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Part I

Omitted Theory and Proofs

Appendix C gives bias correction formulae under tail symmetry. We derive the first order mean-squared-error

of the trim-by-Z estimator in Appendix D. In Appendix E we prove scale estimator consistency Theorem

3.5. Appendix F presents a general background theory of the tail decay properties of the variable Z = hY

that point identifies the ATE. Finally, in Appendix G we study the trim-by-X estimator and compare it

with our estimator.

Assume without loss of generality that the ATE is:

θ = 0.

Recall the assumptions. First, the data generating process.

Assumption A1 (Unconfoundedness): Y1, Y0 ⊥ D|X.

Assumption A2 (Strict Overlap): 0 < p∗ ≤ p(X) ≡ P (D = 1|X) ≤ 1− p∗ < 1 a.s. for a constant p∗.

Assumption A2′ (Limited Overlap): 0 < p(X) ≡ P (D = 1|X) < 1 a.s.

Assumption A3 (Distribution Properties):

i. All random variables lie in a complete probability measure space (Ω,F ,P). (Yi, Di, Xi)
′ are iid.
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ii. If E[Z2
i ] = ∞ then Zi has power law distribution tails:

P (Zi − θ ≤ −c) ∼ d1c
−κ1 and P (Zi − θ ≥ c) ∼ d2c

−κ2 , where κi > 1 and di ∈ (0,∞) . (B1)

iii. Define ξ ≡ [γ′, θ]′ ∈ Rq+1 and Zi(ξ) ≡ Zi(γ) − θ, let ξ0 be the true value of ξ, and let Ξ be a compact

subset of Rq+1 containing ξ0. Let {cn(ξ)} be any sequence of mappings cn : Ξ → (0,∞) that satisfy P (|Zi(ξ)|
> cn(ξ)) = kn/n.

a. Zi(ξ) has for each ξ a continuous distribution with a continuous density function fZ(ξ), and E[supξ∈Ξ |Zi(ξ)|ι]
< ∞ for some ι > 0.

b. cn(ξ) is continuously differentiable with infξ∈Ξ{cn(ξ)} → ∞, supξ∈Ξ {cn(ξ)} = O(nϖ) for some ϖ >

0, and (∂/∂ξ)cn(ξ0) = O(cnL̊n) for some slowly varying function L̊n → (0,∞].

c. There exists a continuously differentiable mapping K : Ξ → (0,∞) with infξ∈ΞK(ξ) > 0, supξ∈ΞK(ξ)

< ∞ and supξ∈Ξ ||(∂/∂ξ)K(ξ)|| < ∞, such that ∀u ∈ R:

lim
n→∞

sup
ξ∈Ξ

∣∣∣∣ nkn cn(ξ)
{
fZ(ξ)

(
−cn(ξ)e

u/k
1/2
n

)
+ fZ(ξ)

(
cn(ξ)e

u/k
1/2
n

)}
−K(ξ)

∣∣∣∣ = 0. (B2)

Assumption A3′ (Second Order Power Law): A3(i) and A3(iii) hold. Further, (ii) for some di > 0, ηi

> 0, and κi > 1:

P (Zi − θ < −c) = d1c
−κ1

(
1 +O(c−η1)

)
and P (Zi − θ > c) = d2c

−κ2
(
1 +O(c−η2)

)
. (B3)

Further, mn → ∞, mn = o(n2η/(2η+κ)) and mn/kn → ∞ where η ≡ min{η1, η2} and κ ≡ min{κ1, κ2}.

Assumption A4 (Trimming Rate): kn → ∞ and kn = o(ln(n)).

Assumption A5 (positive scale). lim infn→∞ V2
n > 0.

Second, the parametric propensity score and plug-in estimator.

Assumption B1 (parametric function): Let X ⊆ Rk denote the support of Xi ∈ Rk, and let Γ ⊂ Rq.

There exists a known mapping p : X × Γ → (0, 1) such that p(x, γ0) = P (Di = 1|x) ∀x ∈ X for a unique

interior point γ0 ∈ Γ. p(·, γ) is Borel measurable for each γ ∈ Γ. p(Xi, γ) is continuous and differentiable

on Γ, σ(Xi)-a.e.

Assumption B1′ (parametric function). B1 holds, and p(Xi, γ) is twice continuously differentiable,

σ(Xi)-a.e.

Assumption B2 (plug-in): The plug-in γ̂n satisfies
√
n(γ̂n − γ0) = 1/

√
n
∑n

i=1wi(1 + op(1)) where wi ∈
Rq is iid, σ(Xi, Di)-measurable, it has a continuous distribution, E[wi] = 0, E[w2

i ] > 0, and E|wi|2+ι < ∞
for some ι > 0.

Assumption B3 (moment bounds):

i. supγ∈Γ{|hi(γ)Zi(γ)| × ||(∂/∂γ)pi(γ)||} is Lp-bounded for some p > 0.
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ii. hi(γ0)(∂/∂γ)p(Xi, γ0) is L2+ι-bounded for some ι > 0.

Define

Si(γ) ≡ hi(γ)
∂

∂γ
p(Xi, γ).

Under B1′ (∂/∂γ)Si(γ) is well defined and satisfies

∂

∂γ
Si(γ) =

∂

∂γ
hi(γ)

∂

∂γ′
p(Xi, γ) + hi(γ)

∂2

∂γ∂γ′
p(Xi, γ)

= −h2i (γ)
∂

∂γ
p(Xi, γ)

∂

∂γ′
p(Xi, γ) + hi(γ)

∂2

∂γ∂γ′
p(Xi, γ)

= −Si(γ)Si(γ)
′ + hi(γ)

∂2

∂γ∂γ′
p(Xi, γ).

Assumption B3′ (moment bounds):

i. supγ∈Γ{||Si(γ)Zi(γ)|}, supγ∈Γ ||Si(γ)Si(γ)
′Zi(γ)|| and supγ∈Γ ||hi(γ)(∂2/∂γ∂γ′)pi(γ) × Zi(γ)|| are Lp-

bounded for some p > 0.

ii. supγ∈Γ ||Si(γ)|| is L4-bounded, and ||hi(γ)(∂2/∂γ∂γ′)pi(γ)|| is L2-bounded.

Recall

hi(γ) ≡ h(Xi, γ) ≡
Di

p(Xi, γ)
− 1−Di

1− p(Xi, γ)
with hi = hi(γ0), and Zi(γ) ≡ hi(γ)Yi with Zi ≡ Zi(γ0),

and

Ẑn,i(γ) ≡ Zi(γ)−
1

n

n∑
j=1

Zj(γ), Ẑ
(a)
n,i (γ) ≡

∣∣∣Ẑn,i(γ)
∣∣∣ and Ẑ

(a)
n,(1)(γ) ≥ Ẑ

(a)
n,(2)(γ) ≥ · · · ≥ Ẑ

(a)
n,(n)(γ),

and let {kn} be an intermediate order sequence: kn ∈ {1, ..., n}, kn → ∞ and kn/n → 0. Let γ̂n be an

estimator for γ0. The tail-trimmed IPW estimator is

θ̂(tz)n (γ̂n) ≡
1

n− kn

n∑
i=1

Zi(γ̂n)I

∣∣∣∣∣∣Zi(γ̂n)−
1

n

n∑
j=1

Zj(γ̂n)

∣∣∣∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)

 .

Power law A3 implies

cn = K (n/kn)
1/κ . (B4)

By Karamata’s Theorem under A3(ii) (Resnick, 1987, Theorem 0.6):1

E [|Zi|κ I (|Zi| ≤ cn)] ∼ d {ln (n)− ln (kn)} ∼ d ln (n) (B5)

1Note that for any finite a > 0 and some K(a) > 0 we have E[|Zi|κI(|Zi| ≤ cn)] = K(a) +
∫ cκn
a

P (|Zi| ≥ u1/κ)du ∼ K(a) +

d
∫ cκn
a

u−1du = K(a) + d(ln(cκn) − ln(a)). Now use cκn = d(n/kn) and kn = o(n) to deduce E[|Zi|κI(|Zi| ≤ cn)] ∼ d{ln(n) −
ln(kn)} ∼ d ln(n).
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E [|Zi|p I (|Zi| ≤ cn)] ∼
p

p− κ
cpnP (|Zi| > cn) ∼

p

p− κ
dp/κ

(
n

kn

)p/κ−1

∀p > κ.

C Bias Correction under Tail Symmetry

Bias from tail-trimmed is defined as:

Bn ≡ n

n− kn
E [(Zi − θ) I (|Zi − θ| ≥ cn)]

Recall tail specific versions of Ẑn,i(γ) ≡ Zi(γ) − 1/n
∑n

j=1 Zj(γ), and their order statistics: Ẑ
(a)
n,i (γ) ≡

|Ẑn,i(γ)| and

Ẑ
(−)
n,i (γ) ≡ −Ẑn,i(γ)I

(
Ẑn,i(γ) < 0

)
and Ẑ

(+)
n,i (γ) ≡ Ẑn,i(γ)I(Ẑn,i(γ) > 0) with Ẑ

(·)
n,(j)(γ) ≥ Ẑ

(·)
n,(j+1)(γ).

Let {mn} be an intermediate order sequence: mn ∈ {1, ..., n}, mn → ∞ and mn = o(n). Hill (1975)’s tail

index estimators are

κ̂−1
mn,1

(γ) =
1

mn − 1

mn−1∑
j=1

ln

 Ẑ
(−)
n,(j)(γ)

Ẑ
(−)
n,(mn)

(γ)

 and κ̂−1
mn,2

(γ) =
1

mn − 1

mn−1∑
j=1

ln

 Ẑ
(+)
n,(j)(γ)

Ẑ
(+)
n,(mn)

(γ)

 .

and estimators of the scales are (d1, d2):

d̂mn,1(γ) ≡
mn

n

(
Ẑ

(−)
n,(mn)

(γ)
)κ̂mn,1(γ)

and d̂mn,2(γ) ≡
mn

n

(
Ẑ

(+)
n,(mn)

(γ)
)κ̂mn,2(γ)

.

The core bias estimator is:

B̂n(γ) =
n

n− kn

{
d̂
1/κ̂mn,2(γ)
mn,2

(γ)

(
κ̂mn,2(γ)

κ̂mn,2(γ)− 1

)(
kn
n

)1−1/κ̂mn,2(γ)

−d̂
1/κ̂mn,1(γ)
mn,1

(γ)

(
κ̂mn,1(γ)

κ̂mn,1(γ)− 1

)(
kn
n

)1−1/κ̂mn,1(γ)
}
.

If the tail indices are known to be identical κ2 = κ1 = κ then by Lemma 3.3

Bn ∼ n

n− kn

(
κ

κ− 1

)(
kn
n

)1−1/κ {
d
1/κ
2 − d

1/κ
1

}
.

This justifies the following bias estimator:

B̂n(γ) =
n

n− kn

(
kn
n

)1−1/κ̂mn,0(γ)( κ̂mn,0(γ)

κ̂mn,0(γ)− 1

){
d̂
1/κ̂mn,0(γ)
mn,2

(γ)− d̂
1/κ̂mn,0(γ)
mn,1

(γ)
}
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where

κ̂−1
mn,0

(γ) =
1

mn − 1

mn−1∑
j=1

ln

 Ẑ
(a)
n,(j)(γ)

Ẑ
(a)
n,(mn)

(γ)


d̂mn,1(γ) ≡

mn

n

(
Ẑ

(−)
n,(mn)

(γ)
)κ̂mn,0(γ)

and d̂mn,2(γ) ≡
mn

n

(
Ẑ

(+)
n,(mn)

(γ)
)κ̂mn,0(γ)

.

D First Order Mean-Squared-Error of θ̂
(tz)
n

Recall from Section 3 of the main paper that the proper standardization for θ̂
(tz)
n (γ̂n) requires:

Dn ≡ −E

[
∂

∂γ
p(Xi, γ0)hiZiI (|Zi − θ| < cn)

]

ϑn,i ≡ (Zi − θ) I (|Zi − θ| < cn)− E [(Zi − θ) I (|Zi − θ| < cn)] +D′
nwi

Bn ≡ n

n− kn
E [(Zi − θ) I (|Zi − θ| ≥ cn)]

and

V2
n ≡ E

[
ϑ2
n,i

]
σ2
n ≡ E

[
{(Zi − θ) I (|Zi − θ| < cn)− E [(Zi − θ) I (|Zi − θ| < cn)]}2

]
We know by Theorems 3.1 and 3.4 in the main paper that V2

n gives the correct scale for θ̂
(tz:bc)
n (γ̂n), while

V2
n ∼ Kσ2

n for some K > 0 (K = 1 if E[Z2
i ] = ∞). The asymptotic first order mean-squared-error of θ̂

(tz)
n

is therefore:

MSEn ≡ Kσ2
n/n+ B2

n.

