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A. Introduction

We list the assumptions for reference below. Appendix B contains omitted proofs and additional results.
'We provide an empirical study in Appendix C, and Appendix D contains all simulation results.

We use the following notation. [z] rounds z to the nearest integer.. L, is the space of square inte-
grable random variables; L;[a, b) is the class of square integrable functions on [a,b). || - ||, and || - ||
are the L), and /> norms respectively, p > 1. Let Z = {... - 2,-1,0,1,2,...}, and N = {0,1,1,2, ...}
K > 0 is a finite constant whose value may be different in different places. awp1 denotes “asymp-
totically with probability approaching one”. Write maxgy = maXg<p<i,. MaXg, = MaX|<i<iy
and maxqg g, = MaXo<p<Hy,1<k<iy- Similarly, maxqgg. a(h, h) = maxg_y, ;g a(h,h), etc. Write
max; 7 = limsupy_, ., Max <, <7, MaX; 7, ¢, 4, = MaX; 7 MaXqg,. %, etc. |aly =a vV 0.

Write

2t (h, k) = X Xpsn Bic (1) — E [ Xy Xp4] Bic(2)
T-h

Zr(hk) = % ; 2 (b k).

Define o-fields
7}"3 =0 (X :TZt)andTT”_oo =0 (X;:17<1),
and e-mixing coefficients (Rosenblatt, 1956), a(l) = sup,cy SUPACH, BT, [P(ANB) -
P(A)YP(B)|, forl > 0.
Assumption 1.

a. (weak dependence): a(l) < K exp{—K»[?} for some universal constants ¢,K, K, > 0.

b. (subexponential tails): max; 7 P(|X;| > ¢) < & exp{—2¢@ } for some universal constants @, 91,9,
> 0.

c¢. (nondegeneracy): liminfr_, o E[Z%(h, k)] > 0V(h,k).

d. (orthonormal basis): {Bi(x) : 0 < k < K} forms a complete orthonormal basis on L[0,1); By (x)
e {-1,1} on [0, 1); |ZtT=1 By ()| = O(n(k)) for some positive strictly monotonic function n : Ry —
Ry, n(k) / coas k — oo,

Let {€ };c7 be an iid sequence, and assume there exists a measurable R-valued function g; (-) satis-
fying
Xt =gt (€l7€t—l, .. .) .

Let {€/}ez be an independent copy of {¢; };ez, and let X/ (m) be the coupled version based on {€/};ez:

X/ (m) =g (fz €r—1 € €r—m—1 )

+
—m




Define .L,-physical dependence coefficients Gt(p) (m) = ||1X; — X/ (m)||p.

Assumption 1.a*. (weak dependence): X; is L,-physical dependent for some p > 8, with Hz(p ) (m) <
dt(p)lﬁm where Y, = O(m™7Y) for some size 1 > 1.

Remark 1. By construction and Minkowski’s inequality Gt(p ) (m) < 2[|X¢||p hence logically
d” <201X1l, - (A1)

Set a block size b7 such that 1 < by < T, by/T* — oo and by /T'~* — 0 for some tiny ¢ > O that
may be different in different places.

Assumption 2.

a. (i) iminfr—eo s%-(h, k;h k) > 0 Y(h,h,k,k); (i) maxgq. g, |s3(h, k;h,k) — s*(h k;h, k)| =
O(T™Y) for some infinitessimal t > 0.

b. by /Tt — co and by = o(T"2~) for some infinitessimal ¢ > 0.

B. Omitted proofs

The following result shows the composite Haar wavelets {¢/x (x)} form a complete orthonormal basis.

Lemma B.1. a. {¢x(x) : 1 < k < Ky} forms a {—1, 1}-valued complete orthonormal basis in £[0,1);
b | ST () = 0(2%); . limpoeo 1T I, Wie(1) =0; d. X1, Wi (1) = 0 if 2% is a multiple of T.

Proof.

Claim (a). By construction, for k = 1,2, ...,

2k=1_1
v = D, w @ x=m) =g Q) e @ - D g (25 =25,
m=0

where ¢ (x) € {-1,0, 1}, and

w(ka—m)zl(;n—kSx<m+1/2)—l(m+l/2 m+1).

2k ok =S T

For a given couplet (x, k), by mutual exclusivity it follows y (2%x — m) € {~1,1} for only one m €
{0, ...,2K — 1}. Hence ¥« (x) € {-1,1}.
Next, by construction of the Haar wavelet functions W (2kx —m):

2k_1

! bk 2’“"—1( (m+1/2) /281 (m1) /251 )
dx = 261 — m)dx = dx - dx|=0.

.A wk(X) * Z .A ‘7&( * m) * Z ./ * .[ *

m=0 m=0 /

\ L /2k=1 m+1/2)/2k=1
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Furthermore, Y (x) € {—1, 1} implies /01 l//i (x)dx = 1. Finally, let k; > k; to generate by the orthogo-
nality of {Y/k,,m(x), Wky,m(x) : k1 # ka}:

2ki- 1_12k2 1_

/ e = Y

m=0  my=0

/ w (25 —my)y (2527 x = my)dx

2"1 1 12k2 1 -1
T Ska-1/25k-172 1/22k2 12 Z Z W(Zkl_lx—ml)lﬁ(Zkz_lX—mz)dx
_0 m2—0

2k271_12k271_1 1
= > > /Lp(Zk‘_lx—m1)¢(2k2_1x—m2)dx
m1=0 m2=0 0
2k1 1 —1 2k2

+ Z Z / w(zkl—lx_ml)l!/(zkz—lx_mz)dx

my=2k2=141 mp=0

2kl
= Z / (25 x —m)y (22 — m)dx
m=0 0
oki=1_1 oky=1_

+ Z D /‘/’(2k‘ L —mp)y (22~ x — my)dx =0,

m=2k2=141 mp=0

Hence {y(x) : 1 < k < K7} forms a {—1, 1}-valued orthonormal basis. Completeness follows from
completeness of {Y/x ,(x) : 1 < k < Kz} and the definition y (x) = 2~ (k=1/2 Zf";ol_l Wiem (X).

Claim (b). By construction:

2k_1
Z‘Pk(l)— Z Zl//(Zk(t—l)/T m) = Z (

m=0 t=

(=513
Now use [aT] — aT € [-1/2,1/2] Va € [0, 1] to yield for any m € {0,...,25"1}:
(5
()= (- ()

Alger] =gl (55 7| ()

<1+1/2+1/2=2.

) o

:

<

Therefore | ,7_ Wi (1)| < 251 = 0(2%).




fol W (2kx —m)dx =0as T — oo.

Claim (d). The claim follows from identity (B.1), and [27%(m + 1/2)T] = 27K (m + 1/2)T if 2% divides
T (in which case T/2F is even, hence 27K (m + 1/2)T € N). QE€D.

B.1. Strong mixing
B.1.1. Lemma 3.1

The proof of Lemma 3.1 relies on an extension of Assumption I.bto []}_, X;, for any r-tuple {1, ..., 1, },
r € N. This is required here for both couplets X; X;_;, and their cross-products X X_; X; X;_j, for our
high dimensional results.

Lemma B.2. Let max;<;<7 P(|X;| > ¢) < 9 exp{—c@} for some universal constants @, ¥, >
0. It holds that for some @ > 0:

-
max P (“_[ Xy,
1<ty,...,t, <T i=1

Proof. We prove (B.2) by induction. If r = 1 then max;<;<7 P(| X;| > ¢) < & exp{—hc@} by sup-
position. Now let (B.2) hold for some r > 1. Then Young and Bonferroni inequalities imply for @ =
w[2:

> c) <rexp{-thc®}. (B.2)

1 r 2]
> P —( X.) +-x2
c) lgt.,T?t):HST (2 ni= fi 2 o~

r
max P (“_l Xi;
1<t),..,t, <T i=1

ri exp {—1926w/2} + 1 exp {—ﬁzcw/z}

r+1
max ( 1—[ Xy;
1<t,..., tr 1 <T

IN

1
>c2)+ max P(|Xt| >c2)
1<t<T

IA

IA

(r+ 1) 3 exp{-thc}. QED.

In the following we allow for a non-zero mean E[X;] Vt. Recall

pT = sup —0. (B.3)

z>0

P( max |Zr(h, k)| < z) —P( max |Zr(h, k)| < z)
Hr, Kr Hr ., Kr

Lemma 3.1. Under Assumption 1, pr < ?{;/2 (In (?(T))”6 JTV® — 0, for any sequences {Hr, Kr}
with0 < Hy <T -1, Hr = O(T"°(In(T))/3), K = o(T*¥) for some finite k > 0, and n(Kr) = 0(\/_)
where 1(-) is the Assumption 1.d discrete basis summand bound. In this case maX(HT % 1T (h, k)| —>
maxy_ ken |Z(h, k)| where Z(h, k) ~ N(0, hmT_m(T (h,k)) and 11mT_><x,0' (h, k) < oo

Proof. Allowing for a non-zero mean, recall:
2t (h k) = (X = E[X¢]) (Xeen — E[X;—p]) Bi (1) —{E [(X; = E[X¢]) (Xewn — E[Xe—n])] Bic (1)}
and Zr(h, k) = l/ﬁzt 7 (h, k). Here, and in the sequel, let {Z; (i), 37(1)}HT7(T denote {z;(h, k),

Zr(h, k)};ﬁ%f:l, stacked h-wise over k:
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Thus 37(1),...37(Hr) = Zr(L,D), ... Z7(Hr, 1); 3r(Hr + 1),...37QHr) = Zr(1,2), ...,
Z7(Hr,?2); etc. Define

o2(i) = E [3%(1‘)]

and let {Z7 (i) : T € N};50 be normally distributed Z7 (i) ~ N(O, 0'%(1’)). It suffice to prove the claim

for 37(7).
Under Assumption 1.a,b,c (i) satisfies AS1-AS3 in Chang, Jiang and Shao (2023, p. 990). AS1
holds from Assumption 1.b and Lemma B.2. AS2 holds as follows: by construction and Assumption
l.a, [g,(i)]fig"(T is 0(X; : 7 <t + Hy)-measurable, with mixing coefficients & (/) < a(|l — Hrl|+) <
Ky exp{-K>|l - 7—(T|f}. AS3 is Assumption 1.c.

Recall @, ¢ > 0 are respectively the mixing and tail decay exponents. Write, e.g., @y = @ A 1, and
set

_ _@odo
@0 + do

Proposition 3 in Chang, Jiang and Shao (2023), and the mapping theorem, therefore yield p7 =

. 3 . <
21;1()) P (og?ﬁ;(lﬁ | Zr ()| < z) P (OSi?%);WT |Z7(7)| < z) S 8T, (B.5)
where
H,;" (In (HrKr))
er=—1—15 {7{;/6 (In (HrKp) 2+ HLP + (in (WT«T))”WO)} -0  (B6)
provided

Hr In(HrKr) = o(T'/°)
Hr =0T (In(7)'")
In (HrKr) = 0 (min {(]_{;1!//(6+2¢/)T7¢/(18+6z//)’7{;3¢0/(6+2¢0)T7¢0/(18+6¢0),Two/(9—3w0)}) '

The first bound ensures g7 = o(1), and the remaining two suffice for pr < gr. Then together K7 =
o(T¥) for some « > 0 and Hy = O(T'/°(In(T))'/3) suffice, cf. Remark 5 in the main paper.

Finally, (B.6) implies maxg<; <% |<1(0)] i) max;en |Z(i)| where Z (i) ~ N(0,lim7_c (r%(i))
with limy_, 0 o-%(i) < oo shown below. Just note that convergence in distribution follows by construc-
tion of Z(i): lim7_co P(Maxo<; <% 1 Z7(0)| < 2) = P(max;en |Z(7)| < z) V2 = 0.

