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A. Introduction

We list the assumptions for reference in Appendix B. Appendix C presents a method for automatic
selection of Hr and Kr. Appendix D contains omitted proofs. We provide an empirical study in Ap-
pendix E, and Appendix F contains all simulation results.

We use the following notation. [z] rounds z to the nearest integer.. L is the space of square integrable
random variables; and L;[a, b) is the class of square integrable functions on [a,b). || - ||, and || - || are