The following result characterizes MSEn and the type of sequence {kn} that diminishes MSEn. Since

characterizations σ2
n and Bn require the tail indices, we assume symmetry κ1 = κ2 = κ to reduce notation.

Lemma D.1. Under Assumption A3 with symmetric tail indices κ1 = κ2 = κ, it follows that:

κ ∈ (1, 2) : MSEn ∼ 1

n

(
n

kn

)2/κ−1

+

(
n

n− kn

)2(kn
n

)2−2/κ( κ

κ− 1

)2 {
d
1/κ
2 − d

1/κ
1

}2

κ = 2 : MSEn ∼ d ln(n)

n
+

(
n

n− kn

)2(kn
n

)2−2/κ( κ

κ− 1

)2 {
d
1/κ
2 − d

1/κ
1

}2
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κ > 2 : MSEn ∼

E
[
(Zi − θ)2

]
n

− d1/κ
(

κ

κ− 2

)
1

n

(
kn
n

)1−2/κ


+

(
n

n− kn

)2(kn
n

)2−2/κ( κ

κ− 1

)2 {
d
1/κ
2 − d

1/κ
1

}2
.

Let Assumption A4 hold. If κ ̸= 2 then bias dominates and trimming less, and therefore using small kn and

slow kn → ∞, diminishes MSEn as n increases. Conversely, if κ = 2 then the variance dominates and

trimming more, and therefore using large kn and fast kn → ∞, diminishes MSEn as n increases.

Remark 1. The proof reveals that the non-uniformity of the impact of kn on MSEn arises from Assumption

A4 property kn = o(ln(n)). If we were free to choose kn then kn/ ln(n) → ∞ would lead to bias dominating

when κ = 2 and therefore a small kn and slow kn → ∞ leading to a smaller MSEn.

Proof. Observe that

κ ∈ (1, 2) : MSEn ∼ 1

n

(
n

kn

)2/κ−1

+

(
n

n− kn

)2(kn
n

)2−2/κ( κ

κ− 1

)2 {
d
1/κ
2 − d

1/κ
1

}2

κ = 2 : MSEn ∼ d ln(n/kn)

n
+

(
n

n− kn

)2 kn
n
4
{
d
1/2
2 − d

1/2
1

}2

κ > 2 : MSEn ∼

E
[
(Zi − θ)2

]
n

− d1/κ
(

κ

κ− 2

)
1

n

(
kn
n

)1−2/κ


+

(
n

n− kn

)2(kn
n

)2−2/κ( κ

κ− 1

)2 {
d
1/κ
2 − d

1/κ
1

}2
.

Cases κ < 2 and κ = 2 come from directly Lemmas 3.2 and 3.3 of the main paper. Case κ > 2 can be

deduced similarly by using the arguments used to prove Lemma 3.3 in order to characterize the tail-trimmed

variance σ2
n. If κ ∈ (1, 2) then note n−1 (n/kn)

2/κ−1 = o((n/(n − kn))
2 (kn/n)

2−2/κ), hence bias dominates

and MSEn is smaller when trimming is less. If κ > 2 then n−1(kn/n)
1−2/κ = o((n/(n− kn))

2(kn/n)
2−2/κ)

hence again trimming less reduces MSEn. Finally, if κ = 2 then use kn = o(ln(n)) under Assumption A4

to deduce (n/(n− kn))
2(kn/n) = o(n−1 ln(n/kn)), hence the variance term dominates. A large kn and fast

kn → ∞ reduces variance and therefore MSEn. QED.

E Proof of Theorem 3.5

Recall wi appears in the Assumption B2 first order plug-in expansion

√
n(γ̂n − γ0) =

1√
n

n∑
i=1

wi(1 + op(1)).
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In general wi is unobserved, so consider the MLE case:

wi = (E[SiS
′
i])

−1Si where Si(γ) = hi(γ)
∂

∂γ
p(Xi, γ).

Recall

pi(γ) = p(Xi, γ)

hi(γ) ≡
Di

pi(γ)
− 1−Di

1− pi(γ)

σ2
n ≡ E

[
Z2
i I (|Zi| < cn)

]
Dn ≡ −E

[
∂

∂γ
pihiZiI (|Zi − θ| < cn)

]
ϑn,i ≡ (Zi − θ) I (|Zi − θ| < cn)− E [(Zi − θ) I (|Zi − θ| < cn)] +D′

nwi

V2
n ≡ E

[
ϑ2
n,i

]
= E

[{
(Zi − θ) I (|Zi − θ| < cn)− E [(Zi − θ) I (|Zi − θ| < cn)] +D′

nwi

}2]
and

Ẑn,i(γ) ≡ Zi(γ)−
1

n

n∑
j=1

Zj(γ)

ŵn,i ≡

(
1

n

n∑
i=1

Si(γ̂n)Si(γ̂n)
′

)−1

D̂n ≡ − 1

n

n∑
i=1

Si(γ̂n)Zi(γ̂n)I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)

V̂2
n ≡ 1

n− kn

n∑
i=1

{(
Ẑn,i(γ̂n)I

(∣∣∣Ẑn,i(γ̂n)
∣∣∣ < Ẑ

(a)
n,(kn)

(γ̂n)
)
+

(
n− kn

n

)
B̂n(γ̂n)

)
+ D̂′

nŵn,i

}2

.

Recall that by the definition of a derivative, any differentiable f : Rk → R satisfies

f(x1)− f(x0) =
∂

∂x′
f(x1)× (x1 − x0) + o (∥x1 − x0∥) , (E1)

where o(||x1 − x0||) → 0 faster than ||x1 − x0|| → 0.

Theorem 3.5. Under Assumptions A1, A2′, A3′, A4, A5, B1′, B2, and B3′ V̂2
n/V2

n
p→ 1.

Proof. In order to ease notation, assume:

θ = 0.

Let ι > 0 be a tiny number that may be different in different places. Write w̄n ≡ 1/n
∑n

i=1wi and pi(γ) =

pi(γ). It suffices to prove Ṽ2
n/V2

n
p→ 1 where Ṽ2

n = ((n − kn)/n)V̂2
n.
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Observe that:

Ṽ2
n =

1

n

n∑
i=1

{(
Ẑn,i(γ̂n)I

(∣∣∣Ẑn,i(γ̂n)
∣∣∣ < Ẑ

(a)
n,(kn)

(γ̂n)
)
+

(
n− kn

n

)
B̂n(γ̂n)

)
+D′

nwi

}2

+2
(
D̂n −Dn

)′ 1
n

n∑
i=1

wiẐn,i(γ̂n)I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)

+2
(
D̂n −Dn

)′ 1
n

n∑
i=1

(ŵn,i − wi)
{
Ẑn,i(γ̂n)I

∣∣∣Ẑn,i(γ̂n)
∣∣∣ < Ẑ

(a)
n,(kn)

(γ̂n)
}

+2
(
D̂n −Dn

)′
w̄n

(
n− kn

n

)
B̂n(γ̂n)

+2D′
n

1

n

n∑
i=1

(ŵn,i − wi) Ẑn,i(γ̂n)I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)

+2

(
n− kn

n

)
B̂n(γ̂n)D′

n

1

n

n∑
i=1

(ŵn,i − wi)

+2

(
n− kn

n

)
B̂n(γ̂n)

(
D̂n −Dn

)′ 1
n

n∑
i=1

(ŵn,i − wi)

+
1

n

n∑
i=1

{(
D̂′

nŵn,i

)2
−
(
D′

nwi

)2}

=
1

n

n∑
i=1

{(
Ẑn,i(γ̂n)I

(∣∣∣Ẑn,i(γ̂n)
∣∣∣ < Ẑ

(a)
n,(kn)

(γ̂n)
)
+

(
n− kn

n

)
B̂n(γ̂n)

)
+D′

nwi

}2

+Rn.

By Theorems 3.1 and 3.4 in the main paper B̂n(γ̂n) = Bn + op(Vn/n
1/2), and w̄n = Op(1/n

1/2) since wi is

iid and square integrable. Steps 1-4, below, imply Rn = op(V2
n). By Step 5:

1

n

n∑
i=1

{(
Ẑn,i(γ̂n)I

(∣∣∣Ẑn,i(γ̂n)
∣∣∣ < Ẑ

(a)
n,(kn)

(γ̂n)
)
+

(
n− kn

n

)
B̂n(γ̂n)

)
+D′

nwi

}2

(E2)

=
1

n

n∑
i=1

{(
ZiI (|Zi| < cn) +

(
n− kn

n

)
Bn

)
+D′

nwi

}2

+ op(V2
n).

Finally, by Step 6:

1

V2
n

1

n

n∑
i=1

{(
ZiI (|Zi| < cn) +

(
n− kn

n

)
Bn

)
+D′

nwi

}2
p→ 1. (E3)

This proves Ṽ2
n/V2

n
p→ 1 as required.

In the steps below we repeatedly use the A5 bound lim infn→∞ V2
n > 0, and the following three properties.

First, by construction:

1

n

n∑
i=1

I
(
|
∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
=

n− kn
n

.
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Second, by Lemma A.4.a in the main paper, for any Lp-bounded random variable ζi, p > 0:

1

σnn1/2

n∑
i=1

|ζi| ×
∣∣∣I (∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

∣∣∣ = op(1). (E4)

Third, by Theorem 3.1.b:

Vn ∼ Kσn for some K > 0. (E5)

Fourth, independence and identical distributedness, θ = 0 and power law tail property A3 imply for some

slowly varying Ln (e.g. Ibragimov and Linnik, 1971):

1

n

n∑
i=1

Zi = Op

(
Ln

n1−1/min{κ,2}

)
. (E6)

Note throughout that:
∂

∂γ
hi(γ) = −hi(γ)

2 ∂

∂γ
pi(γ)

Step 1. We want to show

1

n

n∑
i=1

wiẐn,i(γ̂n)I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
= Op(Vn).

By the Cauchy-Schwartz inequality, square integrability of wi, and (E5):

|E [wiZiI (|Zi| < cn)]| ≤ K
(
E
[
Z2
i I (|Zi| < cn)

])2
= Kσn ∼ KVn.

Thus, it suffices to show

1

n

n∑
i=1

wiẐn,i(γ̂n)I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− E [wiZiI (|Zi| < cn)] = op(Vn).

Note that:

1

n

n∑
i=1

wiẐn,i(γ̂n)I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− E [wiZiI (|Zi| < cn)]

=
1

n

n∑
i=1

wiZiI (|Zi| < cn)− E [wiZiI (|Zi| < cn)]

+
1

n

n∑
i=1

wiZi

{
I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

}
+

1

n

n∑
i=1

wi {Zi(γ̂n)− Zi} I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
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− 1

n

n∑
i=1

Zi ×
1

n

n∑
i=1

wiI
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)

− 1

n

n∑
i=1

{Zi(γ̂n)− Zi} ×
1

n

n∑
i=1

wiI
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)

=
5∑

i=1

Ai,n.

We will prove each Ai,n = op(Vn).

A1,n = op(Vn). Define

Wn,i ≡
wiZiI (|Zi| < cn)− E [wiZiI (|Zi| < cn)]

σn
.

Under Assumption B2 wi is L2+ι-bounded. Hence, by Hôlder’s inequality, for some δ > 0 that satisfies (1 +

δ)(1 + δ/2) ≤ 1 + ι:

E |Wn,i|1+δ ≤ K
1

σ1+δ
n

E
[
|wiZi|1+δ I (|Zi| < cn)

]

≤ K
1

σ1+δ
n

(
E |wi|(1+δ)(1+δ/2)

) 2
2+ι
(
E
[
|Zi|2 I (|Zi| < cn)

]) 1+δ
2 ≤ K

1

σ1+δ
n

σ1+δ
n = K.