It remains to prove

Jim 02(i) < 00,i=0,1,2,... (B.7)

Under Assumption 1 and by measurability, ¢ (i) is for each fixed i uniformly £, -bounded for any r > 2,
and a-mixing with coefficients (2 (1) < K| exp{—K»|l - hlf} for some universal ¢, K1, K» > 0, where
h is a unique lag index associated with i via (B.4). Then by Lemma 2.1 in McLeish (1975), {z;(h, k)}
forms a zero-mean L,-mixingale array with coefficients & (1) = o2 (1)11/272/"} < K| exp{-K»(1/2 -
2/r)|l - h|f}, and constants K||z; (h, k)||,. The former satisfies & (/) = O(I~*) for any A > 1/2 for each
fixed h. The constants are uniformly bounded maxq¢s,. 5 ||z (h, k)| < K maxqgg, || X X;_pl|| < K by
Minkowski and Jensen inequalities, |Bx(f)| = 1, and Assumption 1.b. Then Theorem 1.6 in McLeish
(1975) proves (B.7), completing the proof. Q€D




B.1.2. Theorem 3.2

We first show that may assume E[X;] = 0 in subsequent proofs to ease notation.

Lemma B.3. Under Assumption 1, for any sequences {Hr,Kr} with 0 < Hr < T — 1, Hr =
O(T'° (In(T))'/3), Ky = o(T*) for some finite k > 0, and n(Kr) = o(NT):

T-h
x| 2 8= ) (X = X) = (X = ) (= )} B0 =0 (%)

Proof. Write X; = X, — p and X, = X, — X. We have:

T _
— > AR R = X Xin} Bi(2)
T t=1

= (x2- ) ZBk(z‘) 2u (X - p) ZBk(t)

_ 1 &
-(%-n) = Z {(Xo—n = s+ Xo = 1} By (1)
=Wr(h, k) +Br(h, k) +Cr(h, k).

By Assumption 1.d |1/VT Zthl Bi(1)| = O(5(k)/NT). Arguments preceding (B.7) identically imply
X—p=0p(1/ VT) by Chebyshev’s inequality, hence X — > = O p(1/ VT) by the mapping theorem.
Therefore, e.g.,

max
Hr,Kr

{x2- } Z Bi(n)|=
Now use 17(K7r) = o(VT) to get maxq,. g |Ur(h, k)| = op(l/ﬁ), and maxey,. g¢. Br(h, k) =
0p(1/NT).
The remaining term €7 is handled by applying arguments in the proof of Lemma 3.1 to deduce for
some mean zero Gaussian process Z(h k) ~ N(O,limy_co O'T(h k)) and limy_, &~ (h k) < oo:

(mﬂXfKT n(k) ) o (U(WT))
P T .

T-h
max Z{th—mx, ) Bi(1)

LA max |Z(h,k)|.
Hr. Kr | T

Hence maxgg,. %, |Cr| = 0p(1/\/7), completing the proof. QED.
Recall 02(h, k) = lim7r—eo a’%(h, k).

Theorem 3.2. Let Hy and Assumption 1 hold, and let Hy, Ky — oo. Let {Z(h,k) : h,k € N}
be a zero mean Gaussian process with Z(h,k) ~ N(0,02(h,k)). Then it holds that My 4
vy ' maxp xew|Z(h, k)| for any {Hr,Kr} with 0 < Hy < T — 1, Hy = 0T (In(T))'3), Ky =
o(T¥) for some finite k > 0, and n(Kr) = o(NT)
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Proof. a'%(i) = 0(1) in (B.7) implies 79 — yo = O p(1/ VT) by Chebyshev’s inequality.
Moreover, by construction

T-h
Z{XtXHth(r) E [ X, Xpon) Bk(0} =VT (3, - yh)—?ZE[xtXHh]Bkm (B.8)

Under covariance stationarity Hy, |E[X; X;+n]| < E [Xzz] < oo for all 4 and . Assumption 1.d imply
V{h, k}:

S n(k)
7 ;E[xtXHth(r)] yhx— ZBk(r) 0( ﬁ) (B.9)
Hence:
ﬁ(ﬁ;lk) —ﬁh) m\/— Z{ X Xe+nBic(t) — E [ X;: Xi4n] Bi(1)} (B.10)
0 4
| T-h
W‘/_ZE [X: Xr4n] B (2)
Y0
I SR Tzh{xx Bi(1) — E [XeXean] Bi (1)} + O, (”(k))
_’)/0+0p(1/\/f)‘/_ tAt+hDk tAt+h k \/T 5
where the O(-) and O, (-) terms do not depend on {%, k}. Then (K7) = o(NT) yields:
A T =) o1
T—h

I 1
70+0p(1/‘/_) ‘/_

The claim now follows from Lemma 3.1. QE€D.

Z {X:XionBi (1) = E [X, Xean] Be(D}| = 0, (1).

B.1.3. Theorem 4.1

A weak convergence result for the bootstrapped correlation difference is required. We develop ideas
under mixing here, and extend to physical dependence in Appendix B.2.

Let =7 denote weak convergence in probability on [/, (the space of bounded functions) as defined
in Giné and Zinn (1990, Section 3). Recall bootstrap index blocks By = {(s — 1)br + 1,...,sbr},
s=1,...,T/br, with block size by, 1 < by < T, by — oo and bT/Tl“ — 0 for some small ¢ > 0. &;
is iidd N(0, 1), and ¢, = &5 if t € By. Recall the number of blocks N7 = [T/br], and

T h T h
Agy™ (h,k) = Z ¢ {thHth(r) - Z szHth(r)}

t=1

and define

a'%(h, k)=E

2| » |
@ XzXz+th(t)—— E [XsXsin] Bk(S)})
ﬁ ]

+—1

—




Recall

2t (h, k) ={X; Xsn = E [ Xe Xen]} Br (1)
| T=h 2
7 > <zt(h,k))
t=1

Lemma B.4. Let Assumptions 1 and 2 hold. Let {br, Hr, Kr} be any sequences satisfying b [T* —
0, by =o(T'?7%), 0 < Hy < T = 1, Hy = O(T°(In(T))/3), Ky = o(T*) for some finite « > 0, and
n(Kr) =o(NT) .

0']2~(]’l, k)=E

a. Let {2T(h,k) :0 < h <Hp, 1 <k <Kryr<i be a Gaussian process, QT(h,k) ~ N(0, &%(h,k)),
independent of the sample {X; zT:I‘ Then:

P| max
Hr, Kt

b. Let {Z(h, k)} be an independent copy of the Lemma 3.1 Gaussian process {Z(k,h) : h,k € N},
Z(h,k) ~ N(0,limy_ e 0'%(h, k)), independent of the asymptotic draw {X;};2 |. Then:

2.

sup
c>0

‘/TAg(TdW)(h, k)| <cl{X; thl) - P( max
Hr, Kt

Zr(h, k)| < c)

max ‘\/_A <dw)(h k)‘ =P max )Z(h k)’

The proof exploits two results. First, uniform sample covariance convergence. Write

T h —
g(h.k) = Z X XoanBi (1) and g7 (h, k) = E [3(h, k)] = Z [ X X:4) Bi(r)
t=1

t—l

Lemma B.5. Under Assumption ],
max |g h,k - ]’l,k =0 (1 VZ)
’ |g( ) gT( )l p /

for any {Hy, Kz} satisfying 0 < Hy < T — 1, Hy = O(T°(In(T))'/3), K = o(T¥) for some finite k
> 0, and n(Kr) = o(NT).

Proof. Define
1 T-h
Gr(h.k) = VT (§(h.k) = gr(h.k) = = DX Xeon = E [X: Xeun]} Bi(2)
=1
and s%(h, ky=E [Q%(h, k)]. The argument used to prove Lemma 3.1 implies

-0

sup
z20

P hk)|<z|-P Gr(h, k)| <
(#T%@T( ) z) (7?% ()] z)

for some sequence of random functions {Gr(h,k)}r>1 with Gr(h,k) ~ N(O, szT(h,k)), for any
{Hr, K7} satisfying 0 < Hy < T — 1, Hy = O(T°(In(1))'3), Ky = o(T*) for some finite x >
and (Kr) = o(VT). The claim follows instantly. Q€D
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Next, define
1 T-h
yi(h, k) = {XtXHth(l) T ; E [ XX+l Bk(S)} : (B.12)

We decompose the following summand into big and little blocks:

T-h

Agr(h,k) = % Z ©r {Xth+th(t) - L Z E [ X Xs+n] Bk(s)} Z 11 (h k).

t=1

Let by and I be block sizes, (b7, 1) — oo, with 1 < by < T, by =0(T), 1 < Iy < by, and [; = o(b7).
In each index set {1, ...,7 — h} the number of blocks is

Nr(h)=[(T - h)/br].

Denote the blocks by s ={(s = Dby +1,...,sby} with s = 1,...,/\~/T(h), and gﬁr(mn =
{Nr(h)br,...,T+h}.Then

| Ne ibr | Nr(h) (i-1)br+ir
AN RT3 YD Y SN O RS- D SRR SN
i=1 ¢=(i-1)br+l7+1 i=1 r=(i-1)br+1
| T-h
tr o ek,
i= N (h)br+1

Lemma B.6. Under Assumptions 1 and 2, for any {Hr,Kr} satisfying 0 < Hy < T — 1, Hr =
O(T' P (In(T)/3), Ky = o(T*) for some finite k > 0, and n(Kr) = o(NT):

1/VT(h) ibr
Ag:(h k)| - — hi)l |= (1 \/T).
i MR- e 7 0y 2 e =op 1

i=1 t=(i—1 )5T+ZT+1

Proof. The triangle inequality yields for any real-valued functions {a (%, k), b(h, k)}

max h,k)|— max |b(h,k
7{T’era( ) %J@' (h, k)|

< h k) =b(h,k)|.
wnrl%'a( )= b(h, k)|

We therefore prove for some {Hr, Kr},

1 Nt (h) ibr
s [Agr(nbl= |2 3 DT ek [=o, (1VT).

i=1 t:(if1)5T+l~T+1

Step 1. It suffices to replace y; (h, k) with z;(h, k) uniformly awpI:

| T=h
JAX | Z ©r {y,(h,k)—Zz(h,k)}‘zop(l). (B.13)
| =1 |




1 T-h 1 T-h
<z, {E (XiXran] Be(t) = = Z} E [X:Xssn] Bk(s)}

<

+0, (l/ﬁ)

T-h

1

7 D CiE [XeXoan] Bi(t)
t=1

in view of the Assumption 1.b,d implication

T-h
max E XX Br(s)| <K,
nax T_h; [Xs Xsen] Bi(s)
and
1T—h
max |— 0:|=0p (l/ﬁ).
Hy |T

The latter follows by construction of ¢;:

1 T-h [(T=h)/br] 1 [AnT/bT]

1 h
T;% 7o Zl &= 575 Zl & with Ay =1~ €[0.1)

where iid & ~ N(0,1). By Donsker’s theorem extended to DJ[0, 1], and the mapping theorem,

sup,icjo.1) |1/ VN SNV &1 = 0, (1) (cf Dudley, 1999).
Next, by construction:

T-h
- Zl @1 E [Xi Xein] Bi(1)
| LTl b N
" T/br P giE t=(ilz)bT+1 E [ Xt Xon] B (1) = T/br ; & i(h, k)
say, where wr ;(h, k) = 1/br yibr E[X;X¢+n]Bi(t) and Ny (h) = [(T - h)/br]. Given &; is

t=(i-1)br+1
iid N(0,1), a generalization of Nemirovski’s .£,-moment bound, ¢ > 1, for independent sequences
yields (see, e.g., Biihlmann and Van De Geer, 2011, Lemma 14.24):

/2
q 81n QHrKr) max  max 2 (hk))?
me (7 NTz(‘f)f (hk)| | < D Hr, K 1<i<Nr (h) @r.4(hk) (B.14)
L N . N
e |T/br s T/br

15
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Moreover:

