation 3 indicates that the covariance between a measure and its true score, and hence the
construct of interest, is represented by the variance of the true score.

Finally, the covariance between two measures, designated hereas X; = T, + 6 and X; = Ty
+ g, may be written as:

C(Xi,X) = C[(Tp + &),(Tq + 8)]

=C(Tp, Tg) + C(Tp,8) + C(Tg.@) + C(e8)

= C(Tp, To). (4)
Equation 4 shows that the covariance between the true scores T, and T, equals the covariance
between their respective measures X; and X;. Thus, the covariance between the constructs
underlying two measures is indicated by the covariance between the measures themselves.

If X and X; in Equation 4 refer to the same construct, they are termed congeneric,
meaning their true scores are perfectly correlated but need not have the same value. If X; and X;
have the same true scores, such that T, = Tq = T, they are termed tau equivalent. Under tau
equivalence, C(T,,Tg) = C(T,T) = V(T ), which indicates that the covariances between al pairs of
tau equivalent measures have the same value and equal the variance of their common true score.
These properties also hold for measures that are essentially tau equivalent, which have true
scores that differ by no more than a constant (Novick & Lewis, 1967). Finaly, if X; and X; have
the same true scores as well as the same error variances, such that V(e) = V(g) = V(e), they are
termed parallel. Because parallel measures have equal true score variances and equal error

variances, the measures themselves aso have equal variances, which in turn implies that the
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covariances and correlations among pairs of parallel measures are equal. These principles and the
associated derivations form the basis of classical measurement theory and provide the foundation
for subsequent developments.

Reliability. Reliability refersto the proportion of true score variance in ameasure. The
reliability of X may be expressed algebraically as follows:

ry, = V(T )V (X). ®)
For asingle item, r x, cannot be estimated, given that V (X;) is known but V(T) is unknown. This

dilemma spawned various approaches to the estimation of reliability. One approach is based on
the notion of parallel measures of T. By definition, the correlation between parallel measures
equals their covariance divided by the product of their standard deviations. As noted previously,
the covariance between parallel measures equals V(T ), and the variances of parallel measures
have a common value V(X;), which in turn implies that the product of their standard deviationsis
also V(X). Hence, the correlation between parallel measures equals V(T )/V (X;) and represents
the reliability of either measure. This reasoning underlies the alternative forms method of
reliability estimation (Carmines & Zeller, 1979; Nunnally, 1978). Although simple in concept,
this approach carries the practical problem of developing measures that meet the rather stringent
conditions of parallel measurement.

One way to address the problem of developing parallel measures isto administer the
same measure twice, based on the premise that a measure is parallel with itself. This approach
underlies the test-retest method of reliability estimation, which uses the correlation between a
measure collected on two occasions as an estimate of the reliability of the measure. The test-
retest approach has several drawbacks, such as the inability to distinguish low reliability from

actual change in the true score, practice and consistency effects that may inflate test-retest
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correlations, and the possibility that biases and other artifacts embedded in measurement errors
are correlated over time, thereby violating akey assumption of classical measurement theory
(Bohrnstedt, 1983; Nunnally, 1978).

An alternative to the test-retest approach is the split-haf approach, in which a set of items
is administered on a single occasion and scores on the items are divided into two subsets. Given
that the subsets are drawn from the same set, they are considered alternative forms, which means
that their correlation represents the reliability of either subset. Because the subsets contain fewer
items than the full set, the correlation between the subsets of items underestimates the reliability
of ameasure created by summing the full set. This underestimation can be corrected by applying
the Spearman-Brown prophecy formula (Nunnally, 1978):

2r

X, X
- 1732 6
Px 1+erX2 (6)

where X; and X; are sums of items from the two split halvesand r, ,isthe correlation between

these sums. Despite its advantages, the split-half approach carries a fundamental ambiguity, in
that a set of items can be split in numerous ways, each of which may yield a different reliability
estimate.

The ambiguity of the split-half approach is resolved by Cronbach’ s alpha (Cronbach,
1951), which equals the average of all possible split-half reliability estimates for a set of items.
Alphamay be interpreted as the proportion of true score variance in a sum of essentially tau
equivaent items. The intuition behind alpha can be grasped by considering the following sum of

k tau equivalent items:

Do
Qox

1
N

X, =&(T +e). @)

i=1

The true score T is not indexed because it is assumed to be the same for all X;. The variance of
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the item sum may be written as:
k k
V(a X,)=V[a(T +e)]
i=1 i=1
=V[(T+e)+(T +e)+..+(T +g)]
=V(KT +e +e,+..+¢)

k
=k*V(T)+& V(e). )
i=1
The amount of true score variance in the sum is represented by k?V(T). Therefore, the proportion
k k
of true score variance is KV (T)/ V(& X;). V(& X;) can be computed by taking the variance of
i=1 i=1

theitem sum, and V(T) can be obtained by recalling that, for essentially tau equivalent items,
V(T) equals the covariance between any two items. Because all interitem covariances are equal
for essentially tau equivalent items, any one of the covariances will serve as an estimate of V(T).
In practice, interitem covariances usualy vary, in which case it is sensible to use the average
interitem covariance to represent V(T) (McDonad, 1999). This approach leads to the following

equation for apha (Cronbach, 1951):

LS T ©)
V(S X))
An algebraically equivalent expression can be computed from the variances of the items and
their sum (Cronbach, 1951; Nunnally, 1978):
k k
Lk V(EX)- SV W

k
1 vsx)

The assumption of essential tau equivalence is crucial to alpha. To the extent this assumption is

violated, alpha underestimates the reliability of theitem sum (Heise & Bohrnstedt, 1970). Hence,
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alpha should be considered alower bound estimate of reliability and equals reliability when the
items constituting the sum are essentially tau equivalent.

Convergent and discriminant validity. Classical approaches to construct validation have
generdly relied on two methods for assessing convergent and discriminant validity. One method
involves submitting measures to principal components analysis or common factor analysis and
determining whether measures of the same construct cluster together and measures of different
constructs separate from one another. The principal components model may be written as follows
(Harman, 1976; Kim & Muedller, 1978):

C; =b;, X, +b, X, +...+ b, X,
(11)

where C; represents the jth principal component and by; is a coefficient linking the ith measure to
the jth component. Equation 11 shows that a principal component is treated as a weighted linear
combination of measures, and measurement error is disregarded. In contrast, the common factor
model is as follows (Harman, 1976; Kim & Mueller, 1978):

X; =b,F +b,F, +..+b F +dU,

Qog

b,F, +dU,. (12)

j=1

where F; represents the jth common factor, by is a coefficient linking the ith measure to the jth
factor, U; is the uniqueness of X;, or the part of X that is not explained by the common factors,
and d; isacoefficient linking U; to X;. U; combines random measurement error and measure
specificity, which refersto stable sources of variance in a particular X that are not shared with
other X;. Because the common factor model incorporates measurement error and treats measures

as outcomes of factors, it is more consistent with classical measurement theory, as captured by
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Equation 1. Nonetheless, principal components analysis and common factor analysis typically
yield similar conclusions regarding the convergence and divergence of measures (Velicer &
Jackson, 1990), although they tend to yield different estimates of population parameters that
guantify the relationships between constructs and measures (Mulaik, 1990; Snook & Gorsuch,
1989; Widaman, 1993).

