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 A theory comprises two sets of relationships, one that links constructs that constitute the 

substance of the theory, and another that maps constructs onto phenomena that can be directly 

observed and measured (Bagozzi & Phillips, 1982; Costner, 1969). In organizational behavior 

(OB) research, theory development emphasizes relationships among constructs but devotes 

relatively little attention to relationships between constructs and measures (Schwab, 1980). 

These latter relationships are crucial to theory development, because they provide the means by 

which constructs become accessible to empirical research and theories are rendered testable. 

Moreover, because the relationships between constructs and measures are integral to a theory, 

theory testing is incomplete unless these relationships are scrutinized. Thus, the relationships 

between constructs and measures constitute an auxiliary theory that itself is subject to empirical 

testing and falsification (Costner, 1969; Cronbach & Meehl, 1955; Schwab, 1980). 

Relationships between constructs and measures are the essence of construct validity. At 

its most fundamental level, construct validity concerns the degree to which a measure captures 

its intended theoretical construct (Cronbach & Meehl, 1955).  Although the notion of construct 

validity is straightforward, procedures used to assess construct validity are complex and have 

evolved considerably during the past several decades. These procedures present a potentially 

bewildering array of choices for OB researchers confronted with crucial task of establishing the 

correspondence between theoretical constructs and their measures. 

This chapter provides a chronological treatment of approaches to construct validation. 

The chapter begins by defining constructs and measures, the basic elements of construct 

validation. Construct validity is then defined and distinguished from other forms of validity. 

Next, approaches to construct validation are discussed, focusing on formulations of the 

relationship between constructs and measures and statistical procedures to assess reliability and 
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convergent and discriminant validity.  These approaches are organized chronologically in terms 

of classical approaches prevalent from the 1950s through the 1970s, modern approaches of the 

1980s and 1990s, and emerging approaches that capture recent developments and future trends.  

The chapter concludes with recommendations for assessing and enhancing the construct validity 

of measures used in OB research. 

Definitions  

This section offers definitions of the terms construct, measure, and construct validity. 

Definitions of these terms have evolved over the years, as evidenced by successive publications 

of the American Psychological Association standards for educational and psychological testing 

(American Psychological Association, 1966, 1985, 1999) and treatises on construct validity by 

Campbell (1960, 1996), Cronbach (1971, 1989; Cronbach & Meehl, 1955), and Messick (1975, 

1981, 1995). However, the nuances that mark this evolution are anchored in core ideas that have 

remained stable. This stability is reflected in the definitions adopted here, which provide a 

consistent backdrop against which to track the development of construct validation procedures. 

Construct 

A construct is a conceptual term used to describe a phenomenon of theoretical interest 

(Cronbach & Meehl, 1955; Edwards & Bagozzi, 2000; Messick, 1981). Constructs are terms 

researchers invent to describe, organize, and assign meaning to phenomena relevant to a domain 

of research (Cronbach & Meehl, 1955; Messick, 1981; Nunnally, 1978; Schwab, 1980). 

Although constructs are literally constructed, or put together, by researchers (Nunnally, 1978; 

Schwab, 1980), the phenomena constructs describe are real and exist independently of the 

researcher (Arvey, 1992; Cook & Campbell, 1979; Loevinger, 1957; MacCorquodale & Meehl, 

1948; Messick, 1981). For example, attitudes such as job satisfaction and organizational 
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commitment are real subjective experiences of people in organizations, and characteristics of 

social relationships such as trust and conflict are real to people engaged in those relationships. 

Although constructs refer to real phenomena, these phenomena cannot be observed directly or 

objectively. Rather, researchers view these phenomena through the distorted epistemological 

lenses that constructs provide and rely on flawed measures that yield imperfect empirical traces 

(Cook & Campbell, 1979; Loevinger, 1957; Messick, 1981). This definition represents a critical 

realist perspective on the meaning of constructs (Bhaskar, 1978; Cook & Campbell, 1979). It is 

realist because it asserts that constructs refer to actual psychological and social phenomena that 

exist separately from our attempts to study them, and it is critical because it recognizes that these 

phenomena cannot be assessed with complete accuracy, due to imperfections in our sensory and 

methodological apparatus (Cook & Campbell, 1979; Delanty, 1997; Loevinger, 1957; Messick, 

1981; Zuriff, 1998). 

Measure 

A measure is an observed score gathered through self-report, interview, observation, or 

some other means (DeVellis, 1991; Edwards & Bagozzi, 2000; Lord & Novick, 1968; Messick, 

1995). Put simply, a measure is a quantified record, such as an item response, that serves as an 

empirical representation of a construct. A measure does not define a construct, as in strict 

operationalism (Campbell, 1960; Cronbach & Meehl, 1955), but rather is one of various possible 

indicators of the construct, all of which are considered fallible (Messick, 1995). As defined here, 

a measure is not an instrument used to gather data, such as a questionnaire, interview script, or 

observation protocol, nor is it the process by which data are generated and gathered (Alreck & 

Settle, 1995; Rea & Parker, 1992; Sudman, Bradburn, & Schwarz, 1996). Rather, a measure is an 

observed record or trace that serves as imperfect empirical evidence of a construct. 
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Construct Validity 

 Construct validity refers to the correspondence between a construct and a measure taken 

as evidence of the construct (Cronbach & Meehl, 1955; Nunnally, 1978; Schwab, 1980). 

Construct validity does not refer to the inherent properties of a measure or instrument. Instead, it 

concerns the degree to which a measure represents a particular construct and allows credible 

inferences regarding the nature of the construct (Cronbach, 1971; Cronbach & Meehl, 1955). 

Thus, a particular measure may demonstrate different degrees of construct validity depending on 

the construct for which the measure is taken as evidence. Moreover, construct validity is not an 

all-or-nothing phenomenon, such that a measure that demonstrates certain properties is deemed 

construct valid. Rather, construct validity is a matter of degree based on the cumulative evidence 

bearing on the correspondence between a construct and measure (Cronbach & Meehl, 1955).  

Finally, construct validation is not a task that is accomplished and then set aside. To the contrary, 

construct validation is an ongoing process, such that each application of an instrument provides 

further evidence regarding the construct validity of the instrument and the measures it generates 

(Cronbach, 1989; Nunnally, 1978). 

 Construct validity may be separated into trait validity and nomological validity 

(Campbell, 1960). Trait validity focuses on the relationship between the construct and measure 

isolated from the broader theory in which the construct is embedded. Evidence for trait validity is 

provided by convergence of measures intended to represent the same construct and divergence 

among measures designed to represent different constructs. Convergence of measures sharing the 

same method (e.g., all self-report) indicates reliability, whereas convergence of measures using 

different methods represents convergent validity (Campbell, 1960; Campbell & Fiske, 1959).  

Divergence among measures using the same or different methods demonstrates discriminant 
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validity (Campbell, 1960; Campbell & Fiske, 1959).  Reliability and convergent validity provide 

evidence for a construct acting as a common cause of the measures, and discriminant validity 

provides evidence against the intrusion of other unintended constructs (Messick, 1995).  

Nomological validity is based on evidence that measures of a construct exhibit relationships with 

measures of other constructs in accordance with relevant theory (Carmines & Zeller, 1979; 

Cronbach & Meehl, 1955). Thus, nomological validity entails the evaluation of a measure within 

a broader theory that describes the causes, effects, and correlates of the construct and how they 

relate to one another (Campbell, 1960; Cronbach & Meehl, 1955). 

Construct validity may be distinguished from content validity and criterion-oriented 

validity (Nunnally, 1978). Content validity is the degree to which a measure represents a 

particular domain of content. Content validity is achieved by defining the content domain of 

interest, selecting or developing items that represent the domain, and assembling the items into a 

test, survey, or other instrument. Content validity is not assessed using empirical or statistical 

procedures, but instead relies on “appeals to reason” (Nunnally, 1978, p. 93) that the procedures 

used to develop an instrument ensure that important content has been adequately sampled and 

represented.1  Criterion-oriented validity refers to the relationship between the measure of 

interest and some criterion measure deemed important, such as job performance. Criterion-

oriented validity places less emphasis on the conceptual interpretation of a measure than on its 

ability to predict a criterion. 

Construct validity may be distinguished from other forms of validity that are vital to the 

research process. Cook and Campbell (1979) organize these forms of validity into three broad 

categories. Statistical conclusion validity is whether a study can establish the presence and 

magnitude of the relationship between two variables. Internal validity concerns whether the 



                            Construct Validation 7 

relationship between a presumed cause and effect is free from alternative explanations that 

implicate other causes or methodological artifacts. Finally, external validity is whether the 

findings from a study can be generalized to other samples, settings, and time frames. Because 

these forms of validity do not bear directly on the relationships between constructs and measures, 

they are not discussed further in this chapter (for thorough treatments, see Cook & Campbell, 

1979; Cook, Campbell, & Peracchio, 1990). 