2

1 le

max max @7 :(h, k) = max max E[X: X By (1 B.15

Hr Ky 1<i< Ny (h) 7.1 (k) = ‘HT‘KTI<1<NT(h)(th_(ilz)b " [XeXean] Be(1) | (B1S)
=u- T

2
< |max max E[X: X = &2,
(HT l<t< | [ t t+h]|) T

Now combine (B.14) and (B.15), choose ¢ = 2, and invoke by = o(T'/2~4), Hy = o(T), Kt = o(T*)
for some finite x > 0, and @7 = O(1) under Assumption 1.b and the Cauchy-Schwartz inequality, to
deduce:

N (h)
In(HrKr) _»
E | max ; i(h,k <K—=
Hr . Kr (T/bT pr §iwr.i(h. k) T/br 7
_(In(T) 2 (In(T)) _
=0 (T1/2+L) Xwr=0 (T1/2+L =o(D).
This proves (B.13) by Chebyshev’s inequality.
Step 2. Now observe that
| T-l/br ibt
NACRORE-DY DA
i=1 t=(i—1)br+ir+1
| Nr(h) (i-1)br+T | T-h
<lz 2 2 enbl+n Y ez
i=1 ¢=(i-1)br+1 i=Ng (h)br+1

Use Lemma 3.1 and by / Ir = o(1) to deduce under the assumed properties for {Hr, Kr}:

1 N ““f”T i VA (i—l)zélﬂz}
tror | T ez (h. k)| = T ¢r20(h,K)
% |1 =l r=(i-1)br+l] bT (HT {KT Tlr/br =l g=(i-1)br+1
Ir/b o
:Op % :0[,(1/ TbT/lT):Op(l/\/T)
NTlr /bt

Similarly, for any (A, k), the integer-valued discrepancy implicit in
T—h—Np(h)br =T —h— (T - h)/br| br

yields:

T-h

max |— Z @12 (h, k)

Hy, Kr | T

V(T = h) = Nr(Wbr

- (B.16)

=0, |max
Pl

=N (h)bp+l
f 1

~

! \




\/1 - [EQ =) | 7y
Hy \T

=0, (1/T).

This completes the proof. Q€D

We are now ready to prove Lemma B.4. Assume (T — h) /bt and related ratios are integers to reduce
notation. The resulting error is otherwise asymptotically negligible; cf. (B.16).

Proof of Lemma B.4.

Claim (a). Define the sample X7 = {X;}. ., and define

=1’

T—h T-h
Ag;dw)(h, k)= 7 Z s {X;XHth(t) 7 Z Xth+th(t)}

=1 =1

Let {Ag(TdW) (i)}ﬂﬁ(r, etc., denote the stacked {Ag(TdW) (h, k)}WT’(KT :

i=0 h=0,k=1"
Ag(wa) (i) = Ag;dw) (h, k) with index correspondence i = (k — 1)Hr + h. (B.17)

and define

B ) =TE [agf™ (0agf™ (DI%r | and 3. /) =TE [Agy()Agy ()| %r]

Ar=  max |§2 i,j)—§2 i,'|,
T O<i ) S Hr Ky T( J) T( J)
hence §%(i,i) = &%(h, k) where i = (k — 1)Hr + h.

Let {ZT(Z.)}Tgl be sequences of normal random variables zr(i) ~ N(O0, 5%(1’ ,i)) independent of Xr.
Lemma 3.1 in Chernozhukov, Chetverikov and Kato (2013), cf. Chernozhukov, Chetverikov and Kato
(2015, Theorem 2, Proposition 1) and Chen (2018, Lemma C.1), implies:

Er = sup

c>0

(B.18)

P max
0<i<HrKr

VT A '|< Xr|-P
§r (D] =cltr 0<i by

ZT(i)| < c)

=0, (A1T/3 max {1,1n (7—(T7(T/AT)}2/3) .

It suffices to have A7 = o p(ln(7-[T7(T)2): see the remark following Theorem 2 in Chernozhukov,
Chetverikov and Kato (2015), cf. Chernozhukov, Chetverikov and Kato (2015, Proposition 1). Thus
we need only show Ar = op(ln(’/")z) given Hy = o(T) and K = o(T*).

We prove below Ar = O, (1/T*) for some ¢ > 0. Thus, Hr = o(T) and K7 = o(T*) for some finite
k > 0 produce:

Er=0, (AlT/3 max {1, In (HTWT/AT)}ZB)

=0, (AIT/3 max { 1,In (VTH%r ) +1n (\/TAT)}M) =0, (T,ln {In (T)}m) 2.
\ / \1 /

t )
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This suffices to prove the claim in view of the correspondence i = (k — 1)Hr + h.
We now prove At = 0, (1/T*). Define for any g € R

Ibr

€ r(hkig)= > {XiXenBi() - g},
t=(1-1)br+1

and define
1 T-h -
8(h k) = = Zl X, XenBi(r) and gr (h. k) = Zl [X:Xeo] Bi(1).

By construction of ¢, via iid {fl}(T h)/bT & ~N(0,1):

1 (T-h)/br

D &G (hk:g(h k)

I=1

A (h k) =

h)/b
Ag’;(h,k)-f Z &€, (h ks gr (h, ).
=1

Serial independence, and independence of X7, for &; yield for some couplets (k, k) and (7, k):

$..) =TE [agy™ )agy™ ()17 |

1 (T-h) /bt (T h) /by R
=TE|7 Y, &€t k(R Z EmCmr (h,T: (1)) | %1
=1
(T-hvh)/br
1 . O
=5 > Sk k)€ (hE:g(hK)).

I=1
Similarly:

(T-hvh)/br
U=z > Crlhkigr(hk)Cr(hkigr(hb)).
=1

Now observe for any (i, j) and some associated couplets (%, k) and (%, k):

[$3G.) - .|

l(T—hvfz)/bT
<lz 2 ACr(hkg(h.B) - Cpr(hk:gr(hK))}

=1

x { € r(h k;g(h.k)) — € r(h k;gr(h k))}|

| (T=hvh)/br

= Z €7 (h kigr(h, k) { € 1 (h k;g(h,k)) — €, r(h k;gr(hk))}

+
T =1




| (T-nvi)/br

+|= Z €7 (h k:gr(h, k) {€ 7 (h,k:g(h.k)) - Gl,T(h,]E;gT(il’/;))}‘
=1

=81 r(hk,h k) +Syr(hk,h k) +S51(h, k,hk).
It follows A7 = O, (1/T*) for some tiny ¢ > O if we show each:

Sit(hk,hk)|=0,(1/T"). B.19
wr??v)éJ i ( )| =0, (/T (B.19)

Consider Sy 7(+); S1,7(-) and Sz 7(-) are similar. Use
{Xe XeanBr(1) = 8(h, k) } ={Xi Xy enBic(1) — g7 (h, k) } = —{&(h, k) — g7 (h, k)}
with Lemma B.5 to yield:
So.r(hk,hk
Jmax |So.7( )|

1 (T-hVh)/br Ibr

< max | D, AXXewBi ()~ gr(h k)Y x br max |8(h.k) = gr(h.k)]
Hr K | T I=1 t=(1-1)br+1 Hr. Ky
1 T—hVh
= max |2 > (XXe~ E X Xpanl} B(0)] X Op (br/VT).

Moreover, by the same argument used to prove (B.5), we have for any {Hr}, 0 < Hy <T — 1, Hy =
O (TP (In(T)'/3), K = o(T*) for some finite k > 0 and n(Kr) = o(VT):

1
max |- D0 AKX~ E[XeX,5]} Be(0| = 0, (1NT).
Therefore
max |87 (h, k. b, B)| =0, (1NT) x 0 (br/NT) =0, (b7/T) = 0,(1/T"),
Hr, Kt
given by = o(T'7Y), proving (B.19).

Claim (b). Now let {Z(h,k) : 0 < h < Hr,1 < k < Kr} be an independent copy of the Lemma 3.1

law Z(h, k) ~ N(0,lim7_c a’%(h, k)), independent of the asymptotic draw {X;};?, where

| T=h 2
o2(h,k)=E (ﬁ;zt(h,k)) .

Let [Z(i)] 77T be the stacked version of Z(h, k), cf. (B.17), and define
i=0

v2(i, j) = E[Z()Z())]
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hence v2(i,i) = lim7— e U%(h, k) with i = (k — 1)Hy + h. We prove below

Er =sup|P ( max ZT(i)| < c|$T) -P ( max Z(i)| < c) 5. (B.20)
>0 0<i<HrKr 0<i<HrKr
By claim (a) with (B.20):
sup P( max \/TAg;dw)(h, k)| < CI%T) - P( max Z(h,k)‘ < c) 2o.
>0 \Hr.Kr Hr, Kr
Hence:
rrTla;éT \/TAg(TdW)(h, k)‘ 4 hr’r}cae%|2(h, k)| awp1 with respect to {X;}72,.

This gives as claimed by definition (cf. Giné and Zinn, 1990, Section 3):
~(dw) S
TA h,k‘ P )Z h,k|.

s, (Y881 00| =7 e [0

We now prove (B.20). With 5%(1',]') =TE[Agy(i)Agy(j)|¥Xr] and v2(i, j) define
— o2 N D -

A= omax |GG -G
As above &t = Op (AlTB x max{1, In(HrKr/A7r)}2/3). The proof is complete if we show
Ar=0(1/T") for some ¢ > 0, (B.21)

since then

&r =0, (& max {1 n(Hr%r /A }) =0, (17 (in(1))?) B0,

We now prove (B.21). Define
=y | T=h
Agr(h,k) = T Z ®r {Xth+th(f) “TTh ; E [XsXs+n] Bk(S)},

t=1

and let Ag7.(7) stack Ag7.(h, k). Define

§2(i,j) = TE [Agi(DAg;()) 1 X7
§2.(i, j) = TE [Ag (DA ()) 1 X7

s7(i, j) =TE [Agy()Ag; ()]

$2(1,j) = lim TE [Agr()AE()] -




We prove (B.21) by showing in order:

0<i, S Hp Ty §7(.4) = 3%("»f)| =0p (T (B.22)
o T rCad) - 53| =0,(T7) (B.23)
Oﬁi,jng});r‘KT s%(i,j) - Sz(i’j)| =0(T™) (B.24)
Osi,jH;%T‘KT $(0.J) - Vz(i’j)| =0(T™). (B.25)

Step 1 (52.(7, /), 52.(i,j)).  Recall gr(h,k) = 1/T ¥ 1" E[X; X,4n] Bk (t). After expanding, and
cancelling like terms, we have for any (i, j) and some unique couplet (4, k; b, k), where i = (k — 1) Hr +
hand j= (k- 1)Hr +h:

.0 - 53.)|

1 (T-hVh)/br bt
=T Z Z {-gr(h. k)X: X, ;Bi(t) — g7 (h, k) X: X, 1 B (1)
=1 s,t=(1-1)br+1

- o T
+8r(h. K)gr(h. k) + 77— g1 (h. k) X; X, ;B (1)

L r (DX, XeB0) = - g (1 r (|

(T-hVh)/br Ibr
h gr(h, k)f Z Z Xsz+HBIE(t)
=1 s,t=(1-1)br+1

1 (T-hVh)/br lbt

Fler(h Bz ), D XeXenB(n)

T- I=1 s,t=(I-1)by+l

1 (T-hVh)/br Ibr

T(h+h)+hh o
T (T T h,k)gr(h, k
(T-h)(T=h) |T ; s’tz(g‘)hﬂl gr(h,k)gr(h, k)

=Dr1(h,k;h k) + Dro(h, k; b, k) + Dr3(h, ks b, k)

Now twice use the fact that Assumption 1.b implies uniform £,-boundedness for any r > 1, with
Lemma B.5, and Hr = O(T'™*) for any ¢ € (0, 1):
)

1 (T-hVvh) /bt lbt

sr(h k) ) D XX, Be(n)

=1 s t=(1—1)b++1
Sst={t—1 )b+t

h
hok b k) <
7{max Dra( ) max {T h
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| @=hviy/
T =1

with Hp =

3’%(i,j), and use

D hok b k) <
Jmax 7.3( ) Jmax

Step 2 (52.(i, ), s2.(i, /).

| (T-hVh) /by Ibr
g max |- X: X, ;B (1)
T - Hr K |T =1 s,t=(1-1)br+1
(T-hvh)/br by
Hr !
- max Z XX, iBi (1)
T=Hr #r%r\T/br 5
Hr Hr
=0 =0 =0p (/T
p(T—'HT) p(T (1T,

br lbr

2,

s, t=(1-1)br+1

T(h+

2T7‘(T + 7‘(

(T-m)(T~-h)|T

Similarly, max ¢, 4, D7 2(h, k; h, k) = op (l/Tl‘a) . Furthermore, use for any & V i € {1,..., Hr}:

gr(h,k)gr(h, k)| < br|gr(h, k)gr (A, k)|

O(T'"t/by), by |T* — o, and by = o(T'/274) to arrive at:

(T-hvh)/br lbr

2,

s,t=(l-1)br+1

1

h) +hh .
) gr(h,k)gr(h, k)
=1

bTWT (1+o(1)=0(T™Y,

(T Hr)? =

Write

gr(h,k)

N T/br

proving (B.22). For example, if Hr = o(T¢) for any a € (0, 1/2) suffices.