Therefore Wn,i is uniformly integrable. Since Wn,i is iid over i ∈ {1, ..., n}, and uniformly integrable, it

satisfies the conditions of Theorem 2 Andrews (1988), hence:

1

n

n∑
i=1

Wn,i =
1

n

n∑
i=1

{
wiZiI (|Zi| < cn)− E [wiZiI (|Zi| < cn)]

σn

}
p→ 0. (E7)

Therefore A1,n = op(σn), hence A1,n = op(Vn) by (E5).

A2,n = op(Vn/n
1/2). In view of E[w2

i ] < ∞, use (E4) to yield A2,n = op(Vn/n
1/2).

A3,n = Op

(
Vn/n

1/2
)
. Write

A3,n =
1

n

n∑
i=1

wi {Zi(γ̂n)− Zi} I (|Zi| < cn) (E8)

+
1

n

n∑
i=1

wi {Zi(γ̂n)− Zi}
{
I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

}
.

Consider the first term. By derivative property (E1):

1

n

n∑
i=1

wi {Zi(γ̂n)− Zi} I (|Zi| < cn) = − 1

n

n∑
i=1

wiSiZiI (|Zi| < cn)× (γ̂n − γ0) + op(∥γ̂n − γ0∥).
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Under B2 γ̂n − γ0 = Op(1/n
1/2). Furthermore, by construction

wiSiZiI (|Zi| < cn) =
(
E
[
SiS

′
i

])−1
SiS

′
i × ZiI (|Zi| < cn) ,

and Si is L4-bounded under B3′(ii). Hence by the Cauchy-Schwartz inequality and (E5):

sup
λ′λ

E
[(
λ′Si

)2 × ZiI (|Zi| < cn)
]
≤ K

(
E
[
Z2
i I (|Zi| < cn)

])1/2
= Kσn ∼ KVn.

Now invoke Markov’s inequality to yield:

1

Vnn

n∑
i=1

wiSiZiI (|Zi| < cn) = Op(1).

Therefore
1

n

n∑
i=1

wi {Zi(γ̂n)− Zi} I (|Zi| < cn) = Op

(
Vn/n

1/2
)
.

Turning to the second term in (E8), apply the mean-value-theorem to yield:∣∣∣∣∣ 1n
n∑

i=1

wi {Zi(γ̂n)− Zi}
{
I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

}∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

|wi| sup
γ∈Γ

{∥Si(γ)hi(γ)∥}
{
I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

}∣∣∣∣∣× ∥γ̂n − γ0∥ .

Under B2 ||γ̂n − γ0|| = op(1) and from B3′(i) supγ∈Γ{||Si(γ)hi(γ)||} is Lp-bounded for some p > 0, and wi

is square integrable. The right hand side is therefore op(Vn/n
1/2) by (E4).

A4,n = op(Vn/n
1/2). Expansion (E4) implies:

1

n

n∑
i=1

wi

{
I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

}
= op(Vn/n

1/2). (E9)

Use the fact that wi is iid and square integrable, and I(|Zi| < cn) is bounded, to deduce

1

n

n∑
i=1

wiI (|Zi| < cn) = Op(1/n
1/2). (E10)

Combine the sample mean property (E6) with (E9) and (E10) to yield:

A4,n = Op

(
Ln

n3/2−1/min{κ,2}

)
= op

(
σn/n

1/2
)
= op

(
Vn/n

1/2
)
.
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A5,n = Op(Vn/n
1/2). Derivative property (E1) implies:

1

n

n∑
i=1

{Zi(γ̂n)− Zi} =
1

n

n∑
i=1

SiZiI (|Zi| < cn)× (γ̂n − γ0) + op(∥γ̂n − γ0∥).

Since Si is square integrable it follows

sup
λ′λ

∣∣E [λ′SiZiI (|Zi| < cn)
]∣∣ ≤ K

(
E
[
Z2
i I (|Zi| < cn)

])1/2
= Kσn ∼ KVn.

Now recall γ̂n − γ0 = Op(1/
√
n) to yield:

1

n

n∑
i=1

{Zi(γ̂n)− Zi} = Op

(
Vn/n

1/2
)
. (E11)

Next, by the arguments above:

1

n

n∑
i=1

wiI
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)

=
1

n

n∑
i=1

wiI (|Zi| < cn)

+
1

n

n∑
i=1

wi

{
I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

}
= Op

(
1/n1/2

)
+Op

(
Vn/n

1/2
)
.

Step 2. We need ∥∥∥D̂n −Dn

∥∥∥ = op(Vn) and ∥Dn∥ = Op(Vn).

The second equality ||Dn|| = Op(Vn) is verified in the proof of Theorem 3.1.b.

Consider ||D̂n − Dn|| = op(Vn). Observe that

|Si(γ̂n)Zi(γ̂n)− SiZi| ≤

{
sup
γ∈Γ

∥∥∥∥ ∂

∂γ
Si(γ)× Zi(γ)

∥∥∥∥+ sup
γ∈Γ

∥∥Si(γ)Si(γ)
′Zi(γ)

∥∥} ∥γ̂n − γ0∥ .

Under B3′(i) supγ∈Γ ||(∂/∂γ)Si(γ) × Zi(γ)|| and supγ∈Γ ||Si(γ)Si(γ)
′Zi(γ)|| are Lp-bounded for some p > 0.

Now apply (E4) to deduce:

D̂n = − 1

n

n∑
i=1

Si(γ̂n)Zi(γ̂n)I (|Zi| < cn) + op(Vn/n
1/2). (E12)

Note that:

1

n

n∑
i=1

Si(γ̂n)Zi(γ̂n)I (|Zi| < cn)− E [SiZiI (|Zi| < cn)]

12



=
1

n

n∑
i=1

{SiZiI (|Zi| < cn)− E [SiZiI (|Zi| < cn)]}

+
1

n

n∑
i=1

{Si(γ̂n)− Si}ZiI (|Zi| < cn)

+
1

n

n∑
i=1

Si {Zi(γ̂n)− Zi} I (|Zi| < cn)

+
1

n

n∑
i=1

{Si(γ̂n)− Si} {Zi(γ̂n)− Zi} I (|Zi| < cn)

=
4∑

i=1

Ci,n.

It remains to show each ||Ci,n|| = op(Vn). In view of (E12), ||D̂n − Dn|| = op(Vn) then follows.

C1,n. ||C1,n|| = op(Vn) follows from (E7) and (E5).

C2,n. By the mean-value-theorem:

∥C2,n∥ ≤ 1

n

n∑
i=1

sup
γ∈Γ

∥∥∥∥ ∂

∂γ
Si(γ)

∥∥∥∥ |Zi| I (|Zi| < cn)× ∥γ̂n − γ0∥ .

Under B3′(ii) supγ∈Γ ||(∂/∂γ)Si(γ)|| is iid and integrable, hence by Markov’s inequality:

1

n

n∑
i=1

sup
γ∈Γ

∥∥∥∥ ∂

∂γ
Si(γ)

∥∥∥∥ |Zi| I (|Zi| < cn) = Op (cn) .

Therefore, in view of B2: ||C2,n|| = Op(cn/n
1/2). If κ ≥ 2 then use the construction (B4) of cn to yield cn/n

1/2

= K(n/kn)
1/κ/n1/2 = o(1) = o(σn). If κ < 2 then by Karamata theory (B5) cn = (n/kn)

1/2cn/(n/kn)
1/2 ∼

Kσn/(n/kn)
1/2 hence ||C2,n|| = op(σn). Therefore ||C2,n|| = op(Vn) by (E5).

C3,n, C4,n. ||C3,n|| = op(Vn) follows from the argument following (E8). ||C4,n|| = op(Vn) can be verified

along the lines of C2,n and C3,n.

Step 3. We will prove∥∥∥∥∥ 1n
n∑

i=1

(ŵn,i − wi) Ẑn,i(γ̂n)I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)∥∥∥∥∥ = op (Vn) .

An identical argument yields ∥∥∥∥∥ 1n
n∑

i=1

(ŵn,i − wi)

∥∥∥∥∥ = op (Vn) .
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Observe that

1

n

n∑
i=1

(ŵn,i − wi) Ẑn,i(γ̂n)I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)

=
(
E
[
SiS

′
i

])−1 1

n

n∑
i=1

(Si(γ̂n)− Si) Ẑn,i(γ̂n)I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)

+

( 1

n

n∑
i=1

Si(γ̂n)Si(γ̂n)
′

)−1

− (E[SiS
′
i])

−1

 1

n

n∑
i=1

Si(γ̂n)Ẑn,i(γ̂n)I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
.

In Step 3.1 we prove 1/n
∑n

i=1 Si(γ̂n)Si(γ̂n)
′ − E[SiS

′
i] = op(1). Further, by replicating arguments in Steps

1 and 2 it can be shown that:

1

n

n∑
i=1

(Si(γ̂n)− Si) Ẑn,i(γ̂n)
{
I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

}
= op

(
σn/n

1/2
)

1

n

n∑
i=1

Si(γ̂n)Ẑn,i(γ̂n)
{
I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

}
= op

(
σn/n

1/2
)
.

Now, use 1/n
∑n

i=1 Si(γ̂n)Si(γ̂n)
′ − E[SiS

′
i] = op(1) to deduce:

1

n

n∑
i=1

(ŵn,i − wi) Ẑn,i(γ̂n)I (|Zi| < cn)

= (E [SiS
′
i])

−1 1

n

n∑
i=1

(Si(γ̂n)− Si) Ẑn,i(γ̂n)I (|Zi| < cn) +
1

n

n∑
i=1

Si(γ̂n)Ẑn,i(γ̂n)I (|Zi| < cn)× op (1)

= (E [SiS
′
i])

−1 1

n

n∑
i=1

(Si(γ̂n)− Si)Zi(γ̂n)I (|Zi| < cn)−
1

n

n∑
i=1

Zi(γ̂n)×
1

n

n∑
i=1

Si(γ̂n)I (|Zi| < cn) + op(D̂n)

= E1,n + E2,n + E3,n.

Consider E1,n. By the sample mean property (E6):

1

n

n∑
i=1

(Si(γ̂n)− Si) Ẑn,i(γ̂n)I (|Zi| < cn) =
1

n

n∑
i=1

(Si(γ̂n)− Si)ZiI (|Zi| < cn)

+
1

n

n∑
i=1

(Si(γ̂n)− Si) (Zi(γ̂n)− Zi) I (|Zi| < cn)

−Op

(
Ln

n1−1/min{κ,2}

)
× 1

n

n∑
i=1

(Si(γ̂n)− Si) I (|Zi| < cn) .

Arguments in Step 2 prove each tern is op(Vn).
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Next, for E2,n write:

E2,n =
1

n

n∑
i=1

Zi ×
1

n

n∑
i=1

SiI (|Zi| < cn)

+
1

n

n∑
i=1

Zi ×
1

n

n∑
i=1

(Si(γ̂n)− Si) I (|Zi| < cn)

+
1

n

n∑
i=1

(Zi(γ̂n)− Zi)×
1

n

n∑
i=1

SiI (|Zi| < cn)

+
1

n

n∑
i=1

(Zi(γ̂n)− Zi)×
1

n

n∑
i=1

(Si(γ̂n)− Si) I (|Zi| < cn) .

Step 2 derivations and (E11) from Step 1 prove each term is op(Vn).

Finally, by Step 2 ||D̂n|| = Op(Vn) hence

∥E3,n∥ = op

(∥∥∥D̂n

∥∥∥) = op (Vn) .

Step 3.1 We need to show

1

n

n∑
i=1

Si(γ̂n)Si(γ̂n)
′ − E

[
SiS

′
i

]
= op (1) . (E13)

Add and subtract terms to yield:

1

n

n∑
i=1

Si(γ̂n)Si(γ̂n)
′ − E

[
SiS

′
i

]
=

1

n

n∑
i=1

SiS
′
i − E

[
SiS

′
i

]
+

1

n

n∑
i=1

Si {Si(γ̂n)− Si}′

+
1

n

n∑
i=1

{Si(γ̂n)− Si}S′
i +

1

n

n∑
i=1

{Si(γ̂n)− Si} {Si(γ̂n)− Si}′ .

It suffices to prove each term is op(1).

Recall Si is iid and square integrable, hence:

1

n

n∑
i=1

SiS
′
i − E[SiS

′
i] = op(1).