Construct Validation Approaches 

The past several decades have brought significant developments in procedures used to 

assess construct validity. These developments are signified by increasingly sophisticated views 

of the relationship between constructs and measures and advances in statistical procedures for 

assessing reliability and convergent and discriminant validity. Methods for studying nomological 

validity have advanced as well, but these advancements have tracked general developments in 

analyzing relationships among constructs, as marked by the evolution from analysis of variance 

to multiple regression, path analysis, and structural equation modeling (Cohen, 1968; Jöreskog, 

1974; Werts & Linn, 1970; Williams & James, 1994). These developments implicate the whole 

of applied statistics, and reviewing them is well beyond the scope of this chapter. Rather, the 

following discussion tracks the evolution of three core elements of construct validation: (a) the 

specification of the relationship between constructs and measures; (b) reliability; and (c) 

convergent and discriminant validity. These three elements provide a focused treatment of 

construct validation approaches and encompass many important analytical developments that 

deal specifically with mapping constructs onto measures. Moreover, these aspects of construct 

validation should be addressed prior to investigating nomological validity, because if a measure 

does not display construct validity when examined in isolation, it is unwise to embed the 
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measure within a broader theoretical framework. Thus, the elements of construct validation 

examined in this chapter are natural precursors to the essential task of nomological validation 

(Cronbach & Meehl, 1955). 

For expository purposes, the construct validation approaches discussed here are separated 

chronologically into classical, modern, and emerging approaches to construct validation. The 

boundary between classical and modern approaches roughly coincides with the advent of 

confirmatory factor analysis (CFA), and the boundary between modern and emerging approaches 

is marked by developments that increase the complexity of the relationship between constructs 

and measures and relax traditional assumptions that underlie analytical procedures used for 

construct validation.  As will become evident, the classification of construct validation 

approaches into these three time frames reflects their usage in the OB literature more than their 

development in the statistical literature. For instance, although CFA is the hallmark of modern 

approaches to construct validation, its development predates its general use in the OB literature 

by over a decade (Jöreskog, 1969). Likewise, some approaches that are just beginning to emerge 

in the OB literature, such as generalizability theory (DeShon, 2002), can be traced back more 

than three decades (Cronbach, Gleser, Nanda, & Rajaratnam, 1972). These time lags are natural 

for the development and use of methodological procedures in general, and it is hoped that this 

chapter will help accelerate the diffusion of recently developed construct validation procedures 

in OB research. 

Classical Approaches 

Classical approaches to construct validation are rooted in seminal work on measurement 

and psychometric theory of the 1950s and 1960s (e.g., Campbell, 1960; Campbell & Fiske, 1959; 

Cronbach & Meehl, 1955; Lord & Novick, 1968; Nunnally, 1967). This work laid the foundation 
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for conceptualizing and analyzing relationships between constructs and measures and established 

the language of construct validation. These approaches are discussed below. 

Relationship between constructs and measures. The fundamental equation of classical 

measurement theory (Gulliksen, 1950; Lord & Novick, 1968) is as follows: 

 Xi = T + ei (1) 

where Xi is the ith measure of T, T is an unobserved true score, and ei is measurement error, 

which encompasses all sources of variance in Xi other than T. It is assumed that ei is a random 

variable with zero mean and is uncorrelated with T and with the true scores and errors of other 

measures (Lord & Novick, 1968). Figure 1 portrays the relationships between a single true score 

and three measures, along with their associated error terms (in this and subsequent figures, 

variables that signify constructs are represented by circles, and variables that represent measures 

are indicated by squares). As will be seen, Figure 1 provides a useful point of departure for 

comparing classical measurement theory to modern and emerging approaches to construct 

validation. 

--------------------------------- 

Insert Figure 1 about here 

--------------------------------- 

 The interpretation of Equation 1 in terms of the relationship between a construct and 

measure hinges on the meaning of the true score T.  In classical measurement theory (Lord & 

Novick, 1968; Nunnally, 1978), a true score is typically defined as the hypothetical average of an 

infinite number of scores for a particular subject. As the number of scores constituting the 

average approaches infinity, the proportion of error variance in the average approaches zero. 

Therefore, a true score may be interpreted as a subject’s score on Xi that is free from random 
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measurement error. This score might not accurately represent the value of the construct, because 

any systematic errors in Xi, such as mean bias or floor and ceiling effects, become part of the 

hypothetical average that defines the true score (Cronbach et al., 1972). Thus, a true score may 

be interpreted as the value of a construct for a subject if: (a) the measure Xi is unbiased, such that 

repeated measures of Xi converge on the correct value of the construct; and (b) measurement 

errors are uncorrelated with the construct, such that errors do not tend to be positive or negative 

depending on the level of the construct (Lord & Novick, 1968). These assumptions are adopted 

in the following discussion, thereby framing T as the value of the construct of interest. 

Equation 1 allows several useful derivations that provide the basis for understanding the 

correspondence between constructs and measures. We begin with the variance of Xi, which may 

be written as: 

 V(Xi) = V(T + ei) 

           = V(T ) + V(ei) + 2C(T,ei) 

           = V(T ) + V(ei) (2) 

where V(.) and C(.) refer to the variance and covariance, respectively, of a given term for 

multiple subjects. Equation 2 follows from standard rules of covariance algebra and the 

assumption that T and ei are uncorrelated. From Equation 2, it can be seen that the variance of a 

measure is the sum of the variance of the true score and the variance of measurement error. 

Because a true score signifies an error-free measure of a construct, V(T ) indicates the amount of 

variance in X that is attributable to the construct. Naturally, it is desirable for V(T ) to be large 

relative to V(ei). 

Next, consider the covariance of Xi with T, which captures the magnitude of the 

relationship between a measure and its associated construct: 
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 C(Xi,T) = C[(T + ei),T] 

              = C(T,T ) + C(T,ei)  

              = V(T ). (3) 

Equation 3 indicates that the covariance between a measure and its true score, and hence the 

construct of interest, is represented by the variance of the true score. 

Finally, the covariance between two measures, designated here as Xi = Tp + ei and Xj = Tq 

+ ej, may be written as: 

 C(Xi,Xj) = C[(Tp + ei),(Tq + ej)] 

               = C(Tp,Tq) + C(Tp,ej) + C(Tq,ei) + C(ei,ej) 

               = C(Tp,Tq). (4) 

Equation 4 shows that the covariance between the true scores Tp and Tq equals the covariance 

between their respective measures Xi and Xj. Thus, the covariance between the constructs 

underlying two measures is indicated by the covariance between the measures themselves. 

 If Xi and Xj in Equation 4 refer to the same construct, they are termed congeneric, 

meaning their true scores are perfectly correlated but need not have the same value. If Xi and Xj 

have the same true scores, such that Tp = Tq = T, they are termed tau equivalent. Under tau 

equivalence, C(Tp,Tq) = C(T,T ) = V(T ), which indicates that the covariances between all pairs of 

tau equivalent measures have the same value and equal the variance of their common true score. 

These properties also hold for measures that are essentially tau equivalent, which have true 

scores that differ by no more than a constant (Novick & Lewis, 1967). Finally, if Xi and Xj have 

the same true scores as well as the same error variances, such that V(ei) = V(ej) = V(e), they are 

termed parallel. Because parallel measures have equal true score variances and equal error 

variances, the measures themselves also have equal variances, which in turn implies that the 
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covariances and correlations among pairs of parallel measures are equal. These principles and the 

associated derivations form the basis of classical measurement theory and provide the foundation 

for subsequent developments. 

 Reliability. Reliability refers to the proportion of true score variance in a measure. The 

reliability of X may be expressed algebraically as follows: 

 ρXi = V(T )/V(Xi). (5) 

For a single item, ρXi cannot be estimated, given that V(Xi) is known but V(T) is unknown. This 

dilemma spawned various approaches to the estimation of reliability. One approach is based on 

the notion of parallel measures of T. By definition, the correlation between parallel measures 

equals their covariance divided by the product of their standard deviations. As noted previously, 

the covariance between parallel measures equals V(T ), and the variances of parallel measures 

have a common value V(Xi), which in turn implies that the product of their standard deviations is 

also V(Xi). Hence, the correlation between parallel measures equals V(T )/V(Xi) and represents 

the reliability of either measure. This reasoning underlies the alternative forms method of 

reliability estimation (Carmines & Zeller, 1979; Nunnally, 1978). Although simple in concept, 

this approach carries the practical problem of developing measures that meet the rather stringent 

conditions of parallel measurement. 

 One way to address the problem of developing parallel measures is to administer the 

same measure twice, based on the premise that a measure is parallel with itself. This approach 

underlies the test-retest method of reliability estimation, which uses the correlation between a 

measure collected on two occasions as an estimate of the reliability of the measure. The test-

retest approach has several drawbacks, such as the inability to distinguish low reliability from 

actual change in the true score, practice and consistency effects that may inflate test-retest 
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correlations, and the possibility that biases and other artifacts embedded in measurement errors 

are correlated over time, thereby violating a key assumption of classical measurement theory 

(Bohrnstedt, 1983; Nunnally, 1978). 