T-h

Z XtXt+h] Bk(t)-

For some unique couplet (%, k; i, k) with i = (k — 1)Hr + h and j = (k — 1)Hg + h, expand terms in

| (T-hVh)/br Ibr

o =(1=hVh/T)br
=1 s,t=(1-1)by+1

to deduce:
(T-hVh) /bt Ibr
S6N=5 ) X XyunX: X, ;Bi(s) B (1)
=1 s,t=(1-1)br+l

| (T-hVh) /by by

X Xs+nBi () X gr(h, k)

1
T

(1 —1\F
S={{—rjoT+

(B.26)




1 (T-hVh)/br Ibr

- T/br

XIXH_HBE(I) X gT(h, k)
I=1 t=(1-1)br+1

+ (1= {h Vv B}Y/T)brgr (h,k)gT (h, k).

Now use s%(i,j) = E['s"zT(i,j)] to obtain:

oM [0 ) = 53| < Dir+ D,
where
(T-hVh)/br Ibr
Dir= max | > D XXX X, — E [XsXounXeX, ]} Bi(s)Br (1)

=1 s,t=(1-1)br+l

(T-hVh)/br Ibr

Dr =2 max
=T Hy K | T /b

{XsXs+n — E [ XsXs+n]} B (s) x g7 (h, k)|.
=1 s=(1-1)b7+1

Consider D1 1 and write

lbr

1
Xri(h k)= — X: X 4nBi (1)
\/E t:(l—lz)b1'+l :

D11 (h, ks b, k) = Xp 1 (h, k)X 1 (h, k),

hence:

(T-hvh)/br

Y, Orihksh k) -E [Dri(h ks R B)])|.

=1

Dy r= max
’ Hr.Kr |T/br

Let [YT,l(i,j)]?{]g:T stack D71 (h, k; h, k), with correspondence i = (k — 1)Hr + h and j = (k —

PP o H2.K2 o T Hr K y .
DHry + h. Similarly [Y1;(m)], I, " stacks [Yr:(i, )], =0 with m = (j — 1)HyKr + i. Hence

1 (T-hVh)/br

DirT= max —
osm<H2xk24+1|T/br

(Fr.00m) = E [F7.00m |)|.

We show below that I?T,l(m) satisfies AS1-AS3 in Chang, Jiang and Shao (2023, p. 990). Hence
their Gaussian approximation Proposition 3 holds provided Kr = o(T*) for some « > 0 and Hr =
O(T'°(In(T))'/3), similar to (B.5) and (B.6) in the proof of Lemma 3.1. In view of asymptotic Gaus-
sianicity, it follows by standard arguments and (Hr, Kr) = o(T),

VT /b1D1,7=0) (ln ((’HT7(T)2)) hence D =0 (; In (T)\' =0p (Lﬁ) .

T1/2+1
£ / v/
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Now consider Io/'T,l(m). For sub-exponential tails AS1, Bonferroni’s inequality and Lemma A.2 to
imply for some @ > O:

max max P (|YT’1(m)| > c)
0<m<H2 K2 1<I<T

Ibr
= max max P||— Z Xs Xesn X X, ;B (8)Bp(1)| > ¢

Hr, K 1<I<T st,t:(l—l)bT+l

2
<bymax max P (| X;XinX > brc
T i 1<t<T—h i t+h At t+h| T)

< Kbyexp{-c®by}.
Now exploit by /T* — oo to deduce Yc > 0 37 > 0 such that
b% exp {—cﬁ’b}ﬁ} < exp{—c":’/szﬁ/z} < exp{—cﬁ/z} YT >7T,

hence ASI. Mixing AS2 holds by Assumption 1.a and measurability: [Yr (i, j)]iqé.T:(fT is o (X,

T < t + Hr)-measurable, with mixing coefficients &(/) < a(|l — Hrl+) < Ky exp{-K>|l - 7-(T|f}.
Nondegeneracy AS3 holds by Assumption 2.a(i).
For Oy 7, use Lemma B.5, and bt = 0(T1/2“) under Assumption 2.b, to get:

(T-hVh)/br Ibr

Dr 1 <K max

X Xoon — E [ Xs X B
Hr, %7 | T /b1 {Xs Xsn [Xs Xs+nl} B (s)

1=1 s=(1-1)br+l

T hVh
= Kby max. Z (XX~ E[X:Xean]} Be()| = 0, (br/T'?) =0, (779

Step 3 (szT(i, 7), s2(i, j)). The property holds by Assumption 2.a(ii).

Step 4 (s2(i, j),v2(i, j)). For some (h, k;h, k), s*(i, j) is identically
| (T-hvh)/br Ibr
lim — > E
I=1 s,t=(I-1)br+1

T-h
{szs+h3k<s) - T%h D ElXuXysn] Bk(u)}
u=1

X[XfXHEBIE(t) Z X” u+h Bk(u)H

and by rearranging terms

1T—hvﬁ
= fim g 3

s,t=1

1 T-h
{X XginBr(s) — — Z E [XuXuin] Bk(“)}

1 T-h
X {XtXHﬁB]E(I) - m Z E [XuXu+f1] BE(M)}“ :
u=1 /1

\




Further, block size by — co. Hence s (i, j) = v2(i, j) Vi, j. This completes the proof. QE€D.

Remark 2. We technically only need the iid random numbers {£1, ..., &, } to satisfy E[£;] =0, E [g—‘l?]
=1,and E [g;‘] < 0. Thus VT Ag(TdW)(i)lir need not be Gaussian, hence the Gaussian-to-Gaussian
result (B.18) may not hold. We will need the added Gaussian approximation step:

sup 5o

c>0

P max
0<i<HrKr

ﬁAA(dW) '|S Xr|-P max
gT (l) Cl T 0<i<HrKr

ﬁAg’T(i)le‘ < C)

where \/TAng(i)l%T ~ N(0, TE[Ag(TdW)(i)zll{T]). We would then need to alter (B.18), and prove
instead

Er=sup|P ‘\/TN '|s Xr|-P V/ '|s
r=a (o«?ﬁ’iqﬁ r()|<cl¥r|-P| _max, [fr@]=c
=0, (A‘T/3 max {1,1n (WTWT/AT)}M) 2.
Recall
Hy: E[X¢ Xpsn] =yn+cn(t/T) (B.27)
where
1
lim inf . B.28
1Tr21£ hr’r}{ae)&‘/o cn (u) Br(u)du| >0 ( )

Theorem 4.1. Let Assumptions 1.b,c,d and 2 hold, let Hy, Kr — oo, and let the number of bootstrap
samples M = My — oo as T — 0. Let {b, Hr} satisfy by — oo and by = O(TY2>"), 0 < Hy < T
— 1, and under Assumption 1.a Hy = O(T° (In(T))'/3), or Hr = O(T'~*/b7) for tiny ¢ > 0 under

Assumption 1.a*. Under Hy, P(ﬁ(TdA":I) < @) — «a for any sequence {Kr} satisfying Kr = o(T*) for

some finite k > 0 and n(Kr) = o(NT). Under Hy in (B.27) where cj,(-) satisfy (B.28), P(ﬁ(T"iXV/I) <a)
— 1 for any {Kr}.

Proof.

Step 1: Impose mixing Assumption 1.a. Operate conditionally on the sample X7 = {Xt}szl- Define
max-covariance differences

Mr= max |[NT(HE — 9| and M) = max |[VTAG) (b, k)|.
T H Ky (7;, ?’h) T H Ky g1 ( )

Compare this to, e.g., the max-correlation difference M;dw) =9, ! maxgq, %, INT Ag(wa)(h,k)|.
Thus, by construction:

s(dw) _ 1 o (dw) 1 % v (dw) £
P = 37 2 (M 2 Mr) = 2 D T (MG = ). (B.29)
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By the Glivenko-Cantelli theorem, as M — oo,

~(dw) P T ~(dw) T DA

Py — P max Agy " (hk)| = max (7 Yl | Xr]. (B.30)
Further, max¢s. %, INTAg (dw)(h k)| =P maxp gen |Z(h k)| by Lemma B.4, hence

sup o, (B.31)

c>0

TAg (dw)(h k)‘ < cle) (max ‘Z(h, k)’ < c)
h,keN

P( max

where {Z(h, k) : h,k € N} is an independent copy of Z(h, k) ~ N(0,lim7_,c G%(h, k)) from Lemma
3.1, independent of the asymptotic draw X,. See Giné and Zinn (1990, eq. (3.4)).
Now impose H( and define F}O) (c) = P(maxqeq, %, |Z(h, k)| > ¢). Limit (B.31) implies:

( max TASS™ (h, k)‘ >MT|3€r) ( max zMT) 0.
Hr, Hr,Kr
; Hr . Kr ;. .
[Z(h,k)],Z; 2, 1s independent of X7, hence:
( max |VTAg 24 (h, k)‘ > MT|3€T) P (MT) (B.32)

F}O) is continuous by Gaussianicity, thus Lemma 3.1 and Slutsky’s theorem yield:

7(0) [ A =(0) P
F Mr|-F Z(hk B.33
A (W) = F (e 1200001) 2 (B.33)

Together, with (B.30), (B.32) and (B.33) we have for any sequence of integers { M7}, M — oo:

~(d 0
pyi) = Ff )(HnTl’a%TlZ(h, k)|)+o,,(1). (B.34)
Further, £\ (maxgs, g |Z(h, k)|) is distributed uniform on [0, 1] since {Z(h, k) : h,k € N} is an

independent copy of {Z(h, k) : h, k € N}. Thus P(ﬁ;d;fl) <a)= P(F( )(maX(HT % |Z(h,k)|) <a) +
o(1) =a + o(1) — a from (B.34) as required.
Next, impose H; defined by (B.27), with drift/basis property (B.28). Thus

T-h 1

1

7 E E[X: X¢4n]|Br(t) — / cp (1) By (u)du # 0 for some 4 and k. (B.35)
0

t=1

By the triangle inequality, Lemma 3.1, y( ) _ Yn=1/T ZIT:_lh X; X;+1 By (1) and the definition of My

a

T-h
1
— E|X: X By (t
Jhax ﬁ; [ X Xi+n] Bic (1)
< max Z{xtxHth(t) E[xtxzm]Bk(t)} + max )«F T(7,% = 9m)| =0, (1) + M
Hr 7(7'




Lemma 3.1 and (B.35) therefore yield:

1
Mz > VT max / cn () Br(wdu +o(1)|+0,(1) B oo, (B.36)
Hr.Kr |Jo

Finally, combine (B.30), (B.31) and (B.36) to deduce P( ﬁ(Td;;)T < @) — 1 forany a € (0, 1) because:

NTAZD™) (b k |>
&y (h,k) 2 max

~(k N
Pr vy :P(ﬂnrl% «/T(y;l ) _yh)| |3ET) +op(1)

=P( max |Z(h,k)| > max
Hr, Kr Hr,Kr

W)
VTG —yh)\) +op(1)
(0 oK) p
= F} ) (Wma(;é |\/T(y}(l ) —yh))) +0,(1) = 0.
T>\T
This proves the claim.