The second term satisfies∥∥∥∥∥ 1n
n∑

i=1

Si {Si(γ̂n)− Si}′
∥∥∥∥∥ ≤ 1

n

n∑
i=1

sup
γ∈Γ

∥∥∥∥ ∂

∂γ
Si(γ)Si

∥∥∥∥× ∥γ̂n − γ0∥ = op(1).
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The op(1) term follows by noting ||γ̂n − γ0|| = op(1) by B2; and under B3′(ii) supγ∈Γ ||(∂/∂γ)Si(γ)Si|| is
integrable, hence

1

n

n∑
i=1

sup
γ∈Γ

∥∥∥∥ ∂

∂γ
Si(γ)Si

∥∥∥∥ = Op(1).

Similarly, supγ∈Γ ||(∂/∂γ)Si(γ)(∂/∂γ)Si(γ)|| is integrable under B3′(ii). Hence, for the third term:∥∥∥∥∥ 1n
n∑

i=1

{Si(γ̂n)− Si} {Si(γ̂n)− Si}′
∥∥∥∥∥ ≤ 1

n

n∑
i=1

sup
γ∈Γ

∥∥∥∥ ∂

∂γ
Si(γ)

∂

∂γ
Si(γ)

∥∥∥∥× ∥γ̂n − γ0∥2 = op(1).

Step 4. Next, we prove:

1

n

n∑
i=1

{(
D̂′

nŵn,i

)2
−
(
D′

nwi

)2}
= op(Vn).

Expand:

1

n

n∑
i=1

{(
D̂′

nŵn,i

)2
−
(
D′

nwi

)2}

=
(
D̂n −Dn

)′
× 1

n

n∑
i=1

wiw
′
i ×
(
D̂n −Dn

)
+ 2

(
D̂n −Dn

)′
× 1

n

n∑
i=1

wiw
′
i ×Dn

+D′
n

1

n

n∑
i=1

(ŵn,i − wi) (ŵn,i − wi)
′Dn

+ 2D′
n

1

n

n∑
i=1

(ŵn,i − wi) (ŵn,i − wi)
′
(
D̂n −Dn

)
+
(
D̂n −Dn

)′ 1
n

n∑
i=1

(ŵn,i − wi) (ŵn,i − wi)
′
(
D̂n −Dn

)
+ 2D′

n

1

n

n∑
i=1

(ŵn,i − wi)w
′
iDn

+ 4D′
n

1

n

n∑
i=1

(ŵn,i − wi)w
′
i

(
D̂n −Dn

)
+ 2

(
D̂n −Dn

)′ 1
n

n∑
i=1

(ŵn,i − wi)w
′
i

(
D̂n −Dn

)
.

Under B2 wi is iid and square integrable, hence 1/n
∑n

i=1wiw
′
i

p→ E[wiw
′
i]. By Step 2 D̂n − Dn = op(Vn)

and Dn = Op(Vn).
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Further, use (E13) and wi = (E[SiS
′
i])

−1Si to yield:

1

n

n∑
i=1

(ŵn,i − wi)w
′
i = 2

(
E
[
SiS

′
i

])−1 × 1

n

n∑
i=1

(Si(γ̂n)− Si)S
′
i ×
(
E
[
SiS

′
i

])−1

+
1

n

n∑
i=1

SiS
′
i ×
(
E
[
SiS

′
i

])−1 × op (1)

+
1

n

n∑
i=1

{Si(γ̂n)− Si}S′
i ×
(
E
[
SiS

′
i

])−1 × op (1) .

Observe 1/n
∑n

i=1 SiS
′
i

p→ E[SiS
′
i] in view of square integrability. The arguments in Step 3.1 imply ||1/n

∑n
i=1{Si(γ̂n)

− Si}S′
i|| = op(Vn). Therefore:

1

n

n∑
i=1

(ŵn,i − wi)w
′
i = op(Vn).

The same argument implies:

1

n

n∑
i=1

(ŵn,i − wi) (ŵn,i − wi)
′

=
1

n

n∑
i=1


(
1

n

n∑
i=1

Si(γ̂n)Si(γ̂n)
′

)−1

Si(γ̂n)− (E[SiS
′
i])

−1Si


×


(
1

n

n∑
i=1

Si(γ̂n)Si(γ̂n)
′

)−1

Si(γ̂n)− (E[SiS
′
i])

−1Si


′

= (E[SiS
′
i])

−1 × 1

n

n∑
i=1

{Si(γ̂n)− Si} {Si(γ̂n)− Si}′ × (E[SiS
′
i])

−1

+ (E[SiS
′
i])

−1 × 1

n

n∑
i=1

{Si(γ̂n)− Si} (Si(γ̂n)− Si)
′ × op (1)

+
1

n

n∑
i=1

(Si(γ̂n)− Si) {Si(γ̂n)− Si}′ × (E[SiS
′
i])

−1 × op (1)

+ (E[SiS
′
i])

−1 × 1

n

n∑
i=1

{Si(γ̂n)− Si}S′
i × op (1)

+
1

n

n∑
i=1

Si {Si(γ̂n)− Si}′ × (E[SiS
′
i])

−1 × op (1)

+
1

n

n∑
i=1

Si(γ̂n)Si(γ̂n)
′ × op (1)

= (E[SiS
′
i])

−1 × 1

n

n∑
i=1

{Si(γ̂n)− Si} {Si(γ̂n)− Si}′ × (E[SiS
′
i])

−1
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+ (E[SiS
′
i])

−1 × 1

n

n∑
i=1

{Si(γ̂n)− Si} (Si(γ̂n)− Si)
′ × op (1)

+
1

n

n∑
i=1

(Si(γ̂n)− Si) {Si(γ̂n)− Si}′ × (E[SiS
′
i])

−1 × op (1)× op (1) .

By the proof of Step 3.1:

1

n

n∑
i=1

{Si(γ̂n)− Si} {Si(γ̂n)− Si}′ = op(Vn),

hence
1

n

n∑
i=1

(ŵn,i − wi) (ŵn,i − wi)
′ = op(Vn).

This proves the required result.

Step 5. We now prove (E2). Add and subtract terms, and expand:

1

n

n∑
i=1

{(
Ẑn,i(γ̂n)I

(∣∣∣Ẑn,i(γ̂n)
∣∣∣ < Ẑ

(a)
n,(kn)

(γ̂n)
)
+

(
n− kn

n

)
B̂n(γ̂n)

)
+D′

nwi

}2

=
1

n

n∑
i=1

{(
ZiI (|Zi| < cn) +

(
n− kn

n

)
Bn

)
+D′

nwi

}2

+
1

n

n∑
i=1

(Zi(γ̂n)− Zi)
2
I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)

+
1

n

n∑
i=1

Z2
i

{
I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

}
+ 2

1

n

n∑
i=1

{Zi(γ̂n)− Zi}ZiI
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
){

I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

}
+

1

n

n∑
i=1

[{(
ZiI (|Zi| < cn) +

(
n− kn

n

)
Bn

)
+D′

nwi

}
×
{
Ẑn,i(γ̂n)I

(∣∣∣Ẑn,i(γ̂n)
∣∣∣ < Ẑ

(a)
n,(kn)

(γ̂n)
)
− ZiI (|Zi| < cn)

}]
+

n− kn
n

×

(
1

n

n∑
i=1

Zi

)2

− 2
1

n

n∑
i=1

Zi ×
1

n

n∑
i=1

{Zi(γ̂n)− Zi} I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)

− 2
1

n

n∑
i=1

Zi ×
1

n

n∑
i=1

Zi

{
I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

}
I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)

+ 2

(
n− kn

n

){
B̂n(γ̂n)− Bn

}
× 1

n

n∑
i=1

{
Zi(γ̂n)I

(∣∣∣Ẑn,i(γ̂n)
∣∣∣ < Ẑ

(a)
n,(kn)

(γ̂n)
)
− ZiI (|Zi| < cn)

}
− 2

(
n− kn

n

){
B̂n(γ̂n)− Bn

}
× 1

n

n∑
i=1

Zi ×
n− kn

n
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+

(
n− kn

n

){
B̂n(γ̂n)− Bn

}
×

{
1

n

n∑
i=1

(
ZiI (|Zi| < cn) +

(
n− kn

n

)
Bn

)
+D′

n

1

n

n∑
i=1

wi

}

+

(
n− kn

n

)2 {
B̂n(γ̂n)− Bn

}2

=
1

n

n∑
i=1

{(
ZiI (|Zi| < cn) +

(
n− kn

n

)
Bn

)
+D′

nwi

}2

+

11∑
i=1

Gi,n.

The proof of Theorem 3.4 verifies B̂n(γ̂n)− Bn = op(Vn/n
1/2) = op(1), and 1/n

∑n
i=1 Zi =Op(Ln/n

1−1/min{κ,2})

= op(Vn) by (E6). We need only show each Gi,n = op(V2
n).

Consider G1,n. A first order expansion, Lp-boundedness of supγ∈Γ{|Zi(γ)hi(γ)| × ||(∂/∂γ)pi(γ)||}2 under

B3′(i), and approximation (E4) yield:∣∣∣∣∣ 1

σnn1/2

n∑
i=1

(Zi(γ̂n)− Zi)
2
{
I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

}∣∣∣∣∣ (E14)

≤ 1

σnn1/2

n∑
i=1

sup
γ∈Γ

{
|Zi(γ)hi(γ)| ×

∥∥∥∥ ∂

∂γ
pi(γ)

∥∥∥∥}2 ∣∣∣I (∣∣∣Ẑn,i(γ̂n)
∣∣∣ < Ẑ

(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

∣∣∣× ∥γ̂n − γ0∥2

= op(1).

Hence we may work with I(|Zi| < cn).

By the definition of a derivative (E1):

1

n

n∑
i=1

(Zi(γ̂n)− Zi)
2 I (|Zi| < cn) (E15)

=
1

n

n∑
i=1

(
Zihi

∂

∂γ′
pi (γ̂n − γ0)

)2

I (|Zi| < cn) + op (∥γ̂n − γ0∥)

= (γ̂n − γ0)
′ 1

n

n∑
i=1

SiS
′
iZ

2
i I (|Zi| < cn)× (γ̂n − γ0) + op (∥γ̂n − γ0∥) .

Under B2 ||γ̂n − γ0|| = Op(1/n
1/2). Since under B3′(ii) Si is L4-bounded, the Cauchy-Schwartz inequality

implies: ∥∥E [SiS
′
iZ

2
i I (|Zi| < cn)

]∥∥ ≤ K
(
E
[
Z4
i I (|Zi| < cn)

])1/2
.

Now use Karamata theory (B5) to yield E[Z4
i I(|Zi| < cn)] = O(1) if κ > 4; E[Z4

i I(|Zi| < cn)] ∼ K ln(n) if

κ = 4; and E[Z4
i I(|Zi| < cn)] ∼ K(n/kn)

4/κ−1 if κ < 4. Therefore

E
[
Z4
i I (|Zi| < cn)

]
= O(1) if κ > 4

E
[
Z4
i I (|Zi| < cn)

]
= O (ln (n)) if κ = 4

E
[
Z4
i I (|Zi| < cn)

]
= O

(
(n/kn)

4/κ−1
)

if κ < 4.
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Further:

σ2
n = E

[
Z2
i I (|Zi| < cn)

]
= O(1) if κ > 2

∼ K ln (n)) if κ = 2

∼ K(n/kn)
2/κ−1 if κ < 2.

This implies

(γ̂n − γ0)
′ 1

n

n∑
i=1

SiS
′
iZ

2
i I (|Zi| < cn)× (γ̂n − γ0) (E16)

= Op

(
1

n2

n∑
i=1

SiS
′
iZ

2
i I (|Zi| < cn)

)

= Op

(
σ2
n

n1/2

)
if κ > 4

= Op

(
1

n
(ln (n))1/2

)
= Op

(
σ2
n

n1/2

)
if κ = 4

= Op

(
1

n
(n/kn)

2/κ−1/2

)
= O

(
1

n1/2

)
= Op

(
σ2
n

n1/2

)
if κ ∈ [2, 4)

= Op

(
1

n
(n/kn)

2/κ−1/2

)
= Op

(
(n/kn)

1/2

n
(n/kn)

2/κ−1

)
= op

(
σ2
n

n1/2

)
if κ ∈ (1, 2) .

Combine (E14)-(E16) with (E5) to yield as required:

1

n

n∑
i=1

(Zi(γ̂n)− Zi)
2 I (|Zi| < cn) = op

(
σ2
n

)
= op(V2

n).