 An alternative to the test-retest approach is the split-half approach, in which a set of items 

is administered on a single occasion and scores on the items are divided into two subsets. Given 

that the subsets are drawn from the same set, they are considered alternative forms, which means 

that their correlation represents the reliability of either subset. Because the subsets contain fewer 

items than the full set, the correlation between the subsets of items underestimates the reliability 

of a measure created by summing the full set. This underestimation can be corrected by applying 

the Spearman-Brown prophecy formula (Nunnally, 1978): 
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where X1 and X2 are sums of items from the two split halves and 
21 XXr is the correlation between 

these sums. Despite its advantages, the split-half approach carries a fundamental ambiguity, in 

that a set of items can be split in numerous ways, each of which may yield a different reliability 

estimate. 

 The ambiguity of the split-half approach is resolved by Cronbach’s alpha (Cronbach, 

1951), which equals the average of all possible split-half reliability estimates for a set of items. 

Alpha may be interpreted as the proportion of true score variance in a sum of essentially tau 

equivalent items. The intuition behind alpha can be grasped by considering the following sum of 
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The true score T is not indexed because it is assumed to be the same for all Xi. The variance of 



                            Construct Validation 14 

the item sum may be written as: 
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the item sum, and V(T) can be obtained by recalling that, for essentially tau equivalent items, 

V(T) equals the covariance between any two items. Because all interitem covariances are equal 

for essentially tau equivalent items, any one of the covariances will serve as an estimate of V(T). 

In practice, interitem covariances usually vary, in which case it is sensible to use the average 

interitem covariance to represent V(T) (McDonald, 1999). This approach leads to the following 

equation for alpha (Cronbach, 1951): 
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An algebraically equivalent expression can be computed from the variances of the items and 

their sum (Cronbach, 1951; Nunnally, 1978): 
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The assumption of essential tau equivalence is crucial to alpha. To the extent this assumption is 

violated, alpha underestimates the reliability of the item sum (Heise & Bohrnstedt, 1970). Hence, 
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alpha should be considered a lower bound estimate of reliability and equals reliability when the 

items constituting the sum are essentially tau equivalent. 

 Convergent and discriminant validity. Classical approaches to construct validation have 

generally relied on two methods for assessing convergent and discriminant validity. One method 

involves submitting measures to principal components analysis or common factor analysis and 

determining whether measures of the same construct cluster together and measures of different 

constructs separate from one another. The principal components model may be written as follows 

(Harman, 1976; Kim & Mueller, 1978): 

 k1j XXXC jk2j2j1 b...bb +++=  

      i

k

i
Xji

1
b

=
∑= . (11) 

where Cj represents the jth principal component and bji is a coefficient linking the ith measure to 

the jth component. Equation 11 shows that a principal component is treated as a weighted linear 

combination of measures, and measurement error is disregarded. In contrast, the common factor 

model is as follows (Harman, 1976; Kim & Mueller, 1978): 
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where Fj represents the jth common factor, bij is a coefficient linking the ith measure to the jth 

factor, Ui is the uniqueness of Xi, or the part of Xi that is not explained by the common factors, 

and di is a coefficient linking Ui to Xi. Ui combines random measurement error and measure 

specificity, which refers to stable sources of variance in a particular Xi that are not shared with 

other Xi. Because the common factor model incorporates measurement error and treats measures 

as outcomes of factors, it is more consistent with classical measurement theory, as captured by 
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Equation 1. Nonetheless, principal components analysis and common factor analysis typically 

yield similar conclusions regarding the convergence and divergence of measures (Velicer & 

Jackson, 1990), although they tend to yield different estimates of population parameters that 

quantify the relationships between constructs and measures (Mulaik, 1990; Snook & Gorsuch, 

1989; Widaman, 1993). 

 A more systematic approach to assessing convergent and discriminant validity is based 

on the multitrait-multimethod (MTMM) matrix (Campbell & Fiske, 1959). A MTMM matrix 

arranges correlations among measures of several traits, or constructs, using different methods 

such that criteria for assessing convergent and discriminant validity can be readily applied. Table 

1 shows a hypothetical MTMM matrix for three traits labeled A, B, and C and three methods 

designated 1, 2, and 3. The solid triangles contain heterotrait-monomethod values, which are 

correlations among measures of different traits using the same method. The dashed triangles 

contain heterotrait-heteromethod values, which are correlations among measures of different 

traits using different methods. In boldface are monotrait-heteromethod values, which represent 

correlations between measures of the same trait using different methods. These values constitute 

the validity diagonal within the heteromethod blocks formed by the correlations between all 

measures obtained from a given pair of methods. Finally, the parentheses contain monotrait-

monomethod values, which signify the reliabilities of the measures. 

 Campbell and Fiske (1959) proposed the following criteria for assessing convergent and 

discriminant validity using the MTMM matrix. Convergent validity is evidenced when the 

monotrait-heteromethod values are significantly different from zero and large enough to warrant 

further examination of validity. This criterion demonstrates that measures of the same construct 

using different methods are related.  Discriminant validity rests on three criteria. First, monotrait-
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heteromethod values should be larger than values in the same row and column in the heterotrait-

heteromethod triangles. For instance, rA1A2 in Table 1 should be larger than rA1B2, rA1C2, rB1A2, 

and rC1A2. This criterion establishes that measures of the same construct using different methods 

correlate more highly than measures of different constructs using different methods. Second, the 

monotrait-heteromethod values for each measure should be larger than values in the heterotrait-

monomethod triangles that entail that measure. To illustrate using the measure of construct A 

using method 1, rA1A2 and rA1A3 should be larger than rA1B1 and rA1C1. This criterion shows that a 

measure correlates more highly with measures of the same construct using different methods 

than with measures of different constructs that happen to use the same method. Third, the pattern 

of correlations among the traits in each heterotrait triangle should be the same regardless of the 

method employed. For instance, if the relative magnitudes of the correlations among constructs 

A, B, and C measured with method 1 are rA1B1 > rA1C1 > rB1C1, then the same ordering should be 

obtained for methods 2 and 3. This criterion may also be applied to individual measures. For 

example, if construct A measured with method 1 correlates more strongly with construct B than 

with construct C when both are measured with method 1 (i.e., rA1B1 > rA1C1), then it should also 

correlate more strongly with construct B than with construct C when the two are measured with 

methods 2 and 3 (i.e., rA1B2 > rA1C2 and rA1B3 > rA1C3 should both hold). In addition to these 

criteria for convergent and discriminant validity, Campbell and Fiske (1959) pointed out that 

differences between corresponding values in the monomethod and heteromethod triangles 

provide evidence for method variance. Returning to Table 1, if rA1B1 is larger than rA1B2, then the 

correlation between measures of constructs A and B using method 1 is presumably inflated by 

their reliance on the same method. Differences between correlations in a MTMM matrix can be 

tested using procedures for comparing dependent correlations (Steiger, 1980), and differences in 
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patterns of correlations can be tested using Kendall’s coefficient of concordance, which yields a 

chi-square statistic representing the difference between two rankings (Bagozzi, Yi, & Phillips, 

1991; McNemar, 1962). 

 The Campbell and Fiske (1959) procedure for assessing convergent and discriminant 

validity has many important strengths, perhaps the foremost of which is the distinction between 

traits and methods as two systematic sources of variance in a measure. However, the procedure 

has several shortcomings. First, it does not quantify the degree to which convergent and 

discriminant validity have been demonstrated (Bagozzi et al., 1991; Schmitt & Stults, 1986). 

Instead, the procedure yields a count of the number of confirming and disconfirming 

comparisons involving the correlations of the MTMM matrix. Second, the procedure does not 

separate method variance from random measurement error (Schmitt & Stults, 1986).  This 

shortcoming might be addressed by conducting MTMM analyses using disattenuated correlations 

(Althauser & Heberlein, 1970; Jackson, 1969), but doing so prevents the use of conventional 

statistical tests for comparing correlations. Third, and perhaps most important, the Campbell and 

Fiske (1959) criteria yield unambiguous conclusions regarding convergent and discriminant 

validity only under highly restrictive assumptions regarding the magnitudes of trait and method 

effects and the correlations between method factors (Althauser, 1974; Althauser & Heberlein, 

1970; Schmitt & Stults, 1986). Many of these shortcomings were recognized by Campbell and 

Fiske (1959), but their resolution awaited the application of CFA to MTMM matrices, which is a 

hallmark of modern approaches to construct validation. 

Modern Approaches 

 Modern construct validation approaches were spawned by the advent of CFA, which 

brought many important developments to the construct validation process. These developments 
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are discussed in general sources on CFA (Bollen, 1989; Jöreskog, 1971, 1974; Long, 1983) and 

follow logically from the application of CFA to reliability and construct validity (Bagozzi, Yi, & 

Phillips, 1991; Schmitt & Stults, 1986). These developments and their relevance to construct 

validation are discussed below. 