A more systematic approach to assessing convergent and discriminant validity is based
on the multitrait-multimethod (MTMM) matrix (Campbell & Fiske, 1959). A MTMM matrix
arranges correlations among measures of several traits, or constructs, using different methods
such that criteria for assessing convergent and discriminant validity can be readily applied. Table
1 shows a hypothetical MTMM matrix for three traits labeled A, B, and C and three methods
designated 1, 2, and 3. The solid triangles contain heterotrait-monomethod values, which are
correlations among measures of different traits using the same method. The dashed triangles
contain heterotrait-heteromethod values, which are correl ations among measures of different
traits using different methods. In boldface are monotrait-heteromethod val ues, which represent
correl ations between measures of the same trait using different methods. These values constitute
the validity diagonal within the heteromethod blocks formed by the correlations between all
measures obtained from a given pair of methods. Finally, the parentheses contain monotrait-
monomethod values, which signify the reliabilities of the measures.

Campbell and Fiske (1959) proposed the following criteria for assessing convergent and
discriminant validity using the MTMM matrix. Convergent validity is evidenced when the
monotrait-heteromethod values are significantly different from zero and large enough to warrant
further examination of validity. This criterion demonstrates that measures of the same construct

using different methods are related. Discriminant validity rests on three criteria. First, monotrait-
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heteromethod val ues should be larger than values in the same row and column in the heterotrait-
heteromethod triangles. For instance, raia2 in Table 1 should be larger than raig2, raice, 'siaz,
and rciaz. This criterion establishes that measures of the same construct using different methods
correlate more highly than measures of different constructs using different methods. Second, the
monotrait-heteromethod val ues for each measure should be larger than values in the heterotrait-
monomethod triangles that entail that measure. To illustrate using the measure of construct A
using method 1, raia2 and raias should be larger than rais; and raici. Thiscriterion shows that a
measure correlates more highly with measures of the same construct using different methods
than with measures of different constructs that happen to use the same method. Third, the pattern
of correlations among the traitsin each heterotrait triangle should be the same regardless of the
method employed. For instance, if the relative magnitudes of the correlations among constructs
A, B, and C measured with method 1 are raig: > raici > r'sici, then the same ordering should be
obtained for methods 2 and 3. This criterion may also be applied to individual measures. For
example, if construct A measured with method 1 correlates more strongly with construct B than
with construct C when both are measured with method 1 (i.e., rais1 > raici), then it should also
correlate more strongly with construct B than with construct C when the two are measured with
methods 2 and 3 (i.e., rais2 > raicz and raiss > raics should both hold). In addition to these
criteriafor convergent and discriminant validity, Campbell and Fiske (1959) pointed out that
differences between corresponding values in the monomethod and heteromethod triangles
provide evidence for method variance. Returning to Table 1, if raig: islarger than raisz, then the
correlation between measures of constructs A and B using method 1 is presumably inflated by
thelir reliance on the same method. Differences between correlationsinaMTMM matrix can be

tested using procedures for comparing dependent correlations (Steiger, 1980), and differencesin
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patterns of correlations can be tested using Kendall’ s coefficient of concordance, which yields a
chi-square statistic representing the difference between two rankings (Bagozzi, Yi, & Phillips,
1991; McNemar, 1962).

The Campbell and Fiske (1959) procedure for assessing convergent and discriminant
validity has many important strengths, perhaps the foremost of which is the distinction between
traits and methods as two systematic sources of variance in ameasure. However, the procedure
has several shortcomings. First, it does not quantify the degree to which convergent and
discriminant validity have been demonstrated (Bagozzi et al., 1991; Schmitt & Stults, 1986).
Instead, the procedure yields a count of the number of confirming and disconfirming
comparisons involving the correlations of the MTMM matrix. Second, the procedure does not
separate method variance from random measurement error (Schmitt & Stults, 1986). This
shortcoming might be addressed by conducting MTMM analyses using disattenuated correlations
(Althauser & Heberlein, 1970; Jackson, 1969), but doing so prevents the use of conventiona
statistical tests for comparing correlations. Third, and perhaps most important, the Campbell and
Fiske (1959) criteria yield unambiguous conclusions regarding convergent and discriminant
validity only under highly restrictive assumptions regarding the magnitudes of trait and method
effects and the correl ations between method factors (Althauser, 1974; Althauser & Heberlein,
1970; Schmitt & Stults, 1986). Many of these shortcomings were recognized by Campbell and
Fiske (1959), but their resolution awaited the application of CFA to MTMM matrices, whichisa
hallmark of modern approaches to construct validation.

Modern Approaches
Modern construct validation approaches were spawned by the advent of CFA, which

brought many important developments to the construct validation process. These devel opments
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are discussed in general sources on CFA (Bollen, 1989; Joreskog, 1971, 1974; Long, 1983) and
follow logically from the application of CFA to reliability and construct validity (Bagozzi, Yi, &
Phillips, 1991; Schmitt & Stults, 1986). These devel opments and their relevance to construct
validation are discussed below.

Rel ationships between constructs and measures. In CFA, the relationship between a
construct and measure may be expressed as:

Xi=1ix+d (13)
Although Equation 13 is similar to Equation 1 based on classical measurement theory, severa
differences should be noted. First, x does not signify the hypothetical average of X;, but instead
represents alatent variable or factor that corresponds to a theoretical construct (Bollen, 1989;
Joreskog & Sorbom, 1996). Second, unlike Equation 1, Equation 13 includes the coefficient | ;
on X, which allows the relationships between x and the X; to vary. Third, whereasthe g in
Equation 1 represents random measurement error, the d; in Equation 13 signify the uniquenesses
of the X;, which are composed of random measurement error and measurement specificity (i.e.,
stable aspects of each X; that are not explained by the common factor x). It isassumed that the d;
have zero means and are uncorrelated with one another and with x, analogous to the assumptions
underlying classical measurement theory (Bollen, 1989; Joreskog & Sorbom, 1996). Figure 2
displays the relationship between a construct and three measures, and comparing Figure 1 to
Figure 2 further reinforces the basic distinctions between classical and modern approachesto

specifying relationships between constructs and measures.
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Drawing from the assumptions underlying Equation 13, severa useful expressions can be
derived, similar to those developed under classical measurement theory. First, the variance of X;
can be written as:

V(X)) =V(lix +d)

=1 AV(X) + V(d) + 21 iC(x,d)

=12V () + V(d)

=1 +qq (14)
where f represents the variance of x and qgq, is the variance of dj, respectively (Bollen, 1989;
Joreskog & Sorbom, 1996). According to Equation 14, the amount variance in X; attributable to
the construct x is represented by | ;%f . Next, the covariance between X; and X is:

C(Xi,x) = C[(l ix + di),X]

=1C(x,x ) + C(x,d)

=1iV(x)

=1f. (15)
Finally, the covariance between two measures X; =1 X, + di and Xj = | jxq + d; is:

CXi, X)) = Cl(l ixp + d),(1 jxq + db)]

=1l jC(XpXq) + 1 iC(%p,0h) + | {C(Xq,ch) + C(dh, )

=1l C(Xp,Xq)

=1l jfpq (16)
where f o is the covariance between x, and xq. If X; and X; refer to the same construct, such that
Xp = Xq = X, then Equation 16 smplifies to:

C(Xi,Xj) =1 i| jf . (17)
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Equations 14, 16, and 17 may be used to cal cul ate the covariance matrix among the measures as
reproduced by the CFA model, which provides the basis for evaluating the fit of the model to the
data (Joreskog & Sorbom, 1996).