The next terms G2,n, G3,n, and G4,n satisfy Gi,n = op(Vn/n
1/2) by using approximation (E4) combined

with arguments developed above. Further, G5,n ∼ (1/n
∑n

i=1 Zi)
2 = op(1) = op(Vn).

Next, G6,n = op(Vn/n
1/2) follows from (E6), and

1

n

n∑
i=1

{Zi(γ̂n)− Zi} I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
= op(Vn/n

1/2)

by an argument identical to the proof of An,3 = op(Vn/n
1/2) in Step 1.

Apply (E4) and (E6) to yield:

|G7,n| ≤

∣∣∣∣∣ 1n
n∑

i=1

Zi

∣∣∣∣∣× 1

n

n∑
i=1

|Zi|
∣∣∣I (∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

∣∣∣ = op(Vn/n
1/2).
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Consider G8,n, use (E4) and the argument for G6,n to deduce:

1

n

n∑
i=1

{
Zi(γ̂n)I

(∣∣∣Ẑn,i(γ̂n)
∣∣∣ < Ẑ

(a)
n,(kn)

(γ̂n)
)
− ZiI (|Zi| < cn)

}

=
1

n

n∑
i=1

Zi

{
I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
− I (|Zi| < cn)

}
+

1

n

n∑
i=1

{Zi(γ̂n)− Zi} I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)

=
1

n

n∑
i=1

{Zi(γ̂n)− Zi} I
(∣∣∣Ẑn,i(γ̂n)

∣∣∣ < Ẑ
(a)
n,(kn)

(γ̂n)
)
= op (Vn) .

Term G9,n = op(1) = op(Vn) given B̂n(γ̂n) − Bn = op(Vn/n
1/2) = op(1) and 1/n

∑n
i=1 Zi = op(1).

Finally, for G10,n, by construction ZiI(|Zi| < cn) + ((n − kn)/n)Bn has a zero mean. Hence by indepen-

dence and (E5):

1

n

n∑
i=1

ZiI (|Zi| < cn) +

(
n− kn

n

)
Bn = Op

(
σn/n

1/2
)
= Op

(
Vn/n

1/2
)
.

Similarly, by assumption wi is iid, has a zero mean and is square integrable, hence 1/n
∑n

i=1wi = Op(1/n
1/2).

By the proof of Theorem 3.1.b Dn = O(Vn). Therefore

1

n

n∑
i=1

(
ZiI (|Zi| < cn) +

(
n− kn

n

)
Bn

)
+D′

n

1

n

n∑
i=1

wi = Op(Vn/n
1/2).

Step 6. In this last step we verify (E3). By definition

V2
n ≡ E[ϑ2

n,i]

= E

[{(
ZiI (|Zi| < cn) +

(
n− kn

n

)
Bn

)
+D′

nwi

}2
]

= E
[{

(ZiI (|Zi| < cn)− ZiI (|Zi| < cn)) +D′
nwi

}2]
.

By construction Yn,i ≡ ϑ2
n,i/V2

n is L1-bounded uniformly in n, and iid over 1 ≤ i ≤ n for each n. Moreover,

by Step 6.1 Yn,i is uniformly integrable. The claim therefore follows from Theorem 2 in Andrews (1988).

Step 6.1. We will prove that for each ε > 0 there exists a Kε > 0 such that supn∈NE[Yn,iI(Yn,i >

Kε)] ≤ ε, which implies uniform integrability.

By sub-additivity and |D′
nwi| ≤ ||Dn|| × ||wi||:

E [Yn,iI (Yn,i > Kε)] =

∫ ∞

Kε

P

(
{(ZiI (|Zi| < cn)− ZiI (|Zi| < cn)) +D′

nwi}2

V2
n

> u

)
du
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≤
∫ ∞

Kε

P

(
|Zi| I (|Zi| < cn)

Vn
> u1/2

)
du+

∫ ∞

Kε

I

(
|E [ZiI (|Zi| < cn)]|

Vn
> u1/2

)
du

+

∫ ∞

Kε

P

(
|D′

nwi|
Vn

> u1/2
)
du

≤
∫ ∞

Kε

P

(
|Zi| I (|Zi| < cn)

Vn
> u1/2

)
du+

∫ ∞

Kε

I
(
E |Zi| > Vnu

1/2
)
du (E17)

+

∫ ∞

Kε

P

(
∥Dn∥
Vn

∥wi∥ > u1/2
)
du.

We need only show each integral is bounded by ε/3 for some Kε.

Consider the second integral. Assumption A5 states lim infn→∞ V2
n > 0, hence for each ε there exists a

K1,ε that implies:

∫ ∞

K1,ε

I
(
E |Zi| > Vnu

1/2
)
du ≤

∫ ∞

K1,ε

I

(
E |Zi|
K

> u1/2
)
du = max

{
0,

(
E |Zi|
K

)2

−K1,ε

}
≤ ε

3
. (E18)

Further, for the third integral the proof of Theorem 3.1.b shows ||Dn|| = O(Vn) hence lim infn→∞ Vn/

||Dn|| > 0. Therefore, for any Kε > 0:∫ ∞

Kε

P

(
∥Dn∥
Vn

∥wi∥ > u1/2
)
du ≤

∫ ∞

Kε

P
(
∥wi∥ > Ku1/2

)
du.

Since ||wi|| is iid and square integrable, it is uniformly square integrable. For each ε there exists a K2,ε such

that:

E

[(
∥wi∥
K

)2

I

((
∥wi∥
K

)2

> K2,ε

)]
=

∫ ∞

K2,ε

P

((
∥wi∥
K

)2

> u

)
du ≤ ε

3
,

hence the third integral is bounded:∫ ∞

K2,ε

P

(
∥Dn∥
Vn

∥wi∥ > u1/2
)
du ≤ ε

3
. (E19)

Finally, for the first integral we have by Theorem 3.1.b V2
n ∼ Kσ2

n for some K > 0, where K = 1 if E[Z2
i ]

= ∞. If E[Z2
i ] < ∞ then by the iid property Zi is uniformly square integrable. Use V2

n ∼ Kσ2
n → KE[Z2

i ]

to deduce for each ε there exists a K(κ>2)
3,ε such that:

∫ ∞

K(κ>2)
3,ε

P

(
|Zi| I (|Zi| < cn)

Vn
> u1/2

)
du ≤

∫ ∞

K(κ>2)
3,ε

P

(
Z2
i

V2
n

> u

)
du (E20)

∼
∫ ∞

K(κ>2)
3,ε

P
(
Z2
i > E

[
Z2
i

]
u
)
du
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=
1

E
[
Z2
i

] ∫ ∞

K(κ>2)
3,ε E[Z2

i ]
P
(
Z2
i > u

)
du ≤ ε

3
.

If E[Z2
i ] = ∞ then use V2

n ∼ σ2
n and a change of variables to write for any Kε > 0:

∫ ∞

Kε

P

(
|Zi| I (|Zi| < cn)

Vn
> u1/2

)
du ∼

∫ c2n/σ
2
n

Kε

P

(
Z2
i

σ2
n

> u

)
du

= K

∫ c2n/σ
2
n

Kε

P
(
Z2
i > σ2

nu
)
du

= K
1

σ2
n

∫ c2n

Kεσ2
n

P
(
Z2
i > v

)
dv

≤ K
max

{
0, c2n −Kεσ

2
n

}
σ2
n

= K
c2n
σ2
n

(
max

{
0, 1−Kεσ

2
n/c

2
n

}
σ2
n

)
.

Recall cn = K(n/kn)
1/κ by (B4). Now use the A3 power law property to deduce the following by Karamata

theory (B5): if the tail index κ < 2 then σ2
n ∼ Kc2nP (|Zi| > cn) = Kc2nkn/n hence c2n/σ

2
n ∼ Kn/kn; and if

κ = 2 then σ2
n ∼ K ln(n) hence c2n/σ

2
n ∼ K(n/kn)/ ln(n) = o((n/kn)). Finally, P (|Zi| > cn) = kn/n → 0

implies cn → ∞. Hence, for any K(κ≤2)
3,ε > 0∫ ∞

K(κ≤2)
3,ε

P

(
|Zi| I (|Zi| < cn)

Vn
> u1/2

)
du = O

(
n

kn

)
1

c2n (kn/n)
(1 + o (1)) = O

(
1

cn

)
→ 0. (E21)

Since K(κ≤2)
3,ε is arbitrary, put K(κ≤2)

3,ε = K(κ>2)
3,ε = K3,ε. Now set

Kε = max {K1,ε,K2,ε,K3,ε} > 0. (E22)

Together, (E18)-(E21) and monotonicity of probability measures imply for any ε > 0 and Kε in (E22) that

each integral in (E17) is bounded by ε/3. This completes the proof. QED.

F Probability Tail Decay - Threshold Crossing Latent Variable Model

for Treatment Assignment

In this section, using a general environment we model tail decay for Z, the variable that point identifies

the ATE. We work in a conventional latent variable threshold crossing framework with separable error and

covariate for treatment assignment. In this setting we characterize the distribution tails of the variable

that identifies the ATE. This framework is widely used (see Vytlacil (2002)) and hence is beneficial for

appreciating why, where and how our estimator is robust to limited overlap.
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The results here provide the required framework from which we derive the various examples in the main

paper. See Sections F.1-F.4. Proofs are presented Section F.5. Assume without loss of generality that the

ATE is:

θ = 0.

Denote by EYi expectations with respect to the measure induced by Yi. Let κ ≡ arg supα>0{E|Zi|α

< ∞}. Recall a ∧ b ≡ min{a, b}. We assume various distributions are smooth for the convenience of all

subsequent derivations.

D5. The distributions of DY/p(X) and (1−D)Y/(1−p(X)) are absolutely continuous on their support, and

p(X)|Y1 and p(X)|Y0 have absolutely continuous distributions with Borel measurable density functions

fp(X)|Y1
and fp(X)|Y0

for each p(x) ∈ (0, 1) and Y1, Y0-a.s.

Theorem F.1. Let c > 1 be arbitrary. Under A1, A2′ and D5:

P (|Z| > c) = EY1

[∫ |Y1|
c

∧1

0
rfp(X)|Y1

(r)dr

]
+ EY0

[∫ 1(
1− |Y0|

c

)
∨0
(1− r)fp(X)|Y0

(r)dr

]
(F1)

∂

∂c
P (|Z| > c) = − 1

c3
EY1

[
I (|Y1| ≤ c)Y 2

1 fp(X)|Y1

(
|Y1|
c

)]
(F2)

− 1

c3
EY0

[
I (|Y0| ≤ c)Y 2

0 fp(X)|Y0

(
1− |Y0|

c

)]
= − 1

c3
d (c) .

If Z had a Paretian tail, then P (|Z| > c) ∼ dc−κ as c → ∞ hence (∂/∂c)P (|Z| > c) ∼ −κdc−κ−1.

Property (F2) suggests that Z has a tail structure similar to a power law with index κ = 2, but with a

multiplicative scale d(c) governed by the threshold c and the distributions of p(X), Y0 and Y1.

We need the conditional density fp(X)|Yj
(r) in order to characterize d(c). We therefore consider the

popular latent variable threshold crossing framework for treatment assignment:

D = I (α+ βX − U ≥ 0) .

Obviously in practice β and V [U ] cannot both be identified, hence either β = 1 or V ar(U) = 1 are standard

assumptions. Trivially the standardized form D = I(X − u ≥ 0) with u = U/β is synonymous to β = 1 and

{U,X} having different tail thicknesses. We allow β ⋛ 1 for ease, but everything that follows is synonymous

to fixing β = 1 and inspecting the relative probability tails of {U,X}.
We assume for simplicity U is independent of X, Y1 and Y0. Also, normalize E[U ] = 0 and V ar(U) = 1

for the rest of the paper. The assumption that the error U is additively separable and independent of X has

implications on the treatment assignment (cf. Vytlacil (2002)). Generality is also lost due to the specific

index structure α+βX , but these help to abstract from issues peripheral to the demonstration of the power

law tail decay. Without loss of further generality, take β > 0.2

2Note that β = 0 implies p(X) = FU (α) = p (constant) and as a result, under assumptions A1 and A2, θ = E[Y |D =
1]− E[Y |D = 0] meaning that there is no need for an IPW estimator. While its variance will increase with the proximity of p
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D6. U has an absolutely continuous distribution with density function fU . X has support X . X|Y1 and

X|Y0 have absolutely continuous distributions with Borel measurable density functions fX|Y1
(x) and

fX|Y0
(x) for each x ∈ X and a.s. with respect to Y1, Y0.