 Relationships between constructs and measures. In CFA, the relationship between a 

construct and measure may be expressed as: 

 Xi = λiξ + δi (13) 

Although Equation 13 is similar to Equation 1 based on classical measurement theory, several 

differences should be noted. First, ξ does not signify the hypothetical average of Xi, but instead 

represents a latent variable or factor that corresponds to a theoretical construct (Bollen, 1989; 

Jöreskog & Sörbom, 1996). Second, unlike Equation 1, Equation 13 includes the coefficient λi 

on ξ, which allows the relationships between ξ and the Xi to vary. Third, whereas the ei in 

Equation 1 represents random measurement error, the δi in Equation 13 signify the uniquenesses 

of the Xi, which are composed of random measurement error and measurement specificity (i.e., 

stable aspects of each Xi that are not explained by the common factor ξ).  It is assumed that the δi 

have zero means and are uncorrelated with one another and with ξ, analogous to the assumptions 

underlying classical measurement theory (Bollen, 1989; Jöreskog & Sörbom, 1996). Figure 2 

displays the relationship between a construct and three measures, and comparing Figure 1 to 

Figure 2 further reinforces the basic distinctions between classical and modern approaches to 

specifying relationships between constructs and measures. 

------------------------------------- 

Insert Figure 2 about here 

-------------------------------------- 
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 Drawing from the assumptions underlying Equation 13, several useful expressions can be 

derived, similar to those developed under classical measurement theory. First, the variance of Xi 

can be written as: 

 V(Xi) = V(λiξ + δi) 

           = λi
2V(ξ) + V(δi) + 2λiC(ξ,δi) 

           = λi
2V(ξ) + V(δi) 

           = λi
2φ + θδii

 (14) 

where φ represents the variance of ξ and θδii
 is the variance of δi, respectively (Bollen, 1989; 

Jöreskog & Sörbom, 1996). According to Equation 14, the amount variance in Xi attributable to 

the construct ξ is represented by λi
2φ.  Next, the covariance between Xi and ξ is: 

 C(Xi,ξ) = C[(λiξ + δi),ξ] 

              = λiC(ξ,ξ ) + C(ξ,δi)  

              = λiV(ξ ) 

              = λiφ. (15) 

Finally, the covariance between two measures Xi = λiξp + δi and Xj = λjξq + δj is: 

 C(Xi,Xj) = C[(λiξp + δi),(λjξq + δj)] 

               = λiλjC(ξp,ξq) + λiC(ξp,δj) + λjC(ξq,δi) + C(δi,δj) 

               = λiλjC(ξp,ξq) 

               = λiλjφpq (16) 

where φpq is the covariance between ξp and ξq.  If Xi and Xj refer to the same construct, such that 

ξp = ξq = ξ, then Equation 16 simplifies to: 

 C(Xi,Xj) = λiλjφ. (17) 
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Equations 14, 16, and 17 may be used to calculate the covariance matrix among the measures as 

reproduced by the CFA model, which provides the basis for evaluating the fit of the model to the 

data (Jöreskog & Sörbom, 1996). 

 The foregoing equations depict the Xi as congeneric, given that: (a) each Xi can have a 

different true score, since the composite term λiξ can vary across measures; and (b) the variances 

of the measurement errors can differ, as depicted by the θδii
. If the Xi were tau equivalent, the λi 

would be equal, and if the Xi were parallel, the θδii
 would also be equal. These assumptions can 

be readily examined with CFA by imposing equality constraints on the relevant parameters and 

testing the decrease in model fit using the chi-square difference test (Jöreskog & Sörbom, 1996). 

 Reliability. Because Equation 11 relaxes the assumption of tau equivalence, it leads to a 

less restrictive formula for the reliability of an item sum. This formula can be derived by 

extending Equation 13 to represent the sum of k congeneric items: 
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In Equation 19, the first term on the right represents the amount of true score variance in the item 

sum. Thus, the proportion of true score variance in the item sum may be written as: 
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Coefficient omega (ω) represents the proportion of true score variance in a sum of k congeneric 

items (McDonald, 1970). If the items are tau equivalent, omega reduces to alpha. Otherwise, 

omega gives a higher estimate of reliability than that given by alpha, depending on the degree to 

which the λi differ from one another. An alternative expression for ω is obtained by substituting 

Equation 19 for the denominator of Equation 20 (Jöreskog, 1971; McDonald, 1970): 
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This substitution rests on the assumption that the δi are mutually independent. If this assumption 

does not hold, then Equation 21 will yield a biased estimate of reliability (Raykov, 2001). This 

bias is avoided by Equation 20, which incorporates the correct expression for the variance of the 

item sum regardless whether the δi are independent. 

 CFA also yields estimates of the reliabilities of the individual Xi. As shown by Equation 

14, the variance of Xi equals λi
2φ + θδii

, which in turn implies that the proportion of true score 

variance in Xi is λi
2φ/V(Xi). The quantities needed to calculate this ratio can be obtained from a 

CFA, provided multiple Xi are available to achieve model identification (Bollen, 1989). Note that 

this approach limits true score variance to variance attributable to the common factor ξ, thereby 

treating measurement specificity and random measurement error in the same manner. 

 Convergent and discriminant validity. Shortcomings of the Campbell and Fiske (1959) 

procedure for analyzing MTMM matrices prompted the development of alternative approaches.  

Of these, CFA has emerged as the most widely used approach (Schmitt & Stults, 1986). This 
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approach treats each measure as a function of a trait factor, a method factor, and measurement 

error, as indicated by the following equation (Jöreskog, 1971; Werts & Linn, 1970): 

 Xi = λiTpξTp + λiMqξMq + δi (22) 

where ξTp is trait p, ξMq is method q, and λiTp and λiMq are coefficients relating Xi to ξTp and ξMq, 

respectively. Thus, Xi has two systematic sources of variance, one due to the substantive trait or 

construct of interest, and another generated by the method of data collection. These sources of 

variance, along with variance due to the error term δi, can be seen by taking the variance of 

Equation 22: 

 V(Xi) = V(λiTpξTp + λiMqξMq + δi) 

           = λiTp
2V(ξTp) + λiMq

2V(ξMq) + 2λiTpλiMqC(ξTp,ξMq) + V(δi) 

           = λiTp
2φTp + λiMq

2φMq + 2λiTpλiMqφTpMq + θδii
. (23) 

Models that include correlations between traits and methods are particularly prone to estimation 

problems, such as nonconvergence and improper solutions (Schmitt & Stults, 1986; Widaman, 

1985). Therefore, traits are usually specified as independent of methods (Brannick & Spector, 

1990; Marsh & Bailey, 1991; Schmitt & Stults, 1986), whereby Equation 23 simplifies to: 

 V(Xi) = λiTp
2φTp + λiMq

2φMq + θδii
. (24) 

In Equation 24, the amount of trait variance in Xi is represented by λiTp
2φTp, and the amount of 

method variance is captured by λiMq
2φMq. If the trait and method factors are standardized, such 

that their variances equal unity, then the amount of trait variance and method variance in Xi 

equals its squared loadings on these two factors (λiTp
2 and λiMq

2, respectively). Dividing these 

quantities by V(Xi) gives the proportion of trait and method variance in Xi. 

 Equation 22 also provides the basis for decomposing the correlations in a MTMM matrix 

into trait and method components (Althauser, 1974; Althauser & Heberlein, 1970; Alwin, 1974; 
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Kalleberg & Kluegel, 1975; Schmitt, 1978; Werts & Linn, 1970).  This decomposition yields 

important insights regarding the interpretation of these correlations and their implications for the 

criteria developed by Campbell and Fiske (1959). The process begins by introducing a second 

measure, Xj, which is expressed as follows: 

 Xj = λjTrξTr + λjMsξMs + δj. (25) 

Analogous to Xi, Xj is a function of a trait factor ξTr, a method factor ξMs, and measurement error 

δj. Assuming measurement errors are random and trait factors are independent of method factors, 

the covariance between Xi and Xj may be written as: 

 C(Xi,Xj) = λiTpλjTrφTpTr + λiMqλjMsφMqMs. (26) 

By using different subscripts on trait factors and method factors, Equation 25 applies to measures 

that represent different traits and methods, corresponding to the heterotrait-heteromethod values 

in a MTMM matrix. If Xi and Xj share the same method, Equation 26 becomes: 

 C(Xi,Xj) = λiTpλjTrφTpTr + λiMqλjMqφMq (27) 

where the subscript q indicates the shared method. Thus, Equation 26 refers to the heterotrait-

monomethod values in a MTMM matrix. Conversely, if Xi and Xj represent the same trait, 

Equation 26 simplifies to: 

 C(Xi,Xj) = λiTpλjTpφTp + λiMqλjMsφMqMs (28) 

where the subscript p identifies the shared trait. Equation 28 corresponds to the monotrait-

heteromethod values, or validity diagonals, of a MTMM matrix. 