The foregoing equations depict the X; as congeneric, given that: (a) each X; can have a
different true score, since the composite term | jx can vary across measures; and (b) the variances

of the measurement errors can differ, as depicted by the qq . If the X were tau equivalent, thel |
would be equal, and if the X; were parallel, the qq would also be equal. These assumptions can

be readily examined with CFA by imposing equality constraints on the relevant parameters and
testing the decrease in model fit using the chi-square difference test (Joreskog & Sorbom, 1996).

Reliability. Because Equation 11 relaxes the assumption of tau equivalence, it leadsto a
less restrictive formulafor the reliability of an item sum. This formula can be derived by

extending Equation 13 to represent the sum of k congeneric items:

Qo<

(nx +d,). (18)

7 Qo
1 fex

X =i

1

The variance of theitem sumiis;
k k
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In Equation 19, the first term on the right represents the amount of true score variance in the item

sum. Thus, the proportion of true score variance in the item sum may be written as:
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(ék 7\.i)2f
0\):% . (20)
v(d x)

Coefficient omega (w) represents the proportion of true score variance in a sum of k congeneric
items (McDonald, 1970). If the items are tau equivaent, omega reduces to alpha. Otherwise,
omega gives a higher estimate of reliability than that given by alpha, depending on the degree to
which thel ; differ from one another. An aternative expression for w is obtained by substituting

Equation 19 for the denominator of Equation 20 (Jéreskog, 1971; McDonald, 1970):

K
@ )zf
i=1

w= (21)

£ 2 & '
(@an)f +aq,

i=1 =1 "
This substitution rests on the assumption that the d; are mutually independent. If this assumption
does not hold, then Equation 21 will yield a biased estimate of reliability (Raykov, 2001). This
biasis avoided by Equation 20, which incorporates the correct expression for the variance of the
item sum regardless whether the d; are independent.

CFA dso yields estimates of the reliabilities of theindividual X;. As shown by Equation

14, the variance of X; equals| %f + Qq,, Which in turn implies that the proportion of true score

variancein X; is| ;% /V(X;). The quantities needed to calculate this ratio can be obtained from a
CFA, provided multiple X; are available to achieve model identification (Bollen, 1989). Note that
this approach limits true score variance to variance attributable to the common factor X, thereby
treating measurement specificity and random measurement error in the same manner.
Convergent and discriminant validity. Shortcomings of the Campbell and Fiske (1959)
procedure for analyzing MTMM matrices prompted the development of alternative approaches.

Of these, CFA has emerged as the most widely used approach (Schmitt & Stults, 1986). This
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approach treats each measure as a function of atrait factor, a method factor, and measurement
error, asindicated by the following equation (Joreskog, 1971; Werts & Linn, 1970):

Xi =l itpXrp + | imgXmg + (22)
where xyp istrait p, Xwq iSmethod ¢, and | i1, and | juq are coefficients relating X; to xp and Xwyg,
respectively. Thus, X; has two systematic sources of variance, one due to the substantive trait or
construct of interest, and another generated by the method of data collection. These sources of
variance, along with variance due to the error term d;, can be seen by taking the variance of
Equation 22:

V(X)) =Vl itpXtp + | imgXmg + )

=1 iV (X7p) + 1 img”V (Xmg) + 21 impl imgC(XTpsXng) + V()

=l irg?frp + | ingF mg + 20 impl imigf Tomg + d, - (23)
Models that include correlations between traits and methods are particularly prone to estimation
problems, such as nonconvergence and improper solutions (Schmitt & Stults, 1986; Widaman,
1985). Therefore, traits are usually specified as independent of methods (Brannick & Spector,
1990; Marsh & Bailey, 1991; Schmitt & Stults, 1986), whereby Equation 23 simplifies to:

V(X) =1 impF1p+ | ingF mg + Ol (24)
In Equation 24, the amount of trait variance in X; is represented by | ir,’f 15, and the amount of
method variance is captured by | imqf wq. I the trait and method factors are standardized, such
that their variances equal unity, then the amount of trait variance and method variancein X;
equalsits squared |oadings on these two factors (I it,” and | imq’, respectively). Dividing these
quantities by V(X;) gives the proportion of trait and method variancein X;.

Equation 22 also provides the basis for decomposing the correlationsinaMTMM matrix

into trait and method components (Althauser, 1974; Althauser & Heberlein, 1970; Alwin, 1974,
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Kalleberg & Kluegel, 1975; Schmitt, 1978; Werts & Linn, 1970). This decomposition yields
important insights regarding the interpretation of these correlations and their implications for the
criteria developed by Campbell and Fiske (1959). The process begins by introducing a second
measure, X, which is expressed as follows:

X =1 jmxre + 1 jmsXvs + di. (25)
Anaogousto X, X; isafunction of atrait factor xr,, a method factor xws, and measurement error
d;. Assuming measurement errors are random and trait factors are independent of method factors,
the covariance between X; and X; may be written as:

C(Xi, %) =1 ipl j7ef rorr + | imgl jmsf mgws. (26)
By using different subscripts on trait factors and method factors, Equation 25 applies to measures
that represent different traits and methods, corresponding to the heterotrait-heteromethod values
inaMTMM matrix. If X; and X; share the same method, Equation 26 becomes:

C(Xi, %) = litpl j7ef 71 + imgl jmqf mg (27)
where the subscript g indicates the shared method. Thus, Equation 26 refers to the heterotrait-
monomethod valuesinaMTMM matrix. Conversaly, if X; and X; represent the same trait,
Equation 26 simplifiesto:

CXiX5) = lipl jrpf 1o + Timal jmisf mgwis (28)
where the subscript p identifies the shared trait. Equation 28 corresponds to the monotrait-
heteromethod values, or validity diagonals, of aMTMM matrix.

To illustrate how Equations 26, 27, and 28 can be used to decompose correlationsin a
MTMM matrix, consider the model in Figure 3, which has three trait factors and three method
factors. For simplicity and without loss of generality, we assume all factors and measures are

standardized. Recall that convergent validity isinferred from correlations between measures of
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the same trait using different methods. Applying Equation 28 to the correl ation between X; and
X4 yields:

Fxox, = b amal 11+ 1 amal amzf mamz. (29)
As Equation 29 shows, the correlation between X; and X, has two components, one driven by the
loadings of X; and X4 on their common trait, and another that represents their loadings on their
respective methods and the correl ation between the methods. These two components correspond
to the two pathways that connect X; and X, in Figure 3 (these pathways may be derived formally
using the tracing rule; Blalock, 1969). It is the former component, not the latter, that signifies the
convergent validity of X; and X4, because convergent validity frames the correlation between two
measures in terms of their shared trait (Alwin, 1974; Marsh & Grayson, 1995). Assuming X; and
X4 contain some degree of method variance, such that | 11 and | 42 are nonzero, the correlation
between X; and X, gives unambiguous evidence for convergent validity only if the correlation

between the method factorsis zero (Schmitt & Stults, 1986), which is unlikely in practice.