Step 2: The proof is identical under physical dependence Assumption 1.a*, except Lemmas 3.1* and
B.4* below replace Lemmas 3.1 and B.4. QED.

B.2. Physical dependence
B.2.1. Preliminary results

We first prove sub-exponential tails and physical dependence naturally carry over to:

2¢(h, k) = Xy XeanBic (1) — E [ X Xpvn] Bi(2).

We also derive an upper bound on so-called dependence adjusted norms, here combined into one
statement (cf. Chang, Chen and Wu, 2024, Wu and Wu, 2016). The latter will be used to exploit a high

dimensional central limit theorem due to Chang, Chen and Wu (2024, Theorem 3).
[-]+ rounds to the nearest greater integer.

Lemma B.7. Let Assumption 1.b hold.

a. MaxX, T,y Kr P(|z(h, k)| > ¢) < D1 exp{-Drc@/?} Ve > 0, and some universal constants 0y > 1
and 9, > 0.

b. max; 1 ¢ 9 |12: (. k)|, < cp? where ¢ = [2/w@]4, and c depends only on (91,05, @).
Proof.

Claim (a). Apply Young and Bonferroni inequalities, Bi(t) = 1 and Assumption 1.b:

max P (|X;XpnBi(1)| > ¢) (B.37)
t,T,Hr, Kr

! 2 1 2
< maxm I ;Xt +;Xt+h >c
/
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< max P (|X,| > cl/z) + max P (|Xt+h| > c1/2)
t,T,Hr, Kr t.T,Hr, Kr

<2% exp{—ﬁzcw/z}.

Therefore max, 1 ¢ |E[X: Xin]| < 0.

Now let K > max, 7 ¢4 exp{d2(1 + |E[X; X;45]])?} for some a > @/2 and 7, € (0,%,). Using
(B.37), after tedious work it can be shown that there exist large a > 0 and small ¥, > 0 such that V¢ >

P (I1Xi Xt4nBi(1) = E [Xi X4n] Bi(1)] > ¢)
< P(XiXpn| > - |E [ X Xpen]| +¢)
< (201 v 1 exp { =05 [e = |E [X: Xl 1721 (e > E [X: Xean] D}
< {29 v 1} Kexp {—52673/2}
=% exp {—5zcw/ 2} where 1 > 1 by construction.

Claim (b). By a change of variables, (@), and J» fooo v exp{—v}dv = a!/ﬁg fora e N:

max E|z;(h, k)P = max / p=-lp hk)| >u)d
1T Hy Ky |z: (h, k)| p o T tgcr Jo u (|zs (h, k)| > u) du

< p?(/ exp{—ﬁzcmﬂ}du

2 J -
P 119 / ypl@=l exp{—thv}dv
wﬁz 0

_ 2001 [2p/m — 114!
" why glrlei

Sﬁ ~[2p/w]+
ﬁ[2p/w]+vl
i pll2/w]i)
salllZ )
o

Thus, given 151 >landp > 1:

t,T,Hr, Kr

) ) /@l [2/@].
max  (Elz (b, k)|P)P < d, (p [—] ) =3 [ ] pl2@ls,
19213’ 19213’

QED.

Lemma B.8. Under Assumption 1.a* {z;(h, k)} is uniformly L, ;>-physical dependent for some p > 4
with size A > 1:

0,7 (h,m) = ||z (h, k) = 2} (m, B, k)|, o < dfF) (ym™1~




for some dt(Z) (h) that depends only on || X;||p V || Xi+nllp up to a universal multiplicative constant. In
particular, for some ¢ > 0 and tiny ¢ > 0:

sup p~ %4 sup (m + 1)1 1+4/2 max z2(h k) — 20 (m, h, k <K.
sup p {W%( ) Z et (hs k) = 2 0m. .,

Proof. Note that €/ are an iid copy of iid ¢, hence the coupled version of z; (h, k) is
2i(m. h, k) = X, (m)X, ., (m)Byc(t) = E [X: Xy4n] Bi(1).

By Minkowski and Cauchy- Schwartz inequalities, | By (¢)| = 1, and innovation independence and there-
fore

X, Xpup — X, (m)X, ”
tAt+h z(m) t+h(m) o2

-

= || Xy
p
it follows:

ll2¢ (h, k) = 2 om, . K)]], < ?

< Wpanlly [ = Xm0 1p [ean = X 0m) |

Now use Assumption 1.a* to deduce for any k:

e (o) = 2y, | < K (1Xesnlp 4P + 11Xl 457 ) .

p/2

Using (A.1) and ¢,,, = O (m~*"*) for m > 1 we therefore have

et () = 2y om0 < KAV a1, V1Kol =2

t+h
<K{IX 1l Vv IXesnll ) {m v 1347
=d9 (h){mv 1}~
Next, the argument used to prove Lemma B.7.c yields for some ¢ > 0 and every p > 1:

max X, VIIX, < Kp*?.
(I, v IXl,} < Kp

Therefore, for tiny ¢ > 0, and 4 > 1:

(m+ 1) 1+¢/2Z max, Hz,(h k) —z,(l, h, k)||p/2l}

(m + 1)/1 12 Z l/l+L l}

I=m

A—1+4¢/2
(m+1) ‘ mA- 1+[/2] Z 11+L/2}

=1

sup p~ % < sup
p=2 m=>0

<supp ¥ {Kp¥ sup
p=2 m>0

<supp ¥ {Kp¥ sup
p=2 m=0

<Ksup{p ?p¥}=K,
P7’5
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as claimed. QED.

Lemma B.9. Under Assumption 1.a*

Proof. Write Z(;y7 = 1/ \NT Zthl z¢(h, k). Wu (2005, Theorem 2.i) provides a truncated proof of
(B.38) under stationarity. The following completes the proof in a general setting.
Define é; = {€;,€,-1,..} and

T )
1 Z (2)
— Y| <+2p Z max 0 (h,m). (B.38)
\NT P » b S

Mo (k)= Y {E [21(h, )11 = E [z (h )€1 11}
I=1

v (hy k) = E(zi (b k)Ié-r) — Bz (B k)é—r—1).

Then

T 00
Dzl k)= Mpr(hk),
t=1 k=0

hence by Minkowski’s inequality

T
> a(hk)
t=1

T

> (k)
1

=

<> .
p 10 p
Define
AL (k)=o) (h k), .oy (1),

hence ﬂ](.r)(h, k) = o(&j-r). Now apply Proposition 4 in Dedecker and Doukhan (2003) to
IZL v (ol

1/2
T

1

<V2p| Y max y@(h,k)ZE[yf,{)(h,k)m(.”(h,k)] (B.39)
Cd j<i<T||"/ — J

P /=l " p/2

1/2

T
>k
=1

T
=@( max [ (h. 0 |7 (oA 0|

J<IST

Jj=1
< \/Zpﬁ max
1<t<T

The equality follows from the martingale difference property and measurability, and iterated expecta-
tions:

RICNS]
p

E i (h 1Al (. )]




=E(E|vl (h0)lo €0 | 1A (b))
= E(E{E [y (h0lenr| - E [y oK)l | lo&5- 0} 1A (1, 1)
=0Vm>j+1.

The second inequality uses Cauchy-Schwartz and Lyapunov inequalities:

e M N S |

p/2

< |y k)“p [y cn, k)”p .

Finally, we have by definition, and arguments in Wu (2005, proofs of Theorem 1.(7),(i7)),

o7 (00| = B Gr (k) =BG (b))l < 07 ().

Combining bounds, we have shown || Z7|, < v/2p Yo _omax <, <7 9,(2) (h,m), completing the proof.
QED.

B.2.2. Lemma 3.1*, Theorem 3.2*, Lemma B.4*

We now have versions of high dimensional Gaussian approximation Lemma 3.1 and max-statistic limit
Theorem 3.2 under physical dependence. We also develop the required supporting results to prove
bootstrap validity Theorem 4.1 under physical dependence. In the former two cases Hr = o(T) is
achieved.

First, Lemma 3.1* replicates Lemma 3.1 under physical dependence, using Kolmogorov distance pr
in (B.3).

Lemma 3.1%. Under Assumption 1.a*,b,c,d, pr — 0, for any sequences {Hr, Kr} with0 < Hy <T
— 1, Hr = o(T), Kt = o(T¥) for some finite k > 0, and n(Kr) = o(NT) where 1(-) is the Assumption

1.d discrete basis summand bound. Thus max¢q, 4, |Zr(h, k)| KA maxy ken |Z(h, k)| where Z(h, k)
~ N(0,lim7 00 02 (h, k) and imy—eo 02(h, k) < co.

Proof. Recall from the proof of Lemma 3.1 that £, (i) stacks z; (%, k).We show below ;(i) satisfies
Conditions 1 and 3 in Chang, Chen and Wu (2024). By their Theorem 3(ii), therefore, pr < g7 for
some g7 = 0(1) to be characterized below.

Condition 3 in Chang, Chen and Wu (2024) holds by Assumption 1.c. Next, by Lemma B.7.a for
some @ > 0, and A > 0:

Z’T’r%egfwr exp {lzs (h, k)| 77/

=1+ max / P(exp{lz,(h,k)|W/2/,17ﬂ/2}>u)du
t,T,Hr, Kt J1

= ” 2/1.U
L+ max /] P(lz,(h,k)|>/l(ln(u)) )du

<1+ / exp{—9,27 In(u) }du

J1
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oo
~ _9.@/2
=1+191/ u” 2 gy
1

Then Condition 1 holds with their By = 1 in view of:
inf{/l >0:E [exp {|z,(h, k)| @/ /aw/z}] < 2}

Sinf{lzﬁgz/w:ﬁlf u—ﬁﬂ’”“dusl}
1

1 1 1
=infiA > P 5 < =
02/6 $hA®T2 -1~ &
_ (51 +1
B

2/w
) <ooVte{l,..,T}and T e N.

Now consider g7. Invoke Lemma B.8 under Assumption 1.a* to obtain uniform finite bounds on
each aggregated dependence adjusted norm in Chang, Chen and Wu (2024, eq. (5)). Their Theorem
3(ii) with their By =1, a =1 — 1 +¢/2 and v = ¢ now gives :

o (In(@HrKe)"®  (n(HrKr)*?  (n(HrKr)'**

T~ " raj(12+6a) Ta/(12+6a) Tal(42a)
< (ln(q.(Tq(T))(7/6)V(l+¢) o
~ Ta/(12+6a)

for any positive integer sequences {Hr, K7}, with0 < Hr < T — 1, Hy = o(T), Kt = o(T*) for some
finite k > 0. QED.

We now extend Lemma B.3 to physical dependent cases, allowing us to assume E[X;] = 0.

Lemma B.3*. Under Assumption 1.a*,b,c,d, for any sequences {Hr, Kr} withO < Hy <T — 1, Hr
= o(T), K = o(T¥) for some finite k > 0, and n(Kr) = o(NT):
]
77

Proof. We replicate the proof of Lemma B.3 with a few required changes. Write X; = X, — pu and X, =
— X. We have:

Wnrl’a%T Z{ ) (Xion = X) = (Xs — ) (Xs—p — ) } Bi ()| =0

T-h
% Z {)A(tf(z—h _XtXt—h}Bk(t) = (sz —u ) Z Br(t) — 2,u X ,u Z B (1)
t=1

1 T-h
- (X - u \/_Z{X,h p+X; = ) Bi(1)

= Wz (h, k) + By (h, k) + €7 (h, k)




By Assumption 1.d |1/\/7th:1 Bi(t)| = O(n(k)/NT). By Lemma B.9, limy_, a’%(i) < oo, i=
,1,2,...Thus X — u = 0, (1/VT) and therefore X> — > = 0,(1/NT) by Chebyshev’s inequality
and the mapping theorem. Therefore, e.g.,

max

o (m ) o, (200)
Hr, Kr

T T

(e} L mo
A=

Then n(Kr) = o(NT) implies maxe,. g |Ur (h, k)| = op(l/\/T). Similarly maxqy,. g |Br(h, k) =
op(1/NT).