 To illustrate how Equations 26, 27, and 28 can be used to decompose correlations in a 

MTMM matrix, consider the model in Figure 3, which has three trait factors and three method 

factors. For simplicity and without loss of generality, we assume all factors and measures are 

standardized. Recall that convergent validity is inferred from correlations between measures of 
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the same trait using different methods. Applying Equation 28 to the correlation between X1 and 

X4 yields: 

 rX1X4 = λ1T1λ4T1 + λ1M1λ4M2φM1M2. (29) 

As Equation 29 shows, the correlation between X1 and X4 has two components, one driven by the 

loadings of X1 and X4 on their common trait, and another that represents their loadings on their 

respective methods and the correlation between the methods.  These two components correspond 

to the two pathways that connect X1 and X4 in Figure 3 (these pathways may be derived formally 

using the tracing rule; Blalock, 1969). It is the former component, not the latter, that signifies the 

convergent validity of X1 and X4, because convergent validity frames the correlation between two 

measures in terms of their shared trait (Alwin, 1974; Marsh & Grayson, 1995). Assuming X1 and 

X4 contain some degree of method variance, such that λ1M1 and λ4M2 are nonzero, the correlation 

between X1 and X4 gives unambiguous evidence for convergent validity only if the correlation 

between the method factors is zero (Schmitt & Stults, 1986), which is unlikely in practice. 

------------------------------------- 

Insert Figure 3 about here 

-------------------------------------- 

 Similar procedures may be applied to comparisons among correlations taken as evidence 

for discriminant validity. For instance, the first criterion for discriminant validity stipulates that 

monotrait-heteromethod correlations should be larger than heterotrait-heteromethod correlations. 

This criterion is illustrated by comparing the correlation between X1 and X4 to the correlation 

between X1 and X5. The former correlation is shown in Equation 29, and the latter is obtained by 

applying Equation 26, which yields: 

 rX1X5 = λ1T1λ5T2φT1T2 + λ1M1λ5M2φM1M2. (30) 
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Thus, the difference between rX1X4 and rX1X5 is as follows: 

 rX1X4 – rX1X5 = λ1T1λ4T1 + λ1M1λ4M2φM1M2 – λ1T1λ5T2φT1T2 – λ1M1λ5M2φM1M2 

   = λ1T1(λ4T1 – λ5T2φT1T2) + λ1M1φM1M2(λ4M2 – λ5M2). (31) 

As Equation 31 shows, the difference between rX1X4 and rX1X5 is a function of terms representing 

the loadings and correlations of the trait and method factors underlying X1, X4, and X5. Of these 

terms, φT1T2 is the most relevant to discriminant validity, because this term can be used to assess 

whether the correlation between the two traits underlying the measures is less than unity, thereby 

indicating that the traits are distinct (Marsh & Grayson, 1995; Werts & Linn, 1970). Equation 31 

provides this information only under restrictive conditions. For example, if all trait and method 

loadings have the same value λ (Althauser & Heberlein, 1970), Equation 31 simplifies to: 

 rX1X4 – rX1X5 = λ2(1 – φT1T2). (32) 

For a particular loading λ, Equation 32 is a function of the term (1 – φT1T2) and therefore captures 

discriminant validity (Althauser, 1974). Equation 32 also results when loadings on the trait 

factors are equal and either X1 has no method variance or the method factors are uncorrelated. 

Because Equation 32 is based on conditions that are highly restrictive, it is rarely useful for 

assessing discriminant validity (Althauser, 1974; Althauser & Heberlein, 1970). A more direct 

approach is to assess whether φT1T2 is statistically and meaningfully less than unity (Bagozzi et 

al., 1991; Kenny, 1976; Schmitt, 1978; Werts & Linn, 1970). The procedure used to obtain 

Equation 31 can be also used to express the second and third criteria for discriminant validity in 

equation form (Althauser, 1974; Kalleberg & Kluegel, 1975; Schmitt, 1978). In both cases, the 

resulting expressions are functions that yield a direct test of discriminant validity only under 

highly restrictive conditions. 

 The CFA approach to analyzing MTMM matrices also provides tests of overall model fit, 
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thereby indicating whether the specified trait and method factor structure is consistent with the 

data. The specified model can also be compared to alternative models that impose various 

restrictions (Althauser, Heberlein, & Scott, 1971; Schmitt, 1978; Widaman, 1985). Widaman 

(1985) proposed a framework that separately specifies trait and method factors as follows: (a) no 

factors, such that measures assigned to each trait or method are uncorrelated; (b) factors with 

correlations fixed to unity, which translates into a single general trait factor or method factor; (c) 

factors with correlations fixed to zero, such that the trait or method factors are orthogonal; and 

(d) unconstrained factor correlations, such that correlations among trait factors and among 

method factors are freely estimated. Applying these specifications to trait factors and method 

factors yields 16 models with different representations of trait variance, method variance, and 

convergent and discriminant validity.2 For instance, fixing trait correlations to unity creates a 

model in which trait factors exhibit no discriminant validity. Comparing the chi-square from this 

model to one from a model in which trait correlations are freely estimated yields an omnibus test 

of discriminant validity. In addition, the difference in chi-squares between models with and 

without trait factors provides an omnibus test of convergent validity. Analogously, the chi-square 

difference between models with and without method factors yields an omnibus test of method 

variance. 

 Although the CFA approach to analyzing MTMM matrices is appealing in several 

respects, it also suffers from a number of problems. First, the residual terms in the CFA model 

confound measurement specificity with random measurement error (Bagozzi et al., 1991; Marsh 

& Hocevar, 1988). This confounding occurs because the model represents reliability not as the 

internal consistency of the items that constitute each measure, but instead as the variance in each 

measure explained by its trait and method factors. As a result, low loadings might reflect small 
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trait or method effects, attenuation due to measurement error, or some combination thereof 

(Marsh & Hocevar, 1988). Second, although the CFA model corrects the correlations among trait 

and method factors for measurement error, it does not remove the effects of measurement error 

from the correlations among the measures that constitute the MTMM matrix, because these 

measures are used as single indicators (Marsh & Hocevar, 1988). Third, the interpretation of trait 

and method factors is often ambiguous. For example, a set of correlated method factors might 

reflect a general trait factor not captured by the separate trait factors in the model (Marsh, 1989). 

The converse holds as well, such that a set of correlated trait factors might represent a general 

method effect. Fourth, the CFA model treats trait and method effects as additive, whereas trait 

and method factors might combine multiplicatively (Campbell & O’Connell, 1967, 1982). 

Perhaps the most serious problem with the CFA model is that, in most cases, the model 

suffers from nonconvergence and improper solutions, such as negative error variances, factor 

correlations that exceed unity, and excessively large standard errors (Brannick & Spector, 1990; 

Marsh & Bailey, 1991; Wothke, 1987). This problem is particularly prevalent for models that 

include correlations between trait and method factors (Marsh, 1989), but it is also common for 

models in which trait factors are uncorrelated with method factors (Brannick & Spector, 1990; 

Marsh & Bailey, 1991; Wothke, 1987).  This problem can be traced to identification issues 

inherent in the CFA model (Grayson & Marsh, 1994; Kenny & Kashy, 1992; Millsap, 1992; 

Wothke, 1987). Theoretically, the model is identified if it contains at least three trait factors and 

three method factors (Alwin, 1974; Werts & Linn, 1970). However, if the parameters in the 

model follow certain patterns, the model is empirically underidentified, meaning that a unique 

set of estimates cannot be obtained even though the model is theoretically identified. For 

example, if the correlations among the trait factors and among the method factors are unity and 
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the trait and method factors are independent, the CFA model is equivalent to an exploratory 

factor model with two orthogonal factors. This model is not identified unless one of the loadings 

is fixed to establish the orientation of the factors (Wothke, 1987). Likewise, the model is not 

identified if, for each trait and method factor, the loadings are equal for all measures assigned to 

that factor (Kenny & Kashy, 1992). This pattern is a special case of a factor loading matrix that 

is not of full column rank, which is sufficient to establish that the model is not identified 

(Grayson & Marsh, 1994). Even if the loadings do not exactly conform to a pattern that produces 

deficient column rank, as would be expected when loadings are freely estimated using real data, 

estimation problems are likely if the loadings roughly approximate such a pattern (Kenny & 

Kashy, 1992). One way to address these estimation problems is to impose constraints on the trait 

and method factor loadings. For instance, Millsap (1992) identified conditions for rotational 

uniqueness for the CFA model that translate into equality constraints on selected trait and 

method loadings. Although rotational uniqueness does not solve the general identification 

problem (Bollen & Jöreskog, 1985), it can avoid improper solutions common in CFA models 

(Millsap, 1992). Estimation problems with the CFA model can also be addressed by adopting 

different models for analyzing MTMM data, as discussed in the following section. 

Emerging Approaches 

 Emerging approaches to construct validation are characterized by advances in CFA that 

relax traditional assumptions regarding the form of the relationship between constructs and 

measures and address shortcomings that became evident in initial applications of CFA to 

estimating reliability and convergent and discriminant validity. These advancements and their 

relevance to construct validation are summarized below. 

 Relationships between constructs and measures. Most applications of CFA specify the 
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relationship between constructs and measures according to Equation 13. However, alternative 

specifications that elaborate or reframe this relationship have gained increased attention. One 

alternative introduces an intercept into the equation relating constructs to measures, as follows: 

 Xi = τi + λiξ + δi. (33) 

Intercepts are useful when the means of ξ and the Xi are of interest, as in studies that compare the 

means of constructs between samples, such as experimental groups, or within a sample over 

time. To estimate models with means and intercepts, the input covariance matrix of the Xi is 

supplemented by a vector of means, and parameters representing intercepts and means are freed, 

subject to restrictions required to achieve model identification (Bollen, 1989; Jöreskog & 

Sörbom, 1996). 