Similar procedures may be applied to comparisons among correl ations taken as evidence
for discriminant validity. For instance, the first criterion for discriminant validity stipulates that
monotrait-heteromethod correlations should be larger than heterotrait-heteromethod correl ations.
This criterion isillustrated by comparing the correlation between X; and X4 to the correlation
between X; and Xs. The former correlation is shown in Equation 29, and the latter is obtained by
applying Equation 26, which yields:

xxs = | 171l s12f 1112 + | 1Ml sm2f mamz. (30)
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Thus, the difference between ry,x, and rx,x, is as follows:

Fxoxs — Pxoxs = | a1l a1t + 1 amal amof mamz =1 1mal stof 1112 = | 1mal smaf mamz

=1 lTl(I 4T1 -1 5T2f TlT2) +1 lle MlMZ(I am2 -1 5M2)- (31)

As Equation 31 shows, the difference between rx,x, and rx,x, is afunction of terms representing
the loadings and correlations of the trait and method factors underlying Xi, X4, and Xs. Of these
terms, f 1112 isthe most relevant to discriminant validity, because this term can be used to assess
whether the correlation between the two traits underlying the measures is less than unity, thereby
indicating that the traits are distinct (Marsh & Grayson, 1995; Werts & Linn, 1970). Equation 31
provides this information only under restrictive conditions. For example, if all trait and method
loadings have the samevalue| (Althauser & Heberlein, 1970), Equation 31 simplifiesto:

P, — Fxpxg = | (1= F11m2).- (32)
For aparticular loading | , Equation 32 is afunction of the term (1 — f 1112) and therefore captures
discriminant validity (Althauser, 1974). Equation 32 also results when loadings on the trait
factors are equal and either X; has no method variance or the method factors are uncorrel ated.
Because Equation 32 is based on conditions that are highly restrictive, it israrely useful for
assessing discriminant validity (Althauser, 1974; Althauser & Heberlein, 1970). A more direct
approach is to assess whether f 1112 is statistically and meaningfully less than unity (Bagozzi et
al., 1991; Kenny, 1976; Schmitt, 1978; Werts & Linn, 1970). The procedure used to obtain
Equation 31 can be also used to express the second and third criteriafor discriminant validity in
equation form (Althauser, 1974; Kalleberg & Kluegdl, 1975; Schmitt, 1978). In both cases, the
resulting expressions are functions that yield a direct test of discriminant validity only under
highly restrictive conditions.

The CFA approach to analyzing MTMM matrices also provides tests of overall modd fit,
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thereby indicating whether the specified trait and method factor structure is consistent with the
data. The specified model can aso be compared to aternative models that impose various
restrictions (Althauser, Heberlein, & Scott, 1971; Schmitt, 1978; Widaman, 1985). Widaman
(1985) proposed aframework that separately specifiestrait and method factors as follows:. (@) no
factors, such that measures assigned to each trait or method are uncorrelated; (b) factors with
correlations fixed to unity, which translates into a single general trait factor or method factor; (c)
factors with correlations fixed to zero, such that the trait or method factors are orthogonal; and
(d) unconstrained factor correlations, such that correlations among trait factors and among
method factors are freely estimated. Applying these specifications to trait factors and method
factors yields 16 models with different representations of trait variance, method variance, and
convergent and discriminant validity.? For instance, fixing trait correlations to unity creates a
model in which trait factors exhibit no discriminant validity. Comparing the chi-square from this
model to one from amodel in which trait correlations are freely estimated yields an omnibus test
of discriminant validity. In addition, the difference in chi-sgquares between models with and
without trait factors provides an omnibus test of convergent validity. Analogously, the chi-square
difference between models with and without method factors yields an omnibus test of method
variance.

Although the CFA approach to analyzing MTMM matrices is appealing in severa
respects, it also suffers from anumber of problems. First, the residual termsin the CFA model
confound measurement specificity with random measurement error (Bagozzi et al., 1991; Marsh
& Hocevar, 1988). This confounding occurs because the model represents reliability not as the
internal consistency of the items that constitute each measure, but instead as the variance in each

measure explained by itstrait and method factors. As aresult, low loadings might reflect small
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trait or method effects, attenuation due to measurement error, or some combination thereof
(Marsh & Hocevar, 1988). Second, although the CFA model corrects the correlations among trait
and method factors for measurement error, it does not remove the effects of measurement error
from the correlations among the measures that constitute the MTMM matrix, because these
measures are used as single indicators (Marsh & Hocevar, 1988). Third, the interpretation of trait
and method factorsis often ambiguous. For example, a set of correlated method factors might
reflect a general trait factor not captured by the separate trait factors in the model (Marsh, 1989).
The converse holds as well, such that a set of correlated trait factors might represent a general
method effect. Fourth, the CFA model treatstrait and method effects as additive, whereas trait
and method factors might combine multiplicatively (Campbell & O’ Connell, 1967, 1982).

Perhaps the most serious problem with the CFA model is that, in most cases, the model
suffers from nonconvergence and improper solutions, such as negative error variances, factor
correlations that exceed unity, and excessively large standard errors (Brannick & Spector, 1990;
Marsh & Bailey, 1991; Wothke, 1987). This problem is particularly prevalent for models that
include correl ations between trait and method factors (Marsh, 1989), but it is also common for
models in which trait factors are uncorrel ated with method factors (Brannick & Spector, 1990;
Marsh & Bailey, 1991; Wothke, 1987). This problem can be traced to identification issues
inherent in the CFA model (Grayson & Marsh, 1994; Kenny & Kashy, 1992; Millsap, 1992;
Wothke, 1987). Theoretically, the model isidentified if it contains at |east three trait factors and
three method factors (Alwin, 1974; Werts & Linn, 1970). However, if the parametersin the
model follow certain patterns, the model is empirically underidentified, meaning that a unique
set of estimates cannot be obtained even though the model is theoretically identified. For

example, if the correlations among the trait factors and among the method factors are unity and
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the trait and method factors are independent, the CFA model is equivalent to an exploratory
factor model with two orthogonal factors. This model is not identified unless one of the loadings
isfixed to establish the orientation of the factors (Wothke, 1987). Likewise, the model is not
identified if, for each trait and method factor, the loadings are equal for all measures assigned to
that factor (Kenny & Kashy, 1992). This pattern is a special case of afactor loading matrix that
isnot of full column rank, which is sufficient to establish that the model is not identified
(Grayson & Marsh, 1994). Even if the loadings do not exactly conform to a pattern that produces
deficient column rank, as would be expected when loadings are freely estimated using real data,
estimation problems are likely if the loadings roughly approximate such a pattern (Kenny &
Kashy, 1992). One way to address these estimation problems is to impose constraints on the trait
and method factor loadings. For instance, Millsap (1992) identified conditions for rotational
unigueness for the CFA model that translate into equality constraints on selected trait and
method loadings. Although rotational uniqueness does not solve the general identification
problem (Bollen & Joreskog, 1985), it can avoid improper solutions common in CFA models
(Millsap, 1992). Estimation problems with the CFA model can aso be addressed by adopting
different models for analyzing MTMM data, as discussed in the following section.
Emerging Approaches

Emerging approaches to construct validation are characterized by advancesin CFA that
relax traditional assumptions regarding the form of the relationship between constructs and
measures and address shortcomings that became evident in initial applications of CFA to
estimating reliability and convergent and discriminant validity. These advancements and their
relevance to construct validation are summarized below.