The remaining term €7 is handled by applying arguments in the proof of Lemma 3.1%, cf. proof of
Lemma 3.1, to deduce for some mean zero Gaussian process Z(h, k) ~ N(0,limr— &%(h, k)) and

limy7 o0 G2(h, k) < o0

T-h

1 d
max |— Xi_p—u+X; —uyBi(t)|— max |Z(h,k)|.
AP |2 ) Koo ot Xo = ) Bi(n) > max 12(h. k)|

t=1

Hence maxgy,. ;. |Cr| = 0,,(1/\/7), completing the proof. QED.

Next, Theorem 3.2* replicates Theorem 3.2 under physical dependence, and instantly implies Theo-
rem 3.3.

Theorem 3.2%. Let Hy and Assumption 1.a*,b,c,d hold, and let Hy, Ky — oo. Let {Z(h,k) : h,k

d
€ N} be a zero mean Gaussian process with Z(h,k) ~ N(0,0%(h,k)). Then it holds that My —
761 maxp ken |Z(h, k)| for any {Hr, Kr} with O < Hy < T — 1, Hr = o(T), Kr = o(T*) for some

finite k > 0, and n(Kr) = o(NT).

Proof. The proof of Theorem 3.2 carries over verbatim, using Lemma 3.1* in lieu of Lemma 3.1. QE€D.

Step 2 of the proof of Theorem 4.1 under physical dependence requires a version of Lemma B.4
under Assumptions 1.a*.

Lemma B.4*. Under Assumptions 1.a*,b,c,d and 2 the conclusions of Lemma B.4 hold for sequences
(br, Hr, Kr} satisfying by |T* — oo, by = o(TV/27), 0 < Hy < T = 1, Hy = O(T'"*/b7), Kt =
o(T¥) for some finite k > 0, and n(Kr) = o(NT).

Proof. Replicate the proof of Lemma B.4 with two modifications.
Modification #1: Supporting Lemmas B.10 and B.11 below replace Lemmas B.5 and B.6.

Modification #2: Recall for some Sz (h, h) < T/br,

Dr.i(h, kb, k) = X7 (h, k) X7 (A, k)
ibr
X (h k)sL Z X, X;enBi (1), [=1,...,S7(h, }).
: Vbr |

ya IR 1
I=(l—1)oT+1
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~ ~ [ 2
Recall [YT,l(i,j)]iquo(T stacks Dr;(h, k; h, k) and [YT,l(m)]ﬁg(T stacks [YT,I(i,j)]inT:qO(T. We need
to show I?T,l(m) is .L,-physical dependent for some g > 2 with size 4 > 1, and satisfies Conditions 1
and 3 in Chang, Chen and Wu (2024). Arguments in Step 2 of the proof of Lemma B.4.b suffice for
demonstrating Conditions 1 and 3.

For physical dependence, by the proof of Lemma B.8, and |Bg ()| = 1, X; X;.,, By (¢) satisfies

|

where dt(z) (h) ={1X:1lp V | Xexnll p}z. A non-sharp bound revealing memory decay is therefore:

X, XpanBit) = X, (m)X, mBe(o)| <y () m v 1374

max max H% 1(h k) =% ,(m,h, k)H
Hr,Kr 1<1<St (h,h) r Tl p/2
lbr

1
< max max

< — X: XernBi (1) = X[ (m) X[, ), (m) By (1)
Hr K 1<1<Sr(ni) VBT | A5 o1 i %o Pk I /2

lbr

1
<max max dt(Z)(h) x{mv 1}~

Hr 1<1<Sy(h,h) Vb1 =D byl

< /b max {dt(Z) (h)} x {m v 1), (B.40)
1,7‘{7"

Thus, by definition, X7 ; (%, k) is Lp /z-dependent with size A. A sharper bound on the constants is

generated as follows. Apply Lemmas B.8 and B.9 to X7 ;(h, k) — E[Xr,;(h, k)], and note X7 ,(m, h, k)

T,
is a copy of X7 ;(h, k) by the iid property of the innovations {¢, ¢, }, to deduce

max max “%T,l(h, k) — X% ,(m, h, k)” n
’ p

m>0 I, T
1 bt
< 2 max max || — Z (Xt Xp+nBi (1) E [ Xe Xp4nBi (1)])
m>0 LT ||\/br t=(1-D)br+1 p/2
- (2)
<
<2V2p ), max 6,7 (h.m)
m=0
<2 (2) vl
<2V2p a7 ), fm v 1)
< Kma}x dt(Z) (h). o
t,

Bounds (B.40) and (B.41) imply we may write
HaeT ((h k) = X (. h, k)“ <d®) (h) x {m v 1}
’ ’ p/2 ’

(¥)
T,

ments in the proof of Lemma B.8 to conclude 97 (h, k; I, k), and therefore f/” (m), is L, 4-physical
1 Jent f > 8 with size 1 and uniformly | ed VED

for some constants d..; (h) < Kmax, dt(Z) (h), hence max; 7 ¢, d(Txl) (h) < K. Finally, repeat argu-




Proofs of the following supporting results are identical to the proofs of Lemma B.5 and B.6, using
Lemma 3.1" instead of Lemma 3.1.

Lemma B.10. Under Assumption 1.a",b,c,d, maxqy. 9c, 18(h, k) — gr(h, k)| = 0,,(1/\/7) for any
(Hry, K7} satisfying 0 < Hr < T — 1, Hy = O(T'"/by), Ky = o(T¥) for some finite k > 0, and
n(Kr) = o(NT).

Lemma B.11. Under Assumption 1.a*,b,c,d and 2, for any {Hr, Kr} satisfying 0 < Hr <T — 1, Hr
= O(T'~*/b7), K = o(T¥) for some finite k > 0, and n(Kr) = o(NT):
| N ibr
Agy(h k)| — = hk)| | = 1/NT|.
Jnax |Ag (b= max |20 3T S e k)| =0, (1VT)

XK " real
=l t=(i-1)br+ir+1

B.2.3. Theorem 3.3

Theorem 3.3. Let Hy and Assumption 1.a*,b,c,d hold, and let Hy, Ky — co. Let {Z(h,k) : hk

€ N} be a zero mean Gaussian process with Z(h,k) ~ N(0,0%(h,k)). Then it holds that My LA
yal maxp ken |Z(h, k)| for any {Hr, Kr} with O < Hy < T — 1, Hr = o(T), Kr = o(T*) for some
finite k > 0, and n(Kr) = o(NT).

Proof. See Theorem 3.2*. QED.

C. Empirical study

We now apply our test and the test in Jin, Wang and Wang (2015) to quarterly international (ex post)
real interest rates. We analyze 16 countries over the period 1960.Q1 - 2019.Q4. The data were collected
from the U.S. Federal Reserve Bank data archive (FRED), which itself is taken from the OECD data
archives. The countries are Australia, Austria, Belgium, Canada, Denmark, France, Germany, Ireland
Italy, Japan, Netherlands, Norway, Switzerland, UK and US.

Following Rapach and Weber (2004), we use the 10-year government bond yield as our measure of]
the nominal interest rate rj ;, and the Consumer Price Index in order to compute inflation i;. The (ex
post) real bond rate is 7 ; = r,; — i;. See Table A.1 for the exact date range available for each series
and subsequent size. Figure 1 contains plots of each series.

Unit root tests have been proposed as a standard for testing for non-stationarity in interest rates. See,
e.g., Rose (1988) and Rapach and Weber (2004) and their historical references. In that framework, it is
implicitly assumed that real interest rates are unbounded (asymptotically with probability approaching
one), in particular if a unit root is present. In the case of a unit root, of course, variance is unbounded
asymptotically, and a-mixing fails to hold.

Testing real interest rates is complicated by the fact that nominal rates r, ; and inflation i; may be
nonstationary while real rates r,; = r,; — i; can yet be stationary. In a unit root test setting, it is
possible that r,, ; ~ I(1) and i; ~ I(1) yet (7,,i;) are cointegrated with integrating vector [-1, 1],
hence r,; are stationary. Conversely, nonstationarity necessarily exists when just . ; ~ I(1) or just i,
~ I(1). Rose (1988) finds the latter for each country in our study based on quarterly post-war data and
conventional unit root tests, hence Rose (1988) broadly concludes unit root nonstationarity. Rapach and
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and Ng and Perron (1997, 2001) unit root tests. In order to handle the evident cases r;, ; ~ I(1) and i; ~
I(1) they apply several cointegration tests, including tests by Ng and Perron (2001) and one eventually
published in Perron and Rodriguez (2016).

A different approach for studying structural time variation in interest rates couches rates in a para-
metric regime switching regression model. See, e.g., Garcia and Perron (1996), Bekdache (1000), and
Ang and Bekaert (2002). See also Terdsvirtra (1994) and Gray (1996).

In our setting, under either hypothesis we assume a moment generating function exists uniformly
over ¢, and a geometric mixing condition holds. Thus, we implicitly assume a unit root does not exist.
The moment conditions can be assured simply by assuming nominal interest rates and inflation are
bounded. This is a fairly natural assumption empirically for interest rates which are typically managed
by government market actions, and lie in the range [—1,1]. In any case, in our sample range bond
yields and inflation never surpass the total range [—.02,.30]. We therefore test for a (non-unit root
based) deviation from covariance stationarity. Our setting of course is nonparametric: we do not need
to specify a (switching) regression model (e.g. Augmented Dickey Fuller, or Markov Switching), and
indeed our test is relevant irrespective of any underlying parametric features.

We report test results for the max-test based on a dependent wild bootstrap, and the test in Jin, Wang
and Wang (2015) based both on simulated critical values and dependent wild bootstrap. Both tests
exploit a Walsh basis in view of simulation evidence suggesting the inferiority of the composite Haar
basis. We simulate critical values for each series and each country (hence, 54 simulated sets of critical
values), rather than for each sample size. We use Hy = [27-*°] and K7 = [.5T*°]. See Table A.2
for test results. Tests are performed on nominal and real bond yields, and inflation, but we focus our
discussion on real bond yields given is importance in the literature.

Consider the max-correlation difference test. In all countries except one, when the test finds evidence
of non-covariance stationarity in nominal rates, the same result applies for real rates. Consider Italy:
the p-values are .024 and .032 for nominal and real rates respectively, while the p-value for inflation is
.216. Thus, nominal rates are the driving force for non-stationarity. New Zealand is the sole exception:
p-values for nominal and real rates and inflation are .156, .080 and .162. Thus, we reject stationarity at
the 10% level for real rates, but fail to reject for nominal rates and inflation. It is easily verified, however,
that if random variables X; and Y; are covariance stationary then so is any linear combination. A deeper
study into this is left for future work.

The bootstrapped JWW test, on par with the Monte Carlo study, almost never leads to a rejection
of the covariance stationarity null hypothesis. Tests based on simulated critical values, however, match
across nominal and real bond yields, with four exceptions: Belgium, Japan, New Zealand and the UK.
The JWW test generally yields strong rejections (well under the 1% level) when nonstationarity is
detected, while the max-correlation test is more moderate, with rejections variously at the 1%, 5%, and
10% levels.