Another alternative to Equation 13 reverses the direction of the relationship between the 

construct and measure, as depicted by the following equation: 

 η = γiXi + ζ (34) 

where η is the construct, γi is a coefficient linking the measure to the construct, and ζ is that part 

of η not captured by Xi  (Bollen & Lennox, 1991; Edwards & Bagozzi, 2000; MacCallum & 

Browne, 1993). Figure 4 depicts the relationship between a construct and three measures 

according to Equation 34.  The Xi in Equation 34 are termed formative measures because they 

form or induce the construct (Fornell & Bookstein, 1982). In contrast, the Xi in Equation 13 are 

reflective measures, meaning they reflect or manifest the construct. In OB research, measures 

have been treated as formative when they describe different facets or aspects of a broad concept, 

as when measures of facet satisfaction are combined to represent overall job satisfaction (Law, 

Wong, & Mobley, 1998). Although simple in principle, formative measures introduce complex 

issues of model identification and interpretation (Edwards, 2001; MacCallum & Browne, 1993). 
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Moreover, treating measures as formative implicitly ascribes causal potency to scores, which is 

difficult to defend from a philosophical perspective (Edwards & Bagozzi, 2000). In most cases, 

formative measures of a general construct are better treated as reflective measures of specific 

constructs that cause the general construct (Blalock, 1971; Edwards & Bagozzi, 2000). 

------------------------------------- 

Insert Figure 4 about here 

-------------------------------------- 

 A third alternative to Equation 13 incorporates indirect relationships between constructs 

and measures (Edwards & Bagozzi, 2000). This alternative is exemplified by second-order factor 

models in which measures are assigned to several specific constructs that in turn serve as 

indicators of a general construct (Rindskopf & Rose, 1988). Figure 5 illustrates a second-order 

factor model with one second-order factor, three first-order factors, and three measures of each 

first-order factor. A second-order factor model is represented by the following two equations: 

 ηj = γjξ + ζj (35) 

 yi = λijηj + εi (36) 

where ξ is a general construct, the ηj are specific constructs, and the yi are measures of the ηj. 

The indirect relationships between ξ and the yi may be seen by substituting Equation 35 into 

Equation 36, which yields: 

 yi = λij(γjξ + ζj) + εi 

 yi = λijγjξ + λijζj + εi. (37) 

Equation 37 shows that the relationships between ξ and the yi are represented by the products 

λijγj. Equation 37 also shows that, when viewed as indicators of ξ, the yi have two sources of 

error: (a) λijζj, which captures aspects of the ηj not explained by ξ; and (b) εi, which represents 
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measurement error in the usual sense. The basic model illustrated here can be extended to 

include multiple second-order factors. In addition, indirect relationships can be specified for 

formative measures that induce specific constructs that in turn combine to form a general 

construct (Edwards & Bagozzi, 2000). However, it is often more reasonable to treat such 

measures as reflective indicators of specific constructs that form a general construct, in which 

case the relationships between the measures and general construct are spurious rather than 

indirect (Edwards, 2001; Edwards & Bagozzi, 2000). 

------------------------------------- 

Insert Figure 5 about here 

-------------------------------------- 

 Equation 13 may also be expanded to include sources of systematic variance other than ξ. 

A prominent example of this approach is provided by Equation 22, which includes trait and 

method factors as systematic sources of variance in Xi. This example may be viewed as a special 

case of the family of models encompassed by generalizability theory (Cronbach et al., 1972). 

Generalizability theory treats measures as samples from a universe of admissible observations. 

The universe is defined in terms of facets that describe conditions believed to influence scores. 

Examples of such facets include items, persons, traits, methods, raters, and time. Building on this 

premise, generalizability theory specifies a measure as a function of an overall universe score 

(i.e., the mean score across facets), facet scores representing the deviation of each measure from 

the universe score, interactions among facets, and a residual. Generalizability theory provides a 

framework for decomposing the variance of a measure into variance attributable to the main and 

interactive effects of facets and the residual. These variance components can be used to calculate 

generalizability coefficients that represent the dependability of measures for different conditions 
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of measurement, of which coefficient alpha is a special case.  Although generalizability theory 

was developed over three decades ago, it has yet to gain widespread usage, due in part to the 

technical nature of its initial presentation (Cronbach et al., 1972). Fortunately, introductory 

treatments have become available (DeShon, 2002; Marcoulides, 2000; Shavelson & Webb, 

1991), and linkages between generalizability theory and methods more familiar to OB 

researchers, such as CFA, are being explored (DeShon, 1998; Marcoulides, 1996). 

 Finally, Equation 13 may be respecified to capture nonlinear relationships between 

constructs and measures. Although nonlinear relationships are rarely considered within the 

context of construct validation in OB research, the required statistical foundations have been in 

place for decades. For instance, McDonald (1963, 1967a; Etezadi-Amoli & McDonald, 1983) 

developed nonlinear factor analytic models in which measurement equations analogous to 

Equation 13 are supplemented by factors raised to various powers, such as squares, cubics, and 

so forth. McDonald (1967b) adapted this approach to accommodate interactions, such that the 

measurement equations contain products of two or more factors. Nonlinear models also form the 

basis of item response theory (IRT; Drasgow & Hulin, 1990; Embretson & Reise, 2000; Lord, 

1952; Lord & Novick, 1968), which focuses on relationships between constructs and categorical 

measures. For dichotomous measures, IRT specifies the relationship as a logistic or normal ogive 

function bounded by the two scores the dichotomous measure can take. This function may be 

conceived as the probability of a positive (e.g., correct) response for a particular level of the 

underlying construct. IRT models are also available for polychotomous measures that have 

multiple nominal or ordinal response options (Drasgow & Hulin, 1990; Thissen & Steinberg, 

1984; Zickar, 2002). Although IRT models were developed to accommodate violations of 

multivariate normality caused by items with a small number of discrete response options, these 
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models can also be applied to continuous measures to uncover nonlinearities in the relationship 

between the measure and its underlying construct. For instance, IRT functions associated with 

each level of an agree-disagree scale can be compared to determine whether the shape and 

spacing of the functions is consistent with a linear or nonlinear relationship between the 

construct and measure (Drasgow & Hulin, 1990; Zickar, 2002).  Although such applications of 

IRT remain infrequent (Drasgow & Hulin, 1990), they hold promise for scrutinizing the linearity 

assumptions underlying most models relating constructs to measures. 

 Reliability. Classic and modern approaches to reliability estimation focus on the 

proportion of true score variance in an item sum, as represented by alpha and omega. However, 

the relevance of this quantity is questionable when items are used as reflective measures of latent 

variables in structural equation models. Because these models do not incorporate item sums, the 

proportion of true score variance contained in these sums is less relevant than the proportion of 

true score variances captured by the individual items themselves. Nonetheless, it is worthwhile to 

consider the proportion of true score variance captured by the items collectively. This quantity 

can be estimated using principles of multivariate regression analysis, which provides multivariate 

R2 values for the proportion of variance explained in a set of dependent variables by one or more 

independent variables (Cohen, 1982; Dwyer, 1983). Applying this approach to the relationship 

between a construct and a set of measures yields the following equation: 

 
|ˆ|

|ˆ||ˆ| δ2

Σ
Θ−Σ

=mR  (38) 

where R2
m   represents the multivariate R2, |ˆ| Σ  is the determinant of  reproduced covariance matrix 

of the Xi, and |ˆ| δΘ  is the determinant of the covariance matrix of the δi (which usually contains 

the variances of the δi along the diagonal and zeros elsewhere). The determinant of a covariance 



                            Construct Validation 35 

matrix may be interpreted as the generalized variance of the variables that constitute the matrix 

(Cohen, 1982). Thus, the numerator of Equation 38 is the generalized total variance of the Xi as 

implied by the model minus the generalized unexplained variance of the Xi.  The difference 

between these quantities is therefore the generalized variance of the Xi explained by ξ. Equation 

38 divides the generalized explained variance by the generalized total variance, such that R2
m   

represents a multivariate analog to R2.  R2
m   is a special case of the coefficient of determination, 

which captures the total effect of the exogenous variables on the endogenous variables in a 

structural equation model (Bollen, 1989; Jöreskog & Sörbom, 1996).  The reasoning underlying 

Equation 38 may also be applied to estimate the proportion of variance in a set of first-order 

factors explained by a second-order factor, corresponding to ηj and ξ in Equation 35 (Edwards, 

2001). 

 When measures are formative rather than reflective, as in Equation 34, the latent variable 

η is not a construct that is free from measurement error, but instead is a weighted composite that 

incorporates all the variance of the Xi, including variance that represents measurement error. If 

reliability estimates of the Xi are available, it is possible to identify the proportion of variance in 

η that represents measurement error in the Xi, using principles of covariance algebra such as 

those used to derive omega. Nonetheless, this measurement error is carried into η and therefore 

can bias parameter estimates for models in which η is embedded. One solution to this problem is 

to treat each Xi as a reflective indicator of a ξi and fix the variances of the δi to nonzero values 

that represent the amount of error variance in the Xi (Edwards, 2001; Edwards & Bagozzi, 2000). 