Rel ationships between constructs and measures. Most applications of CFA specify the



Construct Vaidation 30

relationship between constructs and measures according to Equation 13. However, dternative
specifications that elaborate or reframe this relationship have gained increased attention. One
aternative introduces an intercept into the equation relating constructs to measures, as follows:

X =ti+1x+d. (33)
Intercepts are useful when the means of x and the X; are of interest, asin studies that compare the
means of constructs between samples, such as experimental groups, or within a sample over
time. To estimate models with means and intercepts, the input covariance matrix of the X is
supplemented by a vector of means, and parameters representing intercepts and means are freed,
subject to restrictions required to achieve model identification (Bollen, 1989; Joreskog &
Sorbom, 1996).

Another alternative to Equation 13 reverses the direction of the relationship between the
construct and measure, as depicted by the following equation:

h=gX +z (34)
where h isthe construct, g is a coefficient linking the measure to the construct, and z isthat part
of h not captured by X; (Bollen & Lennox, 1991; Edwards & Bagozzi, 2000; MacCallum &
Browne, 1993). Figure 4 depicts the relationship between a construct and three measures
according to Equation 34. The X; in Equation 34 are termed for mative measures because they
form or induce the construct (Fornell & Bookstein, 1982). In contrast, the X; in Equation 13 are
refl ective measures, meaning they reflect or manifest the construct. In OB research, measures
have been treated as formative when they describe different facets or aspects of a broad concept,
as when measures of facet satisfaction are combined to represent overall job satisfaction (Law,
Wong, & Mobley, 1998). Although simplein principle, formative measures introduce complex

issues of model identification and interpretation (Edwards, 2001; MacCallum & Browne, 1993).
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Moreover, treating measures as formative implicitly ascribes causal potency to scores, whichis
difficult to defend from a philosophical perspective (Edwards & Bagozzi, 2000). In most cases,
formative measures of a general construct are better treated as reflective measures of specific

constructs that cause the general construct (Blalock, 1971; Edwards & Bagozzi, 2000).

A third alternative to Equation 13 incorporates indirect relationships between constructs
and measures (Edwards & Bagozzi, 2000). This aternative is exemplified by second-order factor
models in which measures are assigned to several specific constructs that in turn serve as
indicators of ageneral construct (Rindskopf & Rose, 1988). Figure 5 illustrates a second-order
factor model with one second-order factor, three first-order factors, and three measures of each
first-order factor. A second-order factor model is represented by the following two equations:

h; = gx + z (35)

yi=lih;+e (36)
where x isagenera construct, the h; are specific constructs, and the y; are measures of the h;.
The indirect relationships between x and the y; may be seen by substituting Equation 35 into
Equation 36, which yields:

yi=li(gx+z)+e

yi =ligx+ 1z +a. (37)
Equation 37 shows that the relationships between x and they; are represented by the products
| ;9. Equation 37 also shows that, when viewed as indicators of X, the y; have two sources of

error: (a) | ijz;, which captures aspects of the h; not explained by x; and (b) &, which represents
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measurement error in the usual sense. The basic model illustrated here can be extended to
include multiple second-order factors. In addition, indirect relationships can be specified for
formative measures that induce specific constructs that in turn combine to form a genera
construct (Edwards & Bagozzi, 2000). However, it is often more reasonable to treat such
measures as reflective indicators of specific constructs that form a general construct, in which
case the relationships between the measures and general construct are spurious rather than

indirect (Edwards, 2001; Edwards & Bagozzi, 2000).

Equation 13 may also be expanded to include sources of systematic variance other than x.
A prominent example of this approach is provided by Equation 22, which includes trait and
method factors as systematic sources of variance in X;. This example may be viewed as a specia
case of the family of models encompassed by generalizability theory (Cronbach et al., 1972).
Generalizability theory treats measures as samples from a universe of admissible observations.
The universe is defined in terms of facets that describe conditions believed to influence scores.
Examples of such facets include items, persons, traits, methods, raters, and time. Building on this
premise, generalizability theory specifies a measure as afunction of an overall universe score
(i.e., the mean score across facets), facet scores representing the deviation of each measure from
the universe score, interactions among facets, and aresidual. Generalizability theory provides a
framework for decomposing the variance of a measure into variance attributable to the main and
interactive effects of facets and the residual. These variance components can be used to calculate

generalizability coefficients that represent the dependability of measures for different conditions
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of measurement, of which coefficient alphaisaspecia case. Although generalizability theory
was developed over three decades ago, it has yet to gain widespread usage, due in part to the
technical nature of itsinitial presentation (Cronbach et al., 1972). Fortunately, introductory
treatments have become available (DeShon, 2002; Marcoulides, 2000; Shavelson & Wehb,
1991), and linkages between generalizability theory and methods more familiar to OB
researchers, such as CFA, are being explored (DeShon, 1998; Marcoulides, 1996).

Finally, Equation 13 may be respecified to capture nonlinear relationships between
constructs and measures. Although nonlinear relationships are rarely considered within the
context of construct validation in OB research, the required statistical foundations have beenin
place for decades. For instance, McDonad (1963, 1967a; Etezadi-Amoli & McDonald, 1983)
developed nonlinear factor analytic models in which measurement equations anal ogous to
Equation 13 are supplemented by factors raised to various powers, such as squares, cubics, and
so forth. McDonald (1967b) adapted this approach to accommodate interactions, such that the
measurement equations contain products of two or more factors. Nonlinear models also form the
basis of item response theory (IRT; Drasgow & Hulin, 1990; Embretson & Reise, 2000; Lord,
1952; Lord & Novick, 1968), which focuses on rel ationships between constructs and categorical
measures. For dichotomous measures, IRT specifies the relationship as alogistic or normal ogive
function bounded by the two scores the dichotomous measure can take. This function may be
conceived as the probability of a positive (e.g., correct) response for aparticular level of the
underlying construct. IRT models are aso available for polychotomous measures that have
multiple nominal or ordinal response options (Drasgow & Hulin, 1990; Thissen & Steinberg,
1984; Zickar, 2002). Although IRT models were developed to accommodate violations of

multivariate normality caused by items with a small number of discrete response options, these
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models can also be applied to continuous measures to uncover nonlinearitiesin the relationship
between the measure and its underlying construct. For instance, IRT functions associated with
each level of an agree-disagree scale can be compared to determine whether the shape and
spacing of the functions is consistent with alinear or nonlinear relationship between the
construct and measure (Drasgow & Hulin, 1990; Zickar, 2002). Although such applications of
IRT remain infrequent (Drasgow & Hulin, 1990), they hold promise for scrutinizing the linearity
assumptions underlying most models rel ating constructs to measures.