Finally, in five countries the max-correlation test and JWW test disagree: Australia, France, Italy,
New Zealand and Switzerland (denoted by bold in Table A.2). In the first four the max-correlation dif-
ference test yielded rejections of covariance stationarity (p-values are .056, .022, .032, and .080), while
the JWW test failed to reject. The JWW test with simulated critical value detected non-stationarity for
Switzerland at the 1% level (@T =58.1, 1% c.v. = 7.9), but the max-correlation test did not at the 10%
(p-value .144).




Table A.1. Dates and Sample Sizes

Nominal Bond r, ‘ Inflation i | Real Bond r
Dates n ‘ Dates n ‘ Dates n
Australia 1969.Q3-2021.Q4 210 | 1960.Q2-2021.Q4 246 | 1969.Q3-2021.Q4 210
Austria 1990.Q1-2021.Q4 128 | 1960.Q2-2021.Q4 246 | 1990.Q1-2021.Q4 128
Belguim 1960.Q1-2021.Q4 248 | 1960.Q2-2021.Q4 246 | 1960.Q2-2021.Q4 246
Canada 1960.Q1-2021.Q4 248 | 1960.Q2-2021.Q4 244 | 1960.Q2-2021.Q4 246
Denmark 1987.Q1-2021.Q4 140 | 1967.Q2-2021.Q4 218 | 1987.Q1-2021.Q4 140
France 1960.Q1-2021.Q4 248 | 1960.Q2-2021.Q4 246 | 1960.Q2-2021.Q4 246
Germany 1960.Q1-2021.Q4 248 | 1960.Q2-2021.Q4 246 | 1960.Q2-2021.Q4 246
Ireland 1971.Q1-2021.Q4 204 | 1976.Q2-2021.Q4 182 | 1976.Q2-2021.Q4 182
Italy 1991.Q2-2021.Q4 122 | 1960.Q2-2021.Q4 246 | 1991.Q2-2021.Q4 122
Japan 1989.Q1-2021.Q4 132 | 1960.Q2-2021.Q4 246 | 1989.Q1-2021.Q4 132
Netherlands 1960.Q1-2021.Q4 248 | 1960.Q3-2021.Q4 246 | 1960.Q3-2021.Q4 246
New Zealand | 1970.Q1-2021.Q4 208 | 1960.Q2-2021.Q4 246 | 1970.Q1-2021.Q4 208
Norway 1985.Q1-2021.Q4 148 | 1960.Q2-2021.Q4 246 | 1985.Q1-2021.Q4 148
Switzerlnad 1960.Q1-2021.Q4 248 | 1960.Q2-2021.Q4 246 | 1960.Q2-2021.Q4 246
UK 1960.Q1-2021.Q4 248 | 1960.Q2-2021.Q4 246 | 1960.Q2-2021.Q4 246
UsS 1960.Q1-2021.Q4 248 | 1960.Q2-2021.Q4 246 | 1960.Q2-2021.Q4 246

Nominal bond r, are 10 year government bond yields; inflation i is derived from the Consumer Price Index for all
goods and services; real bond yields r, =ry, —i.




34

Table A.2.

Empirical Study: Covariance Stationarity Tests

‘ Nominal Bond r, ‘ Inflation ¢ ‘ Real Bond r

| M DEY DIV | My DEY DIV | My DEY D
Australia .080 | 65.5 (3.5,4.8,7.5) *** | 729 174 | 5.57 (3.8,5.1,7.9) ** 605 | 056 | -2.28 (3.5,4.8,7.5) 854
Austria 002 | 123 (2.9,4.9, 6.6) *** .198 158 | 62.7 (3.8, 5.1,7.9) ##* 134 1 .000 | 352 (2.9,4.1,6.6) *** 024
Belguim 032 | 2.03 (3.8,5.1,7.9) 876 | 236 | 9.90 (3.8,5.1,8.0) *** | 537 | .023 | 44 (3.8,5.1,7.9) *** 919
Canada 014 | 24.1 (3.8,5.1,7.9) #** 904 | 158 | 10.4 (3.8,5.1,7.9) #** .361 018 | 17.7 (3.8,5.1,7.9) *** 756
Denmark .000 | 241 (3.0,4.1,6.7) *** 246 | .066 | 29.1 (3.6,4.8,7.6) *** 319 | .000 | 217 (3.0,4.1, 6.6) *** 273
France 020 | -.543 (3.8,5.1,7.9) .661 174 | 2.27 (3.8,5.1,7.9) 541 | 022 | -2.00 (3.8,5.1,7.9) .866
Germany 80 | 28.9 (3.8,5.1,7.9) ##k 858 | .046 | 109 (3.8,5.1,7.9) ##* 170 | .090 | 879 (3.8,5.1,7.9) #** 399
Ireland 101 | 6.12 (3.4,4.7,7.5) ** 998 | 242 | 30.6 (3.4,4.6,7.2) **¥* | 248 | .012 | 161 (3.4,4.6,72) *** .563
Ttaly 024 | 1.92 (2.9,4.0,6.5) 246 | 216 | 218 (3.8,5.1,7.8) *** .076 | .032 | 1.80 (2.9, 4.0, 6.6) .836
Japan 054 | 143 (2.9,4.1,6.6) 331 331 | 3.34 (3.8,5.1,7.9) A73 014 | 92.7 (2.9,4.0, 6.6) *** | 581
Netherlands 068 | 284 (3.8,5.1,7.9) *** .585 A14 | 12,9 (3.8, 5.1, 7.9) ##* 251 | .026 | 184 (3.8,5.1,7.9) *** 394
New Zealand | .156 | 11.0 (3.5,4.8,7.5) *** 820 | 162 | 213 (3.8,5.1,7.9) 819 | .080 | -2.86 (3.5,4.8,7.5) 982
Norway 014 | 632 (3.0,4.2,6.8) = | 273 | .042 | -3.49(3.8,5.1,7.9) 719 | .006 | 23.7 (3.0, 4.1, 6.8) *** 102
Switzerlnad 136 | 853 (3.8,5.1,7.9) #kk 345 | 265 | 16.2 (3.8, 5.1, 7.9) 371 144 | 58.1 (3.8,5.1, 7.9) *** 334
UK .032 | -2.02(3.8,5.1,7.9) 994 | 222 | 542 (3.8,5.1,7.9) *** 699 | .006 | 21.5 (3.8,5.1,7.9) *** .890
Us 036 555 (3.8,5.1,7.9) *** 647 | 124 9.49 (3.8,5.1,7.9) *** 307 | 024 652 (3.8,5.1,7.9) *#** 222

M is the proposed max-test based on a bootstrapped p-value: reported values are p-values computed by
dependent wild bootstrap. D;" is JWW’s test based on simulated critical values, shown in parentheses: *, %, **%

denote rejection at the 10%, 5% and 1% levels. ZA);ZW is JIWW’s test based dependent wild bootstrapped p-values.
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D. Complete simulation results
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Table A.4.: Rejection Frequencies under Hy: Walsh Basis
Case 2: Hy =2T-*° and K = .5T%
&« N©,1)
n=>64 f n=128

1

> () A Ad 5 () A Ad
Mo M DY D 7 My M DY D
MA(1) .000, .012, .054 .001. .010, .066 .018, .040, .075 .005, .085, .255 .001, .008, .046 .001, .017, .053 .008, .034, .074 .001, .031, .195
AR(1) .001, .019, .072 .001, .024, .087 .068, .110, .161 .027, .073, .166 .001, .020, .084 .001, .030, .094 074, 123, 172 .022, .068, .130
SETAR .001, .017, .037 .003, .019, .041 .040, .089, .152 .014, .093, .202 .001, .027, .050 .003, .024, .046 .051, .124, .171 .015, .062, .148
GARCH .000, .021, .095 .000, .025, .109 .014, .047, .103 .004, .077, .247 .003, .044, .113 .004, .047, .128 .008, .034, .085 .000, .023, .156

| n =256 n=512

MAC(1) .000, .011, .049  .000, .015, .059 | .008,.045,.088  .000,.019, .146 | .004,.027,.061  .004,.032,.079 | .013,.047,.109  .000, .025, .161
AR(1) .002,.015,.057  .002,.019, .058 | .048,.100,.154  .017,.036,.087 | .002,.027,.085 .005,.028,.080 | .033,.079,.149  .004,.021, .065
SETAR .004, .033,.059  .003,.032,.058 | .030,.100,.174  .003,.024,.108 | .004,.031,.067  .005,.033,.069 | .026,.097,.176  .000, .016, .069
GARCH | .003,.033,.095 .004,.032,.098 | .007,.037,.086  .001,.031,.173 | .003,.035,.108  .002,.035,.116 | .017,.045,.083  .001,.030, .159

i
&'~ is

n=064 | n=128

>v$1 \QQV Mwm;_\ Mw&% 7 >w$; \Qm.uv Mwuo.k N@%E

MA() .000, .013,.050  .001, .013,.057 | .005,.030,.078  .008,.072,.175 | .001,.021,.059  .002,.026,.073 | .006,.026,.064 .001,.022, .094
AR(1) .002,.020, .066  .005, .030,.081 | .056,.091,.150  .025,.067,.132 | .000,.027,.081  .000,.033,.091 | .034,.077,.124  .005, .017, .056
SETAR .001, .018,.057  .001, .023, .057 .026, .067, .118 .012, .061, .155 .001, .014, .038  .001, .014, .045 | .020,.083,.152  .002, .018, .048

| n =256 n=512

MAC(1) .000, .017, .060  .000, .019, .067 | .003,.028,.064  .001,.016,.061 | .002,.021,.080 .003,.028,.086 | .006,.033,.070 .000,.006, .026
AR(1) .003,.014,.049  .003,.018,.052 | .018,.048,.093  .002,.013,.023 | .003,.027,.087 .003,.034,.094 | .007,.049,.090  .000,.001,.005
SETAR .001, .014,.033  .002, .012,.037 | .038,.115,.191 .001,.007,.024 | .003,.014,.049  .002,.015,.047 | .056,.165,.263  .000,.002,.008

& ~ GARCH
n =64 | n=128

>w$; >w~Cuv Mwm< Mw%s\ 7 >w$; b%hv Mwmu\ Mw%é

MA(1) .000, .019, .071  .000, .020, .082 | .014,.047,.103  .006,.082,.253 | .002,.031,.096  .002,.035,.112 | .008,.034,.085  .000,.017, .160
AR(1) .003,.025,.077  .004, .031,.087 | .082,.130,.190  .034,.086,.195 | .001,.022,.085 .001,.033,.092 | .073,.123,.170 .031, .057, .127
SETAR .004, .019, .057  .004,.022,.063 | .063,.122,.179  .028,.094, .226 | .001,.014,.050  .001,.016,.056 | .040, .106, .155 .01, .041, .108

| n =256 n=512

MA() .002,.021,.076 ~ .002,.020,.091 | .007,.037,.086  .000,.024, .161 .004,.038, .110 ~ .003, .044, .116 | .017,.045,.083  .000,.025, .158
AR(1) .001, .019, .064  .001, .025, .077 .064, .114, .164  .016, .044, .098 | .000,.034,.109  .001,.032,.108 | .033,.077,.123  .006, .028, .070
SETAR .000, .013,.042  .000, .013, .044 | .023,.092,.159  .002,.017,.091 | .000,.023,.071  .001,.025, .082 .027, .100, .174  .001, .009, .064