By independence of U and X:

p (X) = P (D = 1|X) = P (α+ βX ≥ U) = FU (α+ βX)

hence under D6 it follows for j = 0, 1:

fp(X)|Yj
(r) = fX|Yj

(
F−1
U (r)− α

β

)
1

β

1

fU
(
F−1
U (r)

) where r ∈ (0, 1).

The result in (F2) can therefore be written as

∂

∂c
P (|Z| > c) = − 1

c3
1

β
F(α, β, c) where F(α, β, c) ≡ F1(α, β, c) + F0(α, β, c), (F3)

and

F1(α, β, c) ≡ EY1

Y 2
1 I (|Y1| ≤ c) fX|Y1

F−1
U

(
|Y1|
c

)
− α

β

 1

fU

(
F−1
U

(
|Y1|
c

))


F0(α, β, c) ≡ EY0

Y 2
0 I (|Y0| ≤ c) fX|Y0

F−1
U

(
1− |Y0|

c

)
− α

β

 1

fU

(
F−1
U

(
1− |Y0|

c

))
 .

It remains to deduce power law properties as a consequence of the behavior of F(α, β, c) as c → ∞. The

behavior of the ratios fX|Yj
((q1 − α)/β)/fU (qj) and therefore the relative tail decay of X|Yj and U plays a

key roll, where for j = 0, 1 the q′js are quantiles

q0 ≡ F−1
U (1− |Y0|/c) and q1 ≡ F−1

U (|Y1|/c) for |Yj |/c ≤ 1. (F4)

We demonstrate below by example how these two ratios influence the tail behavior of Z. Given the simplicity

of the setup and a similar setting in Busso, DiNardo, and McCrary (2009) and Khan and Tamer (2010a),

we focus on the cases where Yj⊥X,U , and either {U,X} are identically distributed, or normally or Laplace

distributed. Further, in order to avoid notational clutter we simply assume α = 0:

D = I (βX − U ≥ 0) . (F5)

to 0 or 1, the IPW estimator does not, however, suffer from the limited overlap problem asymptotically as long as the constant
p ∈ (0, 1).
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In the settings discussed below, α = 0 implies Z has a symmetric distribution about the ATE θ. Allowing

α ̸= 0 merely generalizes to tail asymmetry. In practice, a more general setting will clearly be desired. The

following derivations serve as a basic groundwork for showing under limited overlap why heavy tails arise,

and how sensitive they are to β.

F.1 Example: iid Error and Covariate

A brief example sheds some light on how the covariate slope β and the relative tail behavior of X and U

affects the tail behavior of Z . In Khan and Tamer (2010a), following Lewbel (1997), the latent variable

case treated is the standardization β = 1.

Then
fX|Yj

((q1 − α)/β)

fU (qj)
=

fX|Yj
(qj)

fU (qj)
,

and since Yj⊥X this further reduces to fX(qj)/fU (qj). Thus, if X and U have the same densities, then

Fj(0, 1, c) ≡ EYj

[
Y 2
j I (|Yj | ≤ c)

]
,

and if Yj has a finite variance then by dominated convergence limc→∞Fj(0, 1, c) = E[Y 2
j ]. This implies by

(F3) that
∂

∂c
P (|Z| > c) ∼ −c−3

(
E
[
Y 2
0

]
+ E

[
Y 2
1

])
,

hence Z has a Paretian tail with index 2. This proves the following.

Theorem F.2. Let the treatment assignment be (F5) with β = 1, let Yj⊥X,U , and let {U,X} be iid. Then

P (|Z| > c) = dc−2(1 + o(1)) where d = (1/2)(E[Y 2
0 ] + E[Y 2

1 ]).

Remark 2. By dominated convergence the same conclusion follows when fX(r)/fU (r) → (0,∞) as |r| →
∞. Hence, the tail index is identically 2 when X and U have the same rate of distribution tail decay.

Two simple lessons are (i) when Yj⊥X,U , and X and U have the same impact on Fj(α, β, c) for j = 0, 1,

then Z is heavy tailed with a hairline infinite variance; and (ii) lighter or heavier tails are driven by tail

differences in X and U , and β ⋛ 1, an issue largely ignored in the literature on IPW estimators for the ATE.

Notice (i) explains Khan and Tamer (2010a, Section 4.1)’s finding that their tail-trimmed ATE estimator has

a o(n1/2) rate of convergence when X and U are identically logit distributed: Z has an infinite variance hence

negligible trimming results in sub-n1/2 convergence (Csörgo, Horváth, and Mason, 1986; Hahn, Weiner, and

Mason, 1991; Hill, 2015).

F.2 Example: Laplace Error and Covariate

Let (Y1, Y0, X, U) be independently distributed Laplace with mean 0 and variance 1. The cdf is

F (r) =
1

2
e
√
2r if r ≤ 0 and F (r) = 1− 1

2
e−

√
2r if r > 0, (F6)

hence f(r) = (1/
√
2)e−

√
2|r|.
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Theorem F.3. Let the treatment assignment be (F5), let Yj ⊥ X,U , and let {U,X} be iid with cdf (F6).

Z is symmetrically distributed about zero, and P (|Z| > c) = d(β)c−(1+1/β)(1 + O(e−c/4)) where d(β) ≡
β−121/(2β)

∫∞
0 exp {−y} y1+1/βdy ∈ (0,∞) for all β ∈ (0,∞).

Remark 3. The distribution is symmetric due to the treatment assignment location α = 0, independence

Yj⊥X,U , and symmetry about zero for the distributions of all variables (Y1, Y0, X, U). The tail index 1 +

1/β > 1, so the ATE always exists.3 As β increases the signal βX is stronger, ceteris parabus, hence the

probability tails of Z become monotonically heavier.

Remark 4. The second order term O(e−c/4) is O(c−η) for any η > 0. This implies power law assumption

A3′ holds, and since η > 0 is arbitrary then any fractile mn → ∞ and mn = o(n) can in theory be used for

tail exponent estimation in the bias-corrected ATE estimator.

F.3 Example: Normal Error and Covariate

Repeat the setup above, except assume (Y1, Y0, X, U) are independently distributed N(0, 1). Then

Fj(0, β, c) = EYj

[
Y 2
j I (|Yj | ≤ c)

fX|Yj
(qj/β)

fU (qj)

]
= EYj

[
Y 2
j I (|Yj | ≤ c)

fX (qj/β)

fU (qj)

]

=

√
2√
π

∫ c

0
y2 exp

{
−y2

2

}
exp

{
−1− β2

2β2
q2j

}
dy.

Let Φ(z) denote the standard normal cdf. In this setting, it follows by a change of variables z = y/c that,

e.g.,

F1(0, β, c) =

√
2√
π

∫ 1

0
c3z2 exp

{
−c2z2

2

}
exp

{
−1− β2

2β2
(Φ−1(z))2

}
dz. (F7)

Theorem F.4. Let the treatment assignment be (F5), let Yj ⊥ X,U , and let {U,X} be iid N(0, 1). Z

is symmetrically distributed about zero, and P (|Z| > c) = d(β)c−(1+1/β2))(1 + o(e−c/2)) where d(β) ≡
β−1(2π)−K(1−1/β2)

∫∞
0 u2 exp

{
−u2/2

}
u−K(1−1/β2) for some K > 0.

Remark 5. The higher order term o(e−c/2) is O(c−η) for any η > 0, hence again A3′ holds and any mn →
∞ and mn = o(n) is valid.

Remark 6. Although exponential tails in general will lead to results similar to the Laplace case, there are

concrete differences worth noting. In particular, in the present case Z has a Paretian tail with index κ = 1

+ 1/β2 which is more sensitive to changes in β than the Laplace index 1 + 1/β is when β ∈ (0, 2).

F.4 Example: Non-iid Error and Covariate

The preceding examples exclude, for simplicity, the case where the errors and covariates have different

distributions. Consider Yj ⊥ X,U , as above, hence

Fj(0, β, c) = EYj

[
Y 2
j I (|Yj | ≤ c)

fX(qj/β)

fU (qj)

]
,

3This is trivial: θ = E[Y1 − Y0] exists because the Y ′
j s are iid Laplace, and therefore integrable, hence the tail index must

be greater than one.
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where qj are defined by (F4). Then, for a given β > 0, a relatively heavier (thinner) tailed error U is

associated with thinner (heavier) tails in Z. For example, if (Y0, Y1, X) are Laplace and U is normal then

Z is heavier tailed than if all (Y0, Y1, X, U) are Laplace, and additionally in this case if β = 1 then κ < 2.

Conversely, if (Y0, Y1, X) are normal and U is Laplace or has a power law distribution tail, then Z is thinner

tailed than if all (Y0, Y1, X, U) are normal. A similar scenario arises if (Y0, Y1, X) and U belong to the same

distribution class but have different variances.

As a final brief example, consider Khan and Tamer (2010a, Section 4.1)’s example with β = 1, Yj ⊥ X,U ,

logistic X and normal U . Since logistic tails are heavier the normal tails, fX(qj/β)/fU (qj) → ∞ such that κ

< 2. This explains their derived sub-(n/ ln(n))1/2 rate of convergence for θ̂
(tx)
n with minimum mse thresholds.

However, if U is logistic and X is normal then fX(qj/β)/fU (qj) → 0 and Z has a power law with tail index κ

> 2, hence identification is ”regular”. Our simulation experiments with Laplace and normal {U,X} clearly

demonstrate these opposite cases.

F.5 Proofs

Proof of Theorem F.1. By mutual exclusivity of the events D = 1 and D = 0 it follows:

P (|hY | > c) = P

(∣∣∣∣ DY1
p(X)

− (1−D)Y0
1− p(X)

∣∣∣∣ > c

)
= P

(∣∣∣∣ DY1
p(X)

∣∣∣∣ > c

)
+ P

(∣∣∣∣(1−D)Y0
1− p(X)

∣∣∣∣ > c

)
. (F8)

Observe that:

P

(
DY1
p(X)

> c

)
= EY1

[
I

(
Y1

p(X)
> c

)
p(X)|Y1

]

= EY1

(
E

[
p(X)I

(
p(X) <

Y1
c

∧ 1

)
|Y1
])

= EY1

[∫ Y1
c
∧1

0
rfp(X)|Y1

(r|y) dr

]

and

P

(
DY1
p(X)

< −c

)
= EY1

[∫ −Y1
c

∧1

0
rfp(X)|Y1

(r|y) dr

]
,

hence

P

(∣∣∣∣ DY1
p(X)

∣∣∣∣ > c

)
= EY1

[∫ |Y1|
c

∧1

0
rfp(X)|y (r|y) dr

]
. (F9)

By the same argument

P

(∣∣∣∣(1−D)Y0
1− p(X)

∣∣∣∣ > c

)
= EY0

[∫ 1(
1− |Y0|

c

)
∨0
(1− r)fp(X)|Y0

(r)dr

]
. (F10)

Differentiate both sides of (F9) and (F10) with respect to c to deduce:

∂

∂c
P

(∣∣∣∣ DY1
p(X)

∣∣∣∣ > c

)
(F11)
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=
∂

∂c

∫
|Y1|>c

{∫ 1

0
rfp(X)|Y1

(r)dr

}
fY1(y)dy

+
∂

∂c

∫
|Y1|≤c

{∫ |Y1|
c

0
rfp(X)|Y1

(r)dr

}
fY1(y)dy

=
∂

∂c

∫ −c

−∞

{∫ 1

0
rfp(X)|Y1

(r)dr

}
fY1(y)dy +

∂

∂c

∫ ∞

−c

{∫ 1

0
rfp(X)|Y1

(r)dr

}
fY1(y)dy

+
∂

∂c

∫ c

−c

{∫ |Y1|
c

0
rfp(X)|Y1

(r)dr

}
fY1(y)dy

= −E[p(X)|Y1 = −c]fY1(−c)− E[p(X)|Y1 = c]fY1(c) + E[p(X)|Y1 = −c]fY1(−c)

+ E[p(X)|Y1 = c]fY1(c) +

∫ c

−c

∂

∂c

{
|Y1|
c

}
|Y1|
c

fp(X)|Y1

(
|Y1|
c

)
fY1(y)dy

= − 1

c3
EY1

[
Y 2
1 fp(X)|Y1

(
|Y1|
c

)
1(|Y1| ≤ c)

]
,

and
∂

∂c
P

(∣∣∣∣(1−D)Y0
1− p(X)

∣∣∣∣ > c

)
= − 1

c3
EY

[
Y 2
0 fp(X)|Y0

(
1− |Y0|

c

)
1(|Y0| ≤ c)

]
. (F12)

Now combine (F8)-(F12) to prove the claims. QED .