Reliability. Classic and modern approachesto reliability estimation focus on the
proportion of true score variance in an item sum, as represented by apha and omega. However,
the relevance of this quantity is questionable when items are used as reflective measures of latent
variablesin structural equation models. Because these models do not incorporate item sums, the
proportion of true score variance contained in these sumsis less relevant than the proportion of
true score variances captured by the individua items themselves. Nonetheless, it is worthwhile to
consider the proportion of true score variance captured by the items collectively. This quantity
can be estimated using principles of multivariate regression analysis, which provides multivariate
R? values for the proportion of variance explained in a set of dependent variables by one or more
independent variables (Cohen, 1982; Dwyer, 1983). Applying this approach to the relationship

between a construct and a set of measures yields the following equation:
R =<8 (38)

where R?, represents the multivariate R?, | S | isthe determinant of reproduced covariance matrix
of the X;, and | (55 | isthe determinant of the covariance matrix of the d; (which usually contains

the variances of the d; along the diagonal and zeros elsewhere). The determinant of a covariance
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matrix may be interpreted as the generalized variance of the variables that constitute the matrix
(Cohen, 1982). Thus, the numerator of Equation 38 is the generalized total variance of the X; as
implied by the model minus the generalized unexplained variance of the X;. The difference
between these quantities is therefore the generalized variance of the X; explained by x. Equation
38 divides the generalized explained variance by the generalized total variance, such that R,
represents a multivariate analog to R?. R, isaspecial case of the coefficient of determination,
which captures the total effect of the exogenous variables on the endogenous variablesin a
structural equation model (Bollen, 1989; Joreskog & Sorbom, 1996). The reasoning underlying
Equation 38 may also be applied to estimate the proportion of variancein a set of first-order
factors explained by a second-order factor, corresponding to h; and x in Equation 35 (Edwards,
2001).

When measures are formative rather than reflective, asin Equation 34, the latent variable
h is not a construct that is free from measurement error, but instead is a weighted composite that
incorporates all the variance of the X;, including variance that represents measurement error. If
reliability estimates of the X; are available, it is possible to identify the proportion of variancein
h that represents measurement error in the X;, using principles of covariance algebra such as
those used to derive omega. Nonethel ess, this measurement error is carried into h and therefore
can bias parameter estimates for models in which h is embedded. One solution to this problem is
to treat each X; as areflective indicator of ax; and fix the variances of the d; to nonzero values
that represent the amount of error variance in the X; (Edwards, 2001; Edwards & Bagozzi, 2000).
The x; are then treated as causes of h and do not bring measurement error into the composite they
form. For such models, it isinformative to estimate the proportion of variance in the x; as a set

captured by the formative construct h. This quantity is represented by the adequacy coefficient,
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here labeled Ré (Edwards, 2001). R2 is used in canonical correlation analysis to represent the
relationship between a set of variables and their associated canonical variate (Thompson, 1984)
and is algebraically equivalent to the percentage of variance captured by a principa component
(Kim & Mueller, 1978). For the relationship between h and a set of x;, R can be calculated by
summing the squared correlations between h and each x; and dividing by the number of x;. The
information necessary to calculate R: is available from the covariance matrix of h and x; reported
by programs such as LISREL (Joreskog & Sorbom, 1996).

Convergent and discriminant validity. As noted previously, analyzing MTMM matrices
using the standard CFA model with correlated traits and correl ated methods (hereafter termed the
CTCM model) suffers from problems of nonconvergence and improper solutions. To overcome
these problems, alternatives to the CTCM model have been proposed. One aternative isthe
correlated uniqueness (CU) model (Kenny, 1976; Marsh, 1989), which replaces method factors
with correlations among the residual terms for measures collected using the same method. Figure
6 portrays the CU model for measures representing three traits and three methods. When three
methods are involved, the CU model is mathematically equivalent to a CFA model with
correlated trait factors and uncorrel ated method factors (i.e., aCTUM model; Marsh & Bailey,
1991). With more than three factors, the CU model can be compared to the CTUM model to test
whether the measures are congeneric with respect to the method factors, meaning that each
method factor adequately explains the covariation among measures collected using that method
after the effects of the trait factors have been removed (Kenny & Kashy, 1992; Marsh & Bailey,
1991). Compared to the CTCM model, the CU model is more likely to converge and yield proper
solutions (Marsh & Bailey, 1991). However, because it does not contain method factors, the CU

model does not provide a direct estimate of the amount of method variance in each measure.
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Nonetheless, it can be shown that the average correlation among the uniqueness for a particular
method yields an estimate of the amount of variance attributable to that method (Conway, 1998a;
Scullen, 1999). A more serious limitation is the assumption that methods are uncorrelated. If
methods are positively correlated, the CU model tends to overestimate trait variances and
covariances, thereby artificially inflating convergent validity and reducing discriminant validity

(Byrne & Goffin, 1993; Kenny & Kashy, 1992).

Another adternative to the CTCM modd isthe composite direct product (CDP) model
(Browne, 1984; Swain, 1975). The CDP model traces its origins to observations made by
Campbell and O’ Connell (1967), who noted that MTMM matrices often display a pattern in
which sharing a common method inflates heterotrait correlations to a greater extent when trait
correlations are high rather than low. Based on this observation, Campbell and O’ Connell (1967)
suggested that trait and method factors might operate multiplicatively rather than additively. The
CDP mode incorporates multiplicative effects by specifying the true score of each measure as
the product of its corresponding trait and method scores (Browne, 1989). Assuming trait and
method factors are independent and normally distributed with zero means, this specification
produces a covariance structure in which the covariance between any pair of true scores equals
the covariance between their traits times the covariance between their methods (Bohrnstedt &
Goldberger, 1969; Browne, 1984, 1989). This covariance structure can be written in matrix form
astheright direct product between the trait and method covariance matrices (Browne, 1984;

Swain, 1975), from which the CDP model acquired its name. Applications of the CDP model
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show that it is often less prone to estimation problems than the CTCM model (Goffin & Jackson,
1992). Results from the CDP model can be mapped onto the Campbell and Fiske (1959) criteria
(Browne, 1984; Cudeck, 1988), although convergent and discriminant validity can be assessed
more precisely using estimates of specific model parameters (Reichardt & Coleman, 1995).