Mz and >xwm ) are the proposed max-tests with and without a penalty, based on a bootstrapped p-value. ®%< is JWW’s test based on simulated critical values,
and 6%% uses bootstrapped p-values. The GARCH error is based on an iid N (0, 1) innovation.
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Table A.5.: b. Rejection Frequencies under H|: Walsh Basis
Case 1: Hr = [log, (n)*° — 3.5] and K7 = [n'/3 + .01]
€r ~ nm

| n=064 | n=128

7 \ﬁﬂ \&%ﬁv Mwmu\ M)u%% 7 \&ﬂ \(N%ﬁv ey Mw&:\

alt-1 | .064,.267,.339  .072, .286, 433  .160,.360,.503  .021,.127, .223 342, .351, .449 331, .377,.385 799, .921, .951 .021, .130, .303
alt-2 | .007,.041, 157 .008, .047, .165 .002,.024, .061  .206, .336,.397 | .024,.079,.214  .047,.083,.225  .007,.031,.060  .062,.194, .268
alt-3 | .034, .066, .141 .031, .065, .124 173, .386, .513 .051, .206, .276 | .124,.297,.365  .117,.274, .340 413, .643,.753 015, .114, .207
alt-4 | .005, .248,.386  .042,.244, 279 171, .386, .535 .050, .199, .288 | .566, .698, .824 467, .581,.706  .737,.899,.947  .050,.190, .358
alt-5 | .110,.270,.294  .101, .183, .239 .056, .096, .138  .175,.270, .308 | .295, .464, .684 214, .494,.697  .130, .297, 411 .025, .084, .139
alt-6 | .020, .087, .119 .014, .066, .120  .021,.050, .091  .147,.247, .297 .094, .162, .231 .082, .151,.234  .031,.099, .182  .025, .103, .157
alt-7 | .009, .046, .096  .005, .041, .071 .020,.053,.094 129, .221, .267 084, 126, .249  .072,.102, .211 .059, .142, .231 .047, .098, .134
alt-8 | .021,.082,.125  .021,.069, .114 .056, .096, 138  .180, .269, .313 .046, .102, .311 .008, .111,.320  .029, .068, .107  .053, .124, .163
alt-9 | .002,.025,.084 .002,.024,.094 .007,.032,.067 .203,.361, .426 | .039,.077, .178 .013, .087, .201 .001,.025,.070  .071, .171, .247

n=256 n=>512

alt-1 | .624,.763,.846  .689,.734,.821  .978,.996,.998  .011, .116, .373 905, .950,.976 920, .945, 971  1.00, 1.00, 1.00  .237,.721, .877
alt-2 | .024,.058,.168  .033,.062, .171 .004, .026, .069  .030,.093, .144 | .050, .161, .307 .049, .166, .306  .005,.029, .061  .010, .039, .063
alt-3 | .612,.725,.847  .805,.796,.823  .935,.981,.991  .035,.239, 468 | .890,.984,1.00  .828,.928,.998  .984,.999,.999  .013,.158, .419
alt-4 | .690,.803, 910  .697,.801,.904  .920,.974,.992  .029, .165, .361 .989,.997,1.00  .928,.974,.985 997, 1.00, 1.00  .050, .303, .518
alt-5 | .858,.878,.944  .802,.868,.947  .888,.961,.983  .018,.127, .288 934, .977, 987  .938,.977,.987 100, 1.00, 1.00  .381, .740, .816
alt-6 | .119, .245,.304 118, .252, .314 069, .199, 294  .011, .044,.080 | .332, .418,.592  .341, .440, .605  .164,.350, .468  .006,.034,.073
alt-7 | .092, .217, .372 .084,.207, .297 182, .388, .515 .007, .038,.099 | .481,.505,.768  .498, .425,.690 .697,.882,.935  .029,.129, .266
alt-8 | .093,.190,.368  .064, .147, .388 .012,.056, .100  .012,.042,.051 | .404, .654,.884  .418,.670,.920  .016,.091, .187 .003, .004, .006
alt-9 | .071,.192,.232  .041, .124,.235  .006,.025,.073  .033,.090, .127 | .181,.370, .428 141, .269, 433 .004, .040, .084  .010, .038, .059

M and >XAH% ) are the proposed max-tests with and without a penalty, based on a bootstrapped p-value. M)u%< is JWW’s test based on simulated critical values,
and Mw%s\ uses bootstrapped p-values.
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Table A.6.: a. Rejection Frequencies under H;: Walsh Basis
Case 2: Hy =2T-*° and Ky = .5T-%
€ ~N(0,1)

| n=064 | n=128

7 \«Nﬂ b%ﬁv Dev @%s\ 7 My >\~Cuv PDev MU%E

alt-1 | .121,.234,.326  .142, .276, .431 146, .395,.552  .003,.031,.129 | .583,.685,.702  .563,.628,.667  .803,.934,.967  .001,.065, .211
alt-2 | .020,.059,.190  .022,.067,.202  .025,.058,.089  .010,.066, .233 | .033,.197, .410 .034, 213, .427  .009, .043,.086  .002, .025, .177
ale-3 | .200, .313, 417 200, .303, .422 150, .406, .553  .006, .060, .195 | .332,.579,.687  .333,.518, .661 .382,.674, 790 .000, .022, .127
alt-4 | .073,.292,.399  .065,.284,.397  .160, .402,.548  .011,.050, .190 661, .678, .828  .668, .681,.837  .739,.906,.942  .001, .097,.292
alt-5 | .121,.207, .335 .101, 145, .383 .080, .129, .178 .033,.085, .188 | .403, .688,.869  .455,.731,.895  .143,.323, 471 .012, .040, .106
alt-6 | .041, .123 .166 .031, .113, .179 .064, .121, .190 .017, .062, .156 072, 134, .278  .076, .155,.308  .053,.137,.252  .010, .024, .089
alt-7 | .021,.073, .137 .017,.063, .137 .050, .096, .145  .022,.072, .180 | .058, .115, .211 .045, 103, .219  .066, .135,.220  .018, .052, .104
alt-8 | .020, .115, .164 .021,.082, 133 .080, .129, .178 .033,.085, .188 | .052,.106,.365  .032,.122, 414  .075, .115, 157 .030, .067, .119
alt-9 | .011,.039, .102 .012,.027,.088  .014,.051,.099  .010,.095, .287 | .043,.038,.123  .025,.060, .168  .003,.024,.070  .000, .036, .159

n=256 n=>512

alt-1 | .815,.932,.987  .889,.908,.987 .972,.998,1.00 .001,.059,.220 | 1.00,1.00,1.00  .991, 1.00, 1.00 1.00, 1.00, 1.00  .079, .401, .585
alt-2 | .483,.946,.994  518,.942, 989  .012,.033,.074  .000, .016, .146 1.00, 1.00, 1.00  .999, 1.00, 1.00  .010, .037, .085 .000, .020, .127
alt-3 | .883,.891,.939  .878,.879,.937  .931,.982,.990 .003,.132,.325 | 1.00 1.00, 1.00 965, 1.00, 1.00  .984, .999,1.00  .003, .086, .249
alt-4 | .893,.977,.996  .809,.979,.995 .929,.981,.992  .005,.096, .273 | 1.00,1.00,1.00  1.00, 1.00,1.00  .997,1.00,1.00  .013,.209, .384
alt-5 | .886,.983,.999  .867,.989,.999  .908,.977,.991  .003,.058,.223 | 1.00,1.00,1.00  1.00, 1.00, 1.00  1.00, 1.00, 1.00  .363,.720, .753
alt-6 | .131,.250, 428  .141, .276, 478 .067,.189,.293  .002,.012,.091 | .403,.762,.877  .449,.805,.907  .131,.306, .449  .000,.024, .136
alt-7 | 121, .247, .331 119, .224, 314 151, .349,.503  .007,.022, .058 | .514,.666,.709  .557,.636,.768  .675,.850,.920  .035,.087, .171

alt-8 | .083,.252,.358  .042,.174, .410 .049, .106, .158  .018, .035, .091 .537, .851, .975 516, .870,.983  .060, .173,.285  .001, .020, .067
alt-9 | .702,.973,.998  .673,.951,.989  .004,.034,.081 1.00,.026,.145 | .994,1.00, .00  .994, 1.00, 1.00  .009, .048, .101 1.00, .029, .147

>v_ﬂ and \me ) are the proposed max-tests with and without a penalty, based on a bootstrapped p-value. @w.k is JWW’s test based on simulated critical values,
and @%E uses bootstrapped p-values.
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Table A.6.: c. Rejection Frequencies under H;: Walsh Basis
Case 2: Hy =2T-*° and Ky = .5T-%°
€ ~ GARCH

| n =64 | n=128

7 \(Xﬂ g%tv Mw%—\ Mw&% 7 \6—‘\, >XQVV Mw%k Mw%%

alt-1 | .065, 211, .360  .085,.277,.367  .139,.378,.546  .002,.030,.128 | .308, .422,.591  .305, .407,.560  .820,.939,.970  .000, .057, .183
alt-2 | .021,.054,.162  .021,.062,.173  .022,.051,.106 ~ .008, .079, .257 | .044,.099,.266 .043,.104,.277  .005,.033,.088  .001,.032,.168
alt-3 | .085, .217, .371 .078, 216, .379  .156, 418, .588  .007,.046, .170 | .218, .311, .467 .209, .300, .453  .371, .657, .778 .001, .017, .114

alt-4 | .120,.339,.389  .087,.242,.291  .152, 408, .554  .007,.046, .171 421, .496, 590 325, .400,.593  .758,.909,.953  .001, .086, .281
alt-5 | .056, .156,.223  .043, .127,.216  .073,.120, .163 .027, .071, 150 157,.368,.522 136, .394,.506  .148,.324, 455  .015,.028, .078
alt-6 | .04l, .116, .195 .041, .101, .181 .066, .133,.203  .019, .040, .141 .082, .172, .278 .081, .164, 270  .046, .149, .245  .004, .017, .081
alt-7 | .052,.123,.199  .030,.105, .135  .056, .117, .159 .018, .061, .163 .092, .117, .208 .094, .106, .196  .062, 129, .210  .018, .035, .092
alt-8 | .046, .117, .159 .035,.103, .147  .073, .120, .163 .028, .076, .158 | .043,.095,.248  .034,.089,.269  .055,.090,.148  .020, .051, .115
alt-9 | .020,.038,.098 .016,.029,.096 .012,.049,.083  .004,.067,.271 | .057,.087,.162 .049, .080, .189  .009, .038,.081  .000, .031, .168

n=256 n=>512

alt-1 | .447,.589,.677 442, .567,.647 .974,.998,.999  .005,.051,.228 | .557,.665,.807  .539,.657,.803  1.00, 1.00, 1.00  .076, .375, .540
alt-2 | .282,.370,.576  .287,.353,.551  .009,.042,.102  .000, .029, .142 | .517, .689, .803 590, .667, 798  .009, .051,.099  .000, .031, .155
alt-3 | 421, 498, .600 418, .489,.688  .927,.982,.992  .003, .117, .311 .635,.767, .865  .636,.766, .868  .986,.999,1.00  .004, .080, .247
alt-4 | .518, .580, .675 .527,.583,.675  .916,.979,.989  .003,.087,.241 | .746,.794, .888  .755,.808,.889  .995,1.00,1.00 .015, .181, .339
alt-5 | .424,.596,.721 449, 518,.709  .892,.962,.983  .002,.056,.229 | .829, .916,.963  .587,.828,.909  1.00, 1.00, 1.00  .347, .674,.719
alt-6 | .107,.174, .296 108, .179,.295  .085, .214,.325  .000, .017, .085 | .135,.384,.428  .143,.302, 434  .169, .350, .491 1.00, .030, .137
alt-7 | .102, .247, .357 102, .227, 377 171, .378, .507 .006, .027, .055 | .331, .468,.660  .321, .428,.622  .686,.880,.928  .031,.093, .178
alt-8 | .103,.275,.350  .104,.240, .321  .049, .100, .166 ~ .010, .029, .082 | .335, .415,.638  .252,.392,.649 .062,.181,.284  .006, .028, .063
alt-9 | .197,.577, 754 168, .499, .711 .012,.046,.105  .001, .025, .160 | .503,.775,.884  .424,.740,.859  .009,.045,.090 .000,.028, .150

My and \S%s ) are the proposed max-tests with and without a penalty, based on a bootstrapped p-value. Mwmk is JWW’s test based on simulated critical values,
and Mw%s\ uses bootstrapped p-values.
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