Proof of Theorem F.3. We only characterize F1(α, β, c) in (F3) since F0(α, β, c) is similar. Define q1

≡ F−1
U (|Y1|/c). By the Laplace definition it follows

q1 =
1√
2

{
ln 2 + ln

(
|Y1|
c

)}
< 0 if

|Y1|
c

≤ 1/2 and q1 = − 1√
2

{
ln 2 + ln

(
1− |Y1|

c

)}
> 0 if

|Y1|
c

> 1/2.

Use Yj ⊥ X,U and substitute y = |Y1| to deduce

F1(α, β, c) (F13)

= EY1

[
Y 2
1 I (|Y1| ≤ c)

fX (q1/β)

fU (q1)

]

=
√
2

∫ c/2

0
y2 exp

{
−
√
2y
}
× exp {(ln 2 + ln (y/c)) (1/β − 1)} dy

+
√
2

∫ c

c/2
y2 exp

{
−
√
2y
}
× exp {(ln 2 + ln (1− y/c)) (1/β − 1)} dy

= 2
2−β
2β

∫ c/2

0
y2 exp

{
−
√
2y
}
× (y/c)1/β−1 dy + 2

2−β
2β

∫ c

c/2
y2 exp

{
−
√
2y
}
× (1− y/c)1/β−1 dy

29



= 2
1−2β
2β c−(1/β−1)

[∫ c/
√
2

0
exp {−y} × y1+1/βdy +

∫ √
2c

c/
√
2
y2 exp {−y} ×

(√
2c− y

)1/β−1
dy

]

= 21/(2β)−1c−(1/β−1) (I1(c) + I2(c)) .

It suffices to show each Ii(c) = K + O(e−c/4) and at least one limc→∞ Ii(c) > 0. It then follows by (F3)

that (∂/∂c)P (|Z| > c) = −Kc−2−1/β(1 + O(e−c/4)), hence by dominated convergence P (|Z| > c) = d(β)(1

+ O(e−c/4)). Use (F3) and (F13) to deduce d(β) = β−121/(2β)
∫∞
0 exp {−y} y1+1/βdy ∈ (0,∞) for all β ∈

(0,∞).

If β = 1 then I1(c) + I2(c) =
∫ √

2c
0 y2 exp{−y}dy = 2 + o(e−c/4), and if β ̸= 1 then limc→∞ I1(c) ∈

(0,∞) in view of the exponential term exp {−y}. It remains to bound I2(c). If β < 1 then

I2 (c) =

∫ √
2c

c/
√
2
y2 exp {−y} ×

(√
2c− y

)1/β−1
dy ≤ 2(1−β)/2βc1/β−1

∫ √
2c

c/
√
2
y2 exp {−y} dy

≤ 2(1+β)/2β c1/β+1

exp
{√

2c
} = o

(
e−c/4

)
.

Finally, if β > 1 then ec/4y2 exp{−y} × (
√

(2)c − y)1/β−1dy ≤ Ky−(1+δ) for all y ∈ [c/
√
2,
√
2c − ι], tiny ι

> 0, some tiny δ > 0 and some large K > 0. Therefore
∫ √

2c−ι

c/
√
2

y2 exp{−y} × (
√
2c − y)1/β−1dy = o(e−c/4)

for any tiny ι > 0, hence I2(c) = K + O(e−c/4). QED.

Proof of Theorem F.4. Symmetry follows from α = 0, independence Yj⊥X,U , and distribution

symmetry for all (Y0, Y1, X, U).

We only compute F1(0, β, c) since F0(0, β, c) is similar. Now let Φ(w) and ϕ(w) be the normal cdf and

pdf. In order to characterize the standard normal quantile Φ−1(u/c) for u ∈ [0, c], we use the expansion 1

− Φ(w) = (1 + O
(
1/w2

)
) × ϕ(w)/w to solve u/c = ϕ(w(c))/w(c) for some w(c) as c → ∞ hence as w(c)

→ ∞. See Gray and Wang (1991), cf. Lew (1981) and Hawkes (1982). Rudimentary algebra reveals w(c)

satisfies

w(c) = 21/2 (ln (c))1/2
(
1− ln(u)

ln (c)
− ln (2π)

ln (c)

)1/2

(1 +O (1/ ln (c))) .

Since |Φ−1(u/c)| = w(c) use formula (F7) to deduce F1(0, β, c) is identically:(
2

π

)1/2 ∫ c

0

u2

exp {u2/2}
exp

{
β2 − 1

β2
ln (c)

(
1− ln(u)

ln (c)
− ln (2π)

ln (c)

)
(1 +O (1/ ln (c)))

}
du

=

(
2

π

)1/2 ∫ c

0
u2 exp

{
−u2/2

}
c(1−1/β2)(1−ln(u)/ ln(c)−ln(2π)/ ln(c))(1+O(1/ ln(c)))du

=

(
2

π

)1/2

c(1−1/β2)(1+O(1/ ln(c)))

∫ c

0
u2 exp

{
−u2/2

}
c−(1−1/β2)O(1/ ln(c))(ln(u)+ln(2π))du.
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If β = 1 then limc→∞F1(0, 1, c) = 1, in particular F1(0, 1, c) = 1 + o(e−c/2) is easily verified given the

normal density.

Now assume β ̸= 1 and let d (β) be a positive finite function of β that may change from line to line.

Observe

ln
(
c−(1−1/β2)O(1/ ln(c))(ln(u)+ln(2π))

)
= −

(
1− 1/β2

)
×O (1)× ln(2πu),

hence by the monotonicity of the natural log c−(1−1/β2)O(1/ ln(c))(ln(u)+ln(2π)) = (2πu)−(1−1/β2)×O(1). Similarly

c(1−1/β2)O(1/ ln(c)) = O(1) × c(1−1/β2). Therefore:

F1(0, β, c) = (2π)−(1−1/β2)×O(1) ×O (1)× c(1−1/β2)

∫ c

0
u2 exp

{
−u2/2

}
u−(1−1/β2)×O(1)du

= d̃(β)×
(
1 + o(e−c/2)

)
× c(1−1/β2),

say. Use the formula for (∂/∂c)P (|Z| > c) in (F3) to deduce

∂

∂c
P (|Z| > c) = − 1

β
d̃(β)c−3c(1−1/β2)

(
1 + o(e−c/2)

)
= − 1

β
d̃(β)c−2−β−2

(
1 + o(e−c/2)

)
,

hence by dominated convergence P (|Z| > c) = d(β)c−(1+1/β2)(1 + o(e−c/2)) where d(β) ≡ β−1d̃(β) =

β−1(2π)−K(1−1/β2)
∫∞
0 u2 exp

{
−u2/2

}
u−K(1−1/β2). QED.
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G Other Tail-Trimmed Estimators

We study the properties of the trim-by-X estimator for scalar Xi:

θ(tx)n =
1

n

n∑
i=1

ZiI (|Xi| ≤ νn) ,

where {νn} is a sequence of positive numbers, νn → ∞. We therefore ignore sampling error associated

with propensity score estimation in order to focus on the merit of trimming by Xi. In any event, under

a threshold crossing treatment assignment model Di = I(βXi − Ui ≥ 0) with independent Ui and Xi,

trimming symmetrically by p(Xi) or Xi are equivalent when Ui has a continuous symmetric distribution

about zero.4

We further simplify derivations by working in the following latent variable framework with Laplace

distributed variables, in which case the ATE θ = 0. See Chaudhuri and Hill (2014, Part I) for a broad

treatment of the latent variable model and a demonstration that limited overlap in this environment yields

power law tails in Zi.

Assumption A6 (treatment assignment): The treatment assignment satisfies D = I (α+ βX − U ≥ 0);

X ⊥ U ; Yj ⊥ X,U ; and (Y0, Y1, X, U) are iid Laplace distributed with cdf (F6).

Under Assumption A6, θ
(tx)
n is unbiased since by independence E[ZiI(|Xi| ≤ νn)] = E[{DiY1,i + (1 −

Di)Y0,i}hiI(|Xi| ≤ νn)] = 0 = θ. We abstract from the possibility of bias in order to focus on the convergence

rate. Note that Khan and Tamer’s (2010a: Section 4.1) characterization of bias for θ
(tx)
n is presumably under

the assumption α ̸= 0 (see their footnote 7). Define the variance

S2
n ≡ E

[
{ZiI (|Xi| ≤ νn)− E [ZiI (|Xi| ≤ νn)]}2

]
= E

[
Z2
i I (|Xi| ≤ νn)

]
− θ2 × (1 + o(1)) , (G14)

where the second equality follows from νn → ∞ and dominated convergence.

Khan and Tamer (2010b,a) study the convergence rate of θ
(tx)
n under A6 with β = 1, and with other

distributions. Under A6 we characterize the limit distribution and rate of convergence n1/2/Sn of θ
(tx)
n , and

compare θ
(tx)
n to the trim-by-Z estimator θ̂

(tz)
n . We again use β ⋛ 1 to mimic the setting where β = 1 and

{U,X} may have different distribution tails. We then reveal the weak correspondence between extremes in

Xi and in Zi. This sheds light on the inability of θ
(tx)
n to control for heavy tails in small samples, based on

our simulation study, unless the sample portion of trimmed Zi is very large. Finally, we present an improved

version of θ
(tx)
n that uses a stochastic threshold and discuss how to set the trimming fractile such that it

compares closely with θ̂
(tz)
n .

4Observe that p(Xi) = FU (α + β′Xi), where FU (c) ≡ P (Ui ≤ c), hence ν̃n,1 ≤ p(Xi) ≤ ν̃n,2 if and only if F−1
U (ν̃n,1) ≤ α

+ β′Xi ≤ F−1
U (ν̃n,2). If α = 0, U has a symmetric distribution about zero, Xi is scalar, and the cutpoints are symmetric ν̃n =

ν̃n,2 = 1 − ν̃n,1, then trimming symmetrically by p(Xi) or Xi are arithmetically identical when νn ≡ F−1
U (ν̃n)/β since 1 − ν̃n

≤ p(Xi) ≤ ν̃n if and only if |Xi| ≤ F−1
U (ν̃n)/β = νn. If α ̸= 0 and/or Ui has an asymmetric distribution, and Xi is a scalar, or

Di = I(γ′
0Xi − Ui ≥ 0) for vector-valued Xi that may contain a constant term, then trimming by p(Xi) or Xi are similar, but

not identical.
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G.1 Properties of θ
(tx)
n

We first characterize S2
n. Under A6, E[Y 2

j ] = 1 and hence by independence E[Z2
i I(|Xi| ≤ νn)] = E[h2i I(|Xi|

≤ νn)]. Now apply dominated convergence and θ = 0 to deduce S2
n ∼ E[h2i I(|Xi| ≤ νn)], while

E
[
h2i I (|Xi| ≤ νn)

]
= E

[
1

Fu(βXi)
I (|Xi| ≤ νn)

]
+ E

[
1

1− Fu(βXi)
I (|Xi| ≤ νn)

]
. (G15)

By the Laplace assumption, the first term in (G15) is (the second term has a similar expression):

E

[
1

Fu(βXi)
I (|Xi| ≤ νn)

]
=

∫ νn

−νn

1

F (βx)

∂

∂x
F (x) dx (G16)

=
√
2

[∫ 0

−νn

e
√
2x(β−1)dx+

∫ νn

0

e−
√
2x

2− e−
√
2βx

dx

]

=

∫ √
2νn

0
ex(β−1)dx+

∫ √
2νn

0

e(β−1)x

2eβx − 1
dx =

∫ √
2νn

0
ex(β−1)dx× (1 + o(1)) .

By Theorem F.3, Zi has a tail

P (|Zi − θ| ≥ c) = dc−κ(1 + o(1)) with κ = 1 + 1/β.

If β < 1 then κ > 2 and
∫ √

2νn
0 ex(β−1)dx = O(1), hence E[h2i I(|Xi| ≤ νn)] ∼ 2

∫∞
0 e−x(1−β)dx = 2/(1 −

β) = E[h2i ]. The case studied in Khan and Tamer (2010a) is β = 1 which aligns with a tail index κ = 2,

and E[h2i I(|Xi| ≤ νn)] ∼
√
2νn → ∞ by (G16). Finally, if β > 1 then κ < 2 , and

∫ √
2νn

0 ex(β−1)dx = (β −
1)−1

(
exp{

√
2νn(β − 1)} − 1

)
hence E[h2i I(|Xi| ≤ νn)] ∼ 2(β − 1)−1

(
exp{

√
2νn(β − 1)} − 1

)
→ ∞.

This proves S2
n is finite for each n and any β, and monotonically increasing in β when β ≥ 1. Khan and

Tamer (2010b, Theorem 4.1) assume the Lindeberg condition holds in order to prove asymptotic normality

in a general environment. Using arguments in Khan and Tamer (2010b, Section 3), however, the condition

is straightforward to verify here, hence we omit a proof.

Theorem G.1. Under Assumption A6 n1/2S−1
n (θ

(tx)
n − θ)

d→ N(0, 1). In particular: if β < 1 then

n1/2(θ
(tx)
n − θ)

d→ N(0, 2/(1 − β)); if β = 1 then (n1/2/νn)(θ
(tx)
n − θ)

d→ N(0, 2); and if β > 1 then

(n1/2/e
√
2νn(β−1))(θ

(tx)
n − θ)

d→ N(0, 2/(β − 1)).

Remark 7. There are substantial differences in estimator behavior for the full range of β > 0. Small β

∈ (0, 1) implies Zi has a finite variance hence θ
(tx)
n is n1/2-convergent with asymptotic variance 2/(1 − β),

identical to the untrimmed 1/n
∑n

i=1 Zi. Unity β = 1 aligns with a hairline infinite variance, and convergence

rate n1/2/νn = o(n1/2), with an asymptotic variance that depends on νn. Greater than unity β > 1 aligns

with a power law tail with index 1 + 1/β < 2, and for a chosen sequence {νn} the rate of convergence is

exponentially slower. For example, if we use νn = λ(ln(n))δ for δ ∈ (0, 1] as do Khan and Tamer (2010b)

when the errors and regressors have exponential tails, then θ
(tx)
n has a convergence rate n1/2/(ln(n))δ when

β = 1 but only n1/2/e
√
2(β−1)λ(ln(n))δ when β > 1. Consider that if νn = λ ln(n) and β > 1 then the

rate is just n1/2−
√
2λ(β−1). We therefore require information on β in order to set λ small enough just to
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ensure n1/2−
√
2λ(β−1) → ∞. The choice of νn = λ ln(ln(n)), however, is always valid since n1/2/eνn(β−1) =

n1/2/(ln(n))
√
2λ(β−1) → ∞.

G.2 Comparison of Estimators

We now compare θ
(tx)
n and θ̂

(tz)
n based on their rates of convergence and ability to remove extreme observations

of Zi. Recall we assume the propensity score p(·) is known.

G.2.1 Rates of Convergence

We first derive the limit distribution of θ̂
(tz)
n with its case-dependent asymptotic variance. Combine E[Z2

i ]

derived above for the case β < 1, with Theorem F.3 for the power law property with index 1 + 1/β, and

Lemma 3.2 in the main paper for rates of convergence, to deduce the following.

Theorem G.2. Let A6 hold. If β < 1 then n1/2(θ̂
(tz)
n − θ)

d→ N(0, 2/(1 − β)), if β = 1 then

(n/ ln(n))1/2(θ̂
(tz)
n − θ)

d→ N(0, d), and if β > 1 then n1/2/((n/kn)
β/(β+1)−1/2)(θ̂

(tz)
n − θ)

d→ N(0, d2β/(β+1)

× (β + 1)/(β − 1)).

A comparison of the convergence rates when β ≥ 1 is complicated by the presence of the threshold νn in

θ
(tx)
n and fractile kn (with associated threshold cn) in θ̂

(tz)
n . Khan and Tamer (2010a) suggest νn = λ ln(n)

for some λ > 0 for the logit case with β = 1. Since Laplace and logit distributions will lead to the same

essential results, consider νn = λ ln(n). Then θ
(tx)
n and θ̂

(tz)
n have the same rates of convergence when β ≤

1 by Theorems G.1 and G.2.

However, if β > 1 then eνn(β−1) = n
√
2λ(β−1) hence θ

(tx)
n has rate n1/2−

√
2λ(β−1) → ∞ only provided β <

1 + 1/(23/2λ). Conversely, θ̂
(tz)
n has a rate n1/2/(n/kn)

β/(β+1)−1/2 → ∞ for any value β > 1. Now, Paretian

tail decay and the threshold construction imply cn ∼ d1/(1+1/β)(n/kn)
1/(1+1/β) . If the fractile kn implies

the thresholds of θ̂
(tz)
n satisfy cn ∼ λ ln(n), similar to νn, then we must have a number of trimmed Z ′

is equal

to kn ∼ Kn/(ln(n))1+1/β. In this case the rate of convergence for θ̂
(tz)
n is n1/2/(ln(n))1−(β+1)/(2β) which is

faster than the rate n1/2−
√
2λ(β−1) for θ

(tx)
n with threshold νn = λ ln(n).

This suggests that the trim-by-Z estimator θ̂
(tz)
n has a faster rate of convergence than the trim-by-X

estimator θ
(tx)
n in the heavy tail case β > 1 when the same type of thresholds are used. Although we only

treat the Laplace case here, in general this follows from the fact that limited overlap and therefore heavy

tails imply potentially many large values of Zi are present, while this slows down the convergence rate. The

estimator θ̂
(tz)
n removes extreme Z ′

is by construction, and as we show next, for a given threshold sequence

θ
(tx)
n is more likely to leave extremes present, which leads to its comparatively slower rate.

G.2.2 Ability to Remove Extreme Observations

By construction θ
(tx)
n removes Zi only when Xi is large. We now demonstrate the correspondence between

extreme values of Xi and Zi can be weak by simulating P (|Zi| > cz | |Xi| > cx), the conditional probability

that Zi is large when Xi is large, for various thresholds {cx, cz}.
We use a latent variable model for treatment assignment D = I(βX − U ≥ 0), for choices β ∈ {.25, 1, 2}.

Each (Y0, Y1, X, U) is iid standard normal, or Laplace with cdf (F6), hence β ∈ {.25, 1, 2} aligns with finite,
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hairline infinite, and infinite variance cases. We draw R = 10, 000 samples {Zi}ni=1 of size n = 1, 000, 000,

and compute

Pn,r = Pn,r(cz, cx) ≡
1/n

∑n
i=1 I (|Zi| > cz) I (|xi| > cx)

1/n
∑n

i=1 I (|xi| > cx)
(G17)

for each rth sample and {cx, cz} ∈ [1, 10] with increments of 1. By the law of large numbers and independence,

Pn,r will be very close to P (|Zi| > cz | |Xi| > cx) with high probability.

Plots of 1/R
∑R

r=1 Pn,r are contained in Figure G.1. In all cases Pn,r ≤ .6, and Pn,r ≤ .05 when both

cx, cz ≥ 4. The event |Xi| > cx for large cx is a very weak predictor of |Zi| > cz for large cz. Furthermore,

the probability is smaller when tails are heavier: when β = 2, hence κ < 2, we have Pn,r ≤ .3 and .4 for

Laplace and Normal cases, respectively. However, Pn,r is monotonically higher for each cz and small cx.

This is precisely what we find in our simulation experiments below: we must use small cx to ensure as

close a correspondence between Xi and Zi sample extremes as possible. Specifically, we must trim a large

number of observations to ensure an adaptive version of θ
(tx)
n is close to normally distributed, and has small

bias when Z is symmetrically distributed. If we let cx be large, and therefore trim few observations, then

P (|Zi| > cz||Xi| > cx) is small and in any given sample θ
(tx)
n tends not to remove enough, or any, extremes:

θ
(tx)
n performs roughly on par with the untrimmed estimator 1/n

∑n
i=1 Zi.

G.3 Adaptive Trim-by-X and Trim-by-p(X) Estimators

A chosen νn may result in no trimming at all in some samples, or very few observations trimmed that do not

sufficiently align with sample extremes of Zi, and therefore estimator instability may still exist. A simple

improvement for θ
(tx)
n bases trimming on an order statistic of Xi.

Under the assumption that there is only one covariate X that matters for trimming, define X
(a)
i ≡ |Xi|,

denote the order statistics X
(a)
(1) ≥ X

(a)
(2) · · · , and let {k(x)n } be an intermediate order sequence: k

(x)
n → ∞

as k
(x)
n /n → 0. Then an adaptive version of θ

(tx)
n is θ̂

(tx)
n ≡ 1/n

∑n
i=1 ZiI(|Xi| ≤ X

(a)

(k
(x)
n )

), in which case

νn satisfies P (|Xi| > νn) ∼ k
(x)
n /n. Lemma A.4 in the main paper can be extended to θ̂

(tx)
n to verify

(n1/2/Sn)(θ̂
(tx)
n − θ

(tx)
n )

p→ 0. Coupled with Theorem G.1, this proves the next claim.

Theorem G.3. Under A6 θ̂
(tx)
n satisfies Theorem G.1.

Remark 8. The result can be extended to other distributions, evidently case-by-case since the Lindeberg

condition must be verified. Thus, another advantage of the trim-by-Z estimator θ̂
(tz)
n is we do not need to

make any assumptions on the distributions of U and X since, by theory and references presented in Hill

(2015), the Lindeberg condition holds under very general conditions.

We have thus far assumed the propensity score is known in order to reduce notation. In the same manner

as Theorem 3.1 in the main paper, if a parametric plug-in pi(γ̂n) is used, and Assumptions B1-B3 hold, then

θ(tx)n (γ̂n) =
1

n

n∑
i=1

Zi(γ̂n)I (|Xi| ≤ νn) and θ̂(tx)n (γ̂n) ≡
1

n

n∑
i=1

Zi(γ̂n)I

(
|Xi| ≤ X

(a)

(k
(x)
n )

)
(G18)

satisfy, e.g., n1/2S−1
n (θ̂

(tx)
n (γ̂n) − θ)

d→ N(0, 1) in the heavy tail case E[Z2
i ] = ∞, and n1/2S−1

n (θ̂
(tx)
n (γ̂n) −
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θ)
d→ N(0,K) for some K ∈ (0,∞) that depends on pi(γ0).

A fully adaptive trim-by-p(Xi) estimator operates similarly. Define order statistics p(1)(γ) ≥ · · · ≥
p(n)(γ), and an intermediate order sequence {k(p)n }. The estimator is

θ̂(tp)n (γ̂n) ≡
1

n

n∑
i=1

Zi(γ̂n)I
(
p
(n−k

(p)
n +1)

(γ̂n) ≤ pi(γ̂n) ≤ p
(k

(p)
n )

(γ̂n)
)
. (G19)

Since k
(p)
n → ∞ and k

(p)
n /n → 0 it follows p

(n−k
(p)
n +1)

p→ 0 and p
(n−k

(p)
n +1)

p→ 1, hence trimming is negligible.

In the threshold crossing model Di = I(βXi − Ui ≥ 0) where Ui and Xi are independent, and Ui has a

symmetric distribution about zero, then it can be shown that (n1/2/S̃n)(θ̂
(tp)
n (γ̂n) − θ)

d→ N(0, 1) for some

sequence of positive constants {S̃n}, where S̃n → ∞ if E[Z2
i ] = ∞.
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(a) β = .25 (b) β = .25

(c) β = 1 (d) β = 1

(e) β = 2 (f) β = 2

Figure G.1. P (|Z| > cz | |X| > cx): (Y1, Y2, U,X) are iid Laplace (left panels) or Normal (right panels).
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(a) β = .25 (b) β = .25

(c) β = 1 (d) β = 1

(e) β = 2 (f) β = 2

Figure G.2. P (|Z| > cz | |Y | > cy): (Y1, Y2, U,X) are iid Laplace (left panels) or Normal (right panels).
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