The strengths of the CDP model are offset by several shortcomings. First, although the
CDP modd suffers from fewer estimation problems than the CTCM mode, it is nonetheless
prone to improper solutions (Becker & Cote, 1994; Conway, 1996). Second, the CDP model
does not provide separate estimates of the trait and method variance in each measure. Rather,
these two sources of variance are combined into a single commonality estimate (Conway, 1996;
Goffin & Jackson, 1992; Kenny, 1995). As aresult, the model does not indicate how well each
measure represents its intended underlying construct (Bagozzi & Yi, 1990). Third, the model
does not provide atest of the assumption that true scores are a function of the product of trait and
method factors. Some researchers have suggested that, if the CDP modd fits the data, method
effects are likely to be multiplicative (Bagozzi & Yi, 1990; Bagozzi et a., 1991). However,
model fit does not constitute atest of the multiplicative structure upon which the CDP model is
built, and data fit by the CDP model can often be fit by additive models such asthe CTCM or
CU models (Coenders & Saris, 2000; Corten, Saris, Coenders, van der Veld, Aaberts, &
Kornelis, 2002; Kumar & Dillon, 1992). In effect, estimating the CDP model is analogous to
testing interactions using product terms without controlling for their constituent main effects,
which does not provide proper tests of interactions and can produce misleading results (Cohen,
1978; Evans, 1991). A final issueisthat the CDP model is not required to capture the
observations of Campbell and O’ Connell (1967) that method effects are stronger when trait

correlations are higher (Kumar & Dillon, 1992; Marsh & Grayson, 1995). This pattern can be
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produced when higher trait correlations are accompanied by stronger method effects, as indicated
by larger method loadings in the CTCM model or higher correlations among uniquenesses in the
CU model. The CDP model represents a special case of this pattern, given that the CDP model
can be parameterized as arestricted version of the CU model with nonlinear constraints on the
covariances among the uniquenesses (Coenders & Saris, 2000; Corten et al., 2002).

Other models have been devel oped in which the number of factors is one less than the
combined number of traits and methods. By excluding one factor and its associated parameters,
these models provide one approach to address the identification problems common in the CTCM
model. Eid (2000) proposed a model that is equivaent to the CTCM model with one method
factor removed. The excluded method factor serves as a standard of comparison to evaluate the
effects of the included method factors on observed scores. For example, if aMTMM design uses
self-reports, interviews, and observations as methods and excludes a self-report method factor,
the interview and observation factors explain how the covariances among measures collected
with these methods differ from the covariances among measures collected using self reports.
Although this model isidentified in many cases where the CTCM model is not (Eid, 2000), it
confounds trait and method variance for measures corresponding to the excluded method factor
and generaly yields different fit depending on which method factor is excluded. Kenny and
Kashy (1992) presented amodel in which method factor loadings are fixed to represent contrasts
among the methods, such that the effects of each method factor sum to zero. The effect sizes of
the method contrasts are represented by the variances of the method factors, which are freely
estimated. Like the model proposed by Eid (2000), the Kenny and Kashy (1992) model does not
provide estimates of method variance for each measure. Moreover, Kenny and Kashy (1992)

reported that the model inappropriately lowered discriminant validity and inflated convergent
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validity to agreater extent than the CU mode. Finally, Wothke (1987, 1995, 1996) developed a
covariance components analysis (CCA) model that includes a general factor, t — 1 contrast
factorsto represent traits, and m— 1 contrast factors to represent methods (t and m signify the
number of traits and methods, respectively). The variances of the trait and method factors
indicate the magnitudes of their associated contrasts, consistent with the interpretation of the
method contrast factors in the Kenny and Kashy (1992) approach. However, the CCA model
does not provide estimates of trait or method variance for each measure, and its interpretation of
its results in terms of convergent and discriminant validity is not straightforward (Kumar &
Dillon, 1992; Wothke, 1996).

Each of the foregoing models uses a single indicator to represent each trait measured with
each method. Other models have been devel oped that use multiple indicators for each trait-
method combination. These models are feasible when the measures that constituteaMTMM
matrix are created by summing multiple items, as is often the case (Marsh, 1993). Of these
models, perhaps the most straightforward model assigns individual items directly to their
associated trait and method factors (Tomas, Hontangas, & Oliver, 2000). Models specified in this
manner are less prone to nonconvergence and improper solutions than models that treat each
trait-method unit as asingleindicator (Tomas et al., 2000). However, this model does not
separate specificity from random measurement error, which remain confounded in the residual of
each measure. This limitation can be overcome by adding afactor specific to each trait-method
combination, yielding afirst-order factor model in which each item is assigned to atrait factor, a
method factor, and a specificity factor (Kumar & Dillon, 1990). One drawback of this approach
isthat it separatestrait, method, and specific variance for individual items rather than the trait-

method combinations that comprise the items, which are usually the focus of MTMM studies.
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This drawback is avoided by second-order CFA models in which items are assigned to first-order
factors representing trait-method units, which in turn are assigned to second-order trait and
method factors (Marsh, 1993; Marsh & Hocevar, 1988). In such models, the residual for each
first-order factor captures specific variance from which the effects of measurement error have
been removed, and loadings of the first-order factors on the second-order factors can be used to
obtain estimates of trait and method variance for each trait-method unit. In addition, methods for
comparing aternative CTCM model s (Widaman, 1985) can be applied to the second-order factor
structure imposed on the correl ations among the first-order factors, which are corrected for
measurement error at the level of the trait-method unit (Marsh, 1993; Marsh & Hocevar, 1988).
Hybrid models have also been proposed in which traits are specified as second-order factors and
methods and trait-method units are treated as first-order factors (Anderson, 1985, 1987).
Research is needed to evaluate the relative strengths of these aternative models.

Finally, models have been devel oped that include measures that serve as direct indicators
of method factors. These measures are intended to give explicit substantive meaning to method
factors, as opposed to relying on broad distinctions between methods to infer what method
factors might represent. Models with direct measures of method factors have been used to
examine the effects of negative affectivity on work attitudes (Williams & Anderson, 1994;
Williams, Gavin, & Williams, 1996) and the effects of general impressions and interpersonal
affect on performance ratings (Conway, 1998b). This approach might be applied to MTMM
analyses by including measures that represent substantive dimensions believed to differentiate
the methods of measurement used in a particular study. Doing so would enable researchers to
treat method variance from atheoretical standpoint, such that method factors are not merely a

nuisance to be avoided, but instead represent substantive processes worthy of study in their own
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right (Cronbach, 1995; Schmitt, 1994).
Guidelines for Construct Validation in OB Research

The foregoing discussion has traced the evolution of classical, modern, and emerging
approaches to construct validation. Much of the materia reviewed has drawn not from the OB
literature per se, but instead from the methodological literature in which construct validation
approaches have been developed. Within the OB literature, it is perhaps fair to say that much
empirical research draws from construct validation procedures that represent the classical era.
Thistendency is evidenced by the widespread use of alphato estimate reliability, the associated
reliance on classical measurement theory to frame the relationship between a construct and its
measures, and the application of principal components analysis and common factor analysis to
assess the convergence and divergence of measures. The use of CFA, which isthe hallmark of
the modern era, has grown substantially during the past decade, but few studies have estimated
reliability with omega, and MTMM studies using CFA to evaluate convergent and discriminant
validity arerare. Applications of emerging approaches to construct validation are beginning to
appear, primarily through the use of second-order factor analysis, the framing of measures as
formative rather than reflective, and scattered applications of the CU and CDP modelsto anayze
MTMM data. This state of affairs does not justify an indictment of the OB literature, but instead
reflects the natural time lag required for methodol ogical devel opments to disseminate through
any applied science.

Lessons learned from tracing the development of the classical, modern, and emerging
approaches suggest several recommendations for construct validation in OB research. First, OB
researchers should carefully scrutinize the models they implicitly or explicitly use to relate

constructs to measures. In most instances, the model underlying classical measurement theory
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will provetoo restrictive. The standard CFA model will be appropriate in many cases, provided
measures may be viewed as alternative indicators of a single underlying construct. If measures
describe qualitatively different manifestations of the same general concept, then the measures
might be assigned to first-order factors that serve as reflective indicators of a second-order
factor. Alternately, if measures describe distinct dimensions that combine to define a broader
concept, then the measures might be assigned to first-order factors that are cast as formative
indicators of ageneral construct. Typically, models of this type should be preferred to models
that treat the measures themselves as formative indicators, due to philosophical problems with
the assumption that measures, as numeric quantities, are capable of causing constructs of interest
in OB research (Edwards & Bagozzi, 2000).

Second, the widespread reliance on alphato assess reliability should be reconsidered. As
noted earlier, alpharests on the assumption of tau-equivalence, which isunlikely to be met in
practice. Omega rel axes this assumption and reduces to alpha when measures are tau equivalent.
Therefore, it would seem advantageous to adopt omega for estimating the internal consistency
reliability of summed scales. However, both alpha and omega lose their relevance when summed
scales are replaced by latent variables with multiple indicators in structural equation models, as
is becoming increasingly common in OB research. Such models shift the focus of reliability from
sums of measures to the individual measures themselves. In addition, the variance explained in a
set of measures by their underlying construct can be quantified using Rz, which givesasingle
index of the proportion of true score (i.e., construct) variance in a set of measures. Reframing
reliability in this manner aligns the meaning of reliability with the treatment of measures as
indicators of latent constructs rather than elements of summed scales.

Third, the assessment of convergent and discriminant validity should no longer rely on
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the Campbell and Fiske (1959) criteria. Research has convincingly shown that these criteria do
not distinguish the various factors that give riseto MTMM correlations and therefore yield
ambiguous conclusions regarding convergent and discriminant validity. These ambiguities can
be avoided by analyzing MTMM data using CFA models. However, the CTCM model, which is
the most widely used CFA model for analyzing MTMM data, is prone to nonconvergence and
improper solutions attributable to inherent identification problems. Of the alternativesto the
CTCM model, the CU model has received the greatest attention and is perhaps the simplest to
estimate and interpret. However, the CU model incorporates the rather stringent assumption that
methods are independent. The CDP and CCA models have attractive statistical features, but
these models do not permit a straightforward decomposition of the variance of a measure into
trait, method, and error components. Moreover, these models specify trait and method factorsin
ways that fundamentally differ from the CTCM model, and the substantive meaning of these
different specifications have not been fully addressed. Second-order CFA models treat each trait-
method combination as alatent variable with multiple indicators, and limited evidence suggests
that these models are less susceptible to problems that plague the CTCM model. However,
identification problems that arise from the structure of the item loadingsin the CTCM may apply
to the first-order factor loadings in the second-order factor model. Despite this possibility,
available evidence warrants cautious optimism regarding the application of the second-order
CFA model to MTMM analyses. Finally, including measures that serve as indicators of method
factors provides the dual advantage of reducing identification problems and clarifying the
processes believed to underlie method effects. Establishing that method variance exists should be
considered an initia step that isfollowed by research that assigns meaning to method factors and

explains how and why they operate.
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A fina recommendation concerns guidelines for devel oping measures that exhibit strong
construct validity. Guidelines such as these are discussed elsewhere (e.g., Converse & Presser,
1986; DeVdllis, 1991; Spector, 1992; Stone-Romero, 1994), and a thorough treatment is beyond
the scope of this chapter. Stated succinctly, researchers should begin with a clear definition of
the construct of interest and assemble or develop items that provide alternative descriptions of
the construct. Researchers should resist the temptation to use items that describe different facets
of a concept, because such items often exhibit poor internal consistency and produce scales and
factors that cannot be unambiguously interpreted. If different facets of a genera concept are of
interest, then it is advisable to use items that provide alternative descriptions of each facet and
treat the facets as dimensions of amultidimensional construct(Edwards, 2001). The item pool
may be screened by judges who rate the degree to which each item describes its intended
construct (Schriesheim Cogliser, Scandura, Lankau, & Powers 1999), and the resulting ratings
may be used to select, revise, or discard items before using them to collect data. I1tem ratings may
also be used to specify CFA models that form the basis for assessing reliability and convergent
and discriminant validity, using procedures discussed in this chapter. Finaly, the items should be
analyzed within broader models that include causes, correlates, and effects of the construct of
interest, thereby generating evidence relevant to nomological validity. By following these
guidelines, OB researchers can enhance the validity of measures taken as evidence of constructs
that constitute the substance of OB theories and thereby promote theory testing and knowledge

accumulation in the field.
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Footnotes
! The assessment of item content after an instrument has been devel oped has been described as
face validity (Nunnally, 1978) or content adequacy (Schriesheim, Cogliser, Scandura, Lankau, &
Powers, 1999), and statistical procedures for its assessment have been developed (Schriesheim et
al., 1999).
2 As noted by Widaman (1985), some of the models derived from the framework cannot be
meaningfully compared. For instance, amodel with asingle trait factor and no method factorsis

indistinguishable from a model with a single method factor and no trait factors.



61

Construct Validation

~

(e%e) €0ed ) _/mONUh ////M/UNm_‘_ €02V ) _ EITD) -\ £0T8) €JTV ) m D 19N48U0D
RN ~< RN AN ]
AN Ny RN Y !
(ege) mmmmﬁ: Sso._€829) T~ gdev) m €410 ~~._ €d1d) T>~_£dlv) m g 19nJ18U0D
| < Sso H S~o T~ )
| AN ~< | S~ ~ !
! N | ~o ~1
BVEON | EVEBN T EWVN  [EVID) | EVIS| T VIV VnIsuoy - € poysin
Ao _
(2op) 2ozd | 202V ) 21D ~~._72019) 2otV | D 10NJ1SU0D
N ]
I~ S 1
[} Se So |
| ~o ~<
(&) zgzv ) m Za1o ">~ zdlg)  >~_2d1v) m g 19n115U0D
| S~
(Gve)  ievIO) Vi8] e TVIV) Vonnsuod g pousin
(o) 1019 TOTV ) D 19N48U0D
(ffe) NIVl g 1onJ1suoD
(*Ve) VIonisuod T PoyRrIn
0) d 0) 4 \4 ) 4 \4 S1oNJIsuU0D
€ POUBIN ¢ POURIN T POYBIN

SPOL{ISW 881} PUe S}e} 88U} UM X LITeL POUIBLIT -1 1 NIA

T3ldeL



Construct Validation 62

Figure Captions
Figure 1. Relationship between true score and measures according to classical measurement
theory.
Figure 2. Relationship between construct and measures following confirmatory factor anaysis.
Figure 3. Confirmatory factor analysis model for aMTMM matrix with three traits and three
methods.
Figure 4. Relationship between construct and measures following a formative measurement
model.
Figure5. Second-order confirmatory factor model with three first-order factors and one second-
order factor.

Figure 6. Correlated uniqueness model for aMTMM matrix with three traits and three methods.
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