The ξi are then treated as causes of η and do not bring measurement error into the composite they 

form. For such models, it is informative to estimate the proportion of variance in the ξi as a set 

captured by the formative construct η. This quantity is represented by the adequacy coefficient, 
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here labeled R2
a (Edwards, 2001). R2

a is used in canonical correlation analysis to represent the 

relationship between a set of variables and their associated canonical variate (Thompson, 1984) 

and is algebraically equivalent to the percentage of variance captured by a principal component 

(Kim & Mueller, 1978). For the relationship between η and a set of ξi, R2
a can be calculated by 

summing the squared correlations between η and each ξi and dividing by the number of ξi. The 

information necessary to calculate R2
a is available from the covariance matrix of η and ξi reported 

by programs such as LISREL (Jöreskog & Sörbom, 1996). 

 Convergent and discriminant validity. As noted previously, analyzing MTMM matrices 

using the standard CFA model with correlated traits and correlated methods (hereafter termed the 

CTCM model) suffers from problems of nonconvergence and improper solutions. To overcome 

these problems, alternatives to the CTCM model have been proposed. One alternative is the 

correlated uniqueness (CU) model (Kenny, 1976; Marsh, 1989), which replaces method factors 

with correlations among the residual terms for measures collected using the same method. Figure 

6 portrays the CU model for measures representing three traits and three methods. When three 

methods are involved, the CU model is mathematically equivalent to a CFA model with 

correlated trait factors and uncorrelated method factors (i.e., a CTUM model; Marsh & Bailey, 

1991). With more than three factors, the CU model can be compared to the CTUM model to test 

whether the measures are congeneric with respect to the method factors, meaning that each 

method factor adequately explains the covariation among measures collected using that method 

after the effects of the trait factors have been removed (Kenny & Kashy, 1992; Marsh & Bailey, 

1991). Compared to the CTCM model, the CU model is more likely to converge and yield proper 

solutions (Marsh & Bailey, 1991). However, because it does not contain method factors, the CU 

model does not provide a direct estimate of the amount of method variance in each measure. 
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Nonetheless, it can be shown that the average correlation among the uniqueness for a particular 

method yields an estimate of the amount of variance attributable to that method (Conway, 1998a; 

Scullen, 1999). A more serious limitation is the assumption that methods are uncorrelated. If 

methods are positively correlated, the CU model tends to overestimate trait variances and 

covariances, thereby artificially inflating convergent validity and reducing discriminant validity 

(Byrne & Goffin, 1993; Kenny & Kashy, 1992). 

------------------------------------- 

Insert Figure 6 about here 

-------------------------------------- 

 Another alternative to the CTCM model is the composite direct product (CDP) model 

(Browne, 1984; Swain, 1975). The CDP model traces its origins to observations made by 

Campbell and O’Connell (1967), who noted that MTMM matrices often display a pattern in 

which sharing a common method inflates heterotrait correlations to a greater extent when trait 

correlations are high rather than low. Based on this observation, Campbell and O’Connell (1967) 

suggested that trait and method factors might operate multiplicatively rather than additively.  The 

CDP model incorporates multiplicative effects by specifying the true score of each measure as 

the product of its corresponding trait and method scores (Browne, 1989). Assuming trait and 

method factors are independent and normally distributed with zero means, this specification 

produces a covariance structure in which the covariance between any pair of true scores equals 

the covariance between their traits times the covariance between their methods (Bohrnstedt & 

Goldberger, 1969; Browne, 1984, 1989). This covariance structure can be written in matrix form 

as the right direct product between the trait and method covariance matrices (Browne, 1984; 

Swain, 1975), from which the CDP model acquired its name. Applications of the CDP model 
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show that it is often less prone to estimation problems than the CTCM model (Goffin & Jackson, 

1992). Results from the CDP model can be mapped onto the Campbell and Fiske (1959) criteria 

(Browne, 1984; Cudeck, 1988), although convergent and discriminant validity can be assessed 

more precisely using estimates of specific model parameters (Reichardt & Coleman, 1995). 

 The strengths of the CDP model are offset by several shortcomings. First, although the 

CDP model suffers from fewer estimation problems than the CTCM model, it is nonetheless 

prone to improper solutions (Becker & Cote, 1994; Conway, 1996).  Second, the CDP model 

does not provide separate estimates of the trait and method variance in each measure. Rather, 

these two sources of variance are combined into a single commonality estimate (Conway, 1996; 

Goffin & Jackson, 1992; Kenny, 1995). As a result, the model does not indicate how well each 

measure represents its intended underlying construct (Bagozzi & Yi, 1990).  Third, the model 

does not provide a test of the assumption that true scores are a function of the product of trait and 

method factors. Some researchers have suggested that, if the CDP model fits the data, method 

effects are likely to be multiplicative (Bagozzi & Yi, 1990; Bagozzi et al., 1991). However, 

model fit does not constitute a test of the multiplicative structure upon which the CDP model is 

built, and data fit by the CDP model can often be fit by additive models such as the CTCM or 

CU models (Coenders & Saris, 2000; Corten, Saris, Coenders, van der Veld, Aalberts, & 

Kornelis, 2002; Kumar & Dillon, 1992). In effect, estimating the CDP model is analogous to 

testing interactions using product terms without controlling for their constituent main effects, 

which does not provide proper tests of interactions and can produce misleading results (Cohen, 

1978; Evans, 1991). A final issue is that the CDP model is not required to capture the 

observations of Campbell and O’Connell (1967) that method effects are stronger when trait 

correlations are higher (Kumar & Dillon, 1992; Marsh & Grayson, 1995). This pattern can be 
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produced when higher trait correlations are accompanied by stronger method effects, as indicated 

by larger method loadings in the CTCM model or higher correlations among uniquenesses in the 

CU model. The CDP model represents a special case of this pattern, given that the CDP model 

can be parameterized as a restricted version of the CU model with nonlinear constraints on the 

covariances among the uniquenesses (Coenders & Saris, 2000; Corten et al., 2002). 

Other models have been developed in which the number of factors is one less than the 

combined number of traits and methods.  By excluding one factor and its associated parameters, 

these models provide one approach to address the identification problems common in the CTCM 

model.  Eid (2000) proposed a model that is equivalent to the CTCM model with one method 

factor removed. The excluded method factor serves as a standard of comparison to evaluate the 

effects of the included method factors on observed scores.  For example, if a MTMM design uses 

self-reports, interviews, and observations as methods and excludes a self-report method factor, 

the interview and observation factors explain how the covariances among measures collected 

with these methods differ from the covariances among measures collected using self reports. 

Although this model is identified in many cases where the CTCM model is not (Eid, 2000), it 

confounds trait and method variance for measures corresponding to the excluded method factor 

and generally yields different fit depending on which method factor is excluded. Kenny and 

Kashy (1992) presented a model in which method factor loadings are fixed to represent contrasts 

among the methods, such that the effects of each method factor sum to zero. The effect sizes of 

the method contrasts are represented by the variances of the method factors, which are freely 

estimated. Like the model proposed by Eid (2000), the Kenny and Kashy (1992) model does not 

provide estimates of method variance for each measure. Moreover, Kenny and Kashy (1992) 

reported that the model inappropriately lowered discriminant validity and inflated convergent 
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validity to a greater extent than the CU model. Finally, Wothke (1987, 1995, 1996) developed a 

covariance components analysis (CCA) model that includes a general factor, t – 1 contrast 

factors to represent traits, and m – 1 contrast factors to represent methods (t and m signify the 

number of traits and methods, respectively). The variances of the trait and method factors 

indicate the magnitudes of their associated contrasts, consistent with the interpretation of the 

method contrast factors in the Kenny and Kashy (1992) approach. However, the CCA model 

does not provide estimates of trait or method variance for each measure, and its interpretation of 

its results in terms of convergent and discriminant validity is not straightforward (Kumar & 

Dillon, 1992; Wothke, 1996). 

Each of the foregoing models uses a single indicator to represent each trait measured with 

each method. Other models have been developed that use multiple indicators for each trait-

method combination. These models are feasible when the measures that constitute a MTMM 

matrix are created by summing multiple items, as is often the case (Marsh, 1993). Of these 

models, perhaps the most straightforward model assigns individual items directly to their 

associated trait and method factors (Tomás, Hontangas, & Oliver, 2000). Models specified in this 

manner are less prone to nonconvergence and improper solutions than models that treat each 

trait-method unit as a single indicator (Tomás et al., 2000). However, this model does not 

separate specificity from random measurement error, which remain confounded in the residual of 

each measure. This limitation can be overcome by adding a factor specific to each trait-method 

combination, yielding a first-order factor model in which each item is assigned to a trait factor, a 

method factor, and a specificity factor (Kumar & Dillon, 1990). One drawback of this approach 

is that it separates trait, method, and specific variance for individual items rather than the trait-

method combinations that comprise the items, which are usually the focus of MTMM studies. 
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This drawback is avoided by second-order CFA models in which items are assigned to first-order 

factors representing trait-method units, which in turn are assigned to second-order trait and 

method factors (Marsh, 1993; Marsh & Hocevar, 1988). In such models, the residual for each 

first-order factor captures specific variance from which the effects of measurement error have 

been removed, and loadings of the first-order factors on the second-order factors can be used to 

obtain estimates of trait and method variance for each trait-method unit.  In addition, methods for 

comparing alternative CTCM models (Widaman, 1985) can be applied to the second-order factor 

structure imposed on the correlations among the first-order factors, which are corrected for 

measurement error at the level of the trait-method unit (Marsh, 1993; Marsh & Hocevar, 1988). 

Hybrid models have also been proposed in which traits are specified as second-order factors and 

methods and trait-method units are treated as first-order factors (Anderson, 1985, 1987). 

Research is needed to evaluate the relative strengths of these alternative models. 

Finally, models have been developed that include measures that serve as direct indicators 

of method factors. These measures are intended to give explicit substantive meaning to method 

factors, as opposed to relying on broad distinctions between methods to infer what method 

factors might represent. Models with direct measures of method factors have been used to 

examine the effects of negative affectivity on work attitudes (Williams & Anderson, 1994; 

Williams, Gavin, & Williams, 1996) and the effects of general impressions and interpersonal 

affect on performance ratings (Conway, 1998b).  This approach might be applied to MTMM 

analyses by including measures that represent substantive dimensions believed to differentiate 

the methods of measurement used in a particular study. Doing so would enable researchers to 

treat method variance from a theoretical standpoint, such that method factors are not merely a 

nuisance to be avoided, but instead represent substantive processes worthy of study in their own 
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right (Cronbach, 1995; Schmitt, 1994). 

Guidelines for Construct Validation in OB Research 

 The foregoing discussion has traced the evolution of classical, modern, and emerging 

approaches to construct validation. Much of the material reviewed has drawn not from the OB 

literature per se, but instead from the methodological literature in which construct validation 

approaches have been developed. Within the OB literature, it is perhaps fair to say that much 

empirical research draws from construct validation procedures that represent the classical era. 

This tendency is evidenced by the widespread use of alpha to estimate reliability, the associated 

reliance on classical measurement theory to frame the relationship between a construct and its 

measures, and the application of principal components analysis and common factor analysis to 

assess the convergence and divergence of measures. The use of CFA, which is the hallmark of 

the modern era, has grown substantially during the past decade, but few studies have estimated 

reliability with omega, and MTMM studies using CFA to evaluate convergent and discriminant 

validity are rare. Applications of emerging approaches to construct validation are beginning to 

appear, primarily through the use of second-order factor analysis, the framing of measures as 

formative rather than reflective, and scattered applications of the CU and CDP models to analyze 

MTMM data.  This state of affairs does not justify an indictment of the OB literature, but instead 

reflects the natural time lag required for methodological developments to disseminate through 

any applied science. 

Lessons learned from tracing the development of the classical, modern, and emerging 

approaches suggest several recommendations for construct validation in OB research. First, OB 

researchers should carefully scrutinize the models they implicitly or explicitly use to relate 

constructs to measures. In most instances, the model underlying classical measurement theory 



                            Construct Validation 43 

will prove too restrictive.  The standard CFA model will be appropriate in many cases, provided 

measures may be viewed as alternative indicators of a single underlying construct. If measures 

describe qualitatively different manifestations of the same general concept, then the measures 

might be assigned to first-order factors that serve as reflective indicators of a second-order 

factor. Alternately, if measures describe distinct dimensions that combine to define a broader 

concept, then the measures might be assigned to first-order factors that are cast as formative 

indicators of a general construct. Typically, models of this type should be preferred to models 

that treat the measures themselves as formative indicators, due to philosophical problems with 

the assumption that measures, as numeric quantities, are capable of causing constructs of interest 

in OB research (Edwards & Bagozzi, 2000). 

 Second, the widespread reliance on alpha to assess reliability should be reconsidered. As 

noted earlier, alpha rests on the assumption of tau-equivalence, which is unlikely to be met in 

practice. Omega relaxes this assumption and reduces to alpha when measures are tau equivalent. 

Therefore, it would seem advantageous to adopt omega for estimating the internal consistency 

reliability of summed scales. However, both alpha and omega lose their relevance when summed 

scales are replaced by latent variables with multiple indicators in structural equation models, as 

is becoming increasingly common in OB research. Such models shift the focus of reliability from 

sums of measures to the individual measures themselves. In addition, the variance explained in a 

set of measures by their underlying construct can be quantified using R2
m  , which gives a single 

index of the proportion of true score (i.e., construct) variance in a set of measures. Reframing 

reliability in this manner aligns the meaning of reliability with the treatment of measures as 

indicators of latent constructs rather than elements of summed scales. 

 Third, the assessment of convergent and discriminant validity should no longer rely on 



                            Construct Validation 44 

the Campbell and Fiske (1959) criteria. Research has convincingly shown that these criteria do 

not distinguish the various factors that give rise to MTMM correlations and therefore yield 

ambiguous conclusions regarding convergent and discriminant validity.  These ambiguities can 

be avoided by analyzing MTMM data using CFA models. However, the CTCM model, which is 

the most widely used CFA model for analyzing MTMM data, is prone to nonconvergence and 

improper solutions attributable to inherent identification problems. Of the alternatives to the 

CTCM model, the CU model has received the greatest attention and is perhaps the simplest to 

estimate and interpret. However, the CU model incorporates the rather stringent assumption that 

methods are independent.  The CDP and CCA models have attractive statistical features, but 

these models do not permit a straightforward decomposition of the variance of a measure into 

trait, method, and error components. Moreover, these models specify trait and method factors in 

ways that fundamentally differ from the CTCM model, and the substantive meaning of these 

different specifications have not been fully addressed. Second-order CFA models treat each trait-

method combination as a latent variable with multiple indicators, and limited evidence suggests 

that these models are less susceptible to problems that plague the CTCM model. However, 

identification problems that arise from the structure of the item loadings in the CTCM may apply 

to the first-order factor loadings in the second-order factor model. Despite this possibility, 

available evidence warrants cautious optimism regarding the application of the second-order 

CFA model to MTMM analyses. Finally, including measures that serve as indicators of method 

factors provides the dual advantage of reducing identification problems and clarifying the 

processes believed to underlie method effects. Establishing that method variance exists should be 

considered an initial step that is followed by research that assigns meaning to method factors and 

explains how and why they operate. 
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 A final recommendation concerns guidelines for developing measures that exhibit strong 

construct validity. Guidelines such as these are discussed elsewhere (e.g., Converse & Presser, 

1986; DeVellis, 1991; Spector, 1992; Stone-Romero, 1994), and a thorough treatment is beyond 

the scope of this chapter. Stated succinctly, researchers should begin with a clear definition of 

the construct of interest and assemble or develop items that provide alternative descriptions of 

the construct. Researchers should resist the temptation to use items that describe different facets 

of a concept, because such items often exhibit poor internal consistency and produce scales and 

factors that cannot be unambiguously interpreted. If different facets of a general concept are of 

interest, then it is advisable to use items that provide alternative descriptions of each facet and 

treat the facets as dimensions of a multidimensional construct(Edwards, 2001). The item pool 

may be screened by judges who rate the degree to which each item describes its intended 

construct (Schriesheim Cogliser, Scandura, Lankau, & Powers 1999), and the resulting ratings 

may be used to select, revise, or discard items before using them to collect data. Item ratings may 

also be used to specify CFA models that form the basis for assessing reliability and convergent 

and discriminant validity, using procedures discussed in this chapter. Finally, the items should be 

analyzed within broader models that include causes, correlates, and effects of the construct of 

interest, thereby generating evidence relevant to nomological validity. By following these 

guidelines, OB researchers can enhance the validity of measures taken as evidence of constructs 

that constitute the substance of OB theories and thereby promote theory testing and knowledge 

accumulation in the field. 
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Footnotes 

1 The assessment of item content after an instrument has been developed has been described as  

face validity (Nunnally, 1978) or content adequacy (Schriesheim, Cogliser, Scandura, Lankau, & 

Powers, 1999), and statistical procedures for its assessment have been developed (Schriesheim et 

al., 1999). 

2 As noted by Widaman (1985), some of the models derived from the framework cannot be 

meaningfully compared. For instance, a model with a single trait factor and no method factors is 

indistinguishable from a model with a single method factor and no trait factors. 
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Figure Captions 

Figure 1.  Relationship between true score and measures according to classical measurement 

theory. 

Figure 2.  Relationship between construct and measures following confirmatory factor analysis. 

Figure 3.  Confirmatory factor analysis model for a MTMM matrix with three traits and three 

methods. 

Figure 4.  Relationship between construct and measures following a formative measurement 

model. 

Figure 5.  Second-order confirmatory factor model with three first-order factors and one second-

order factor. 

Figure 6.  Correlated uniqueness model for a MTMM matrix with three traits and three methods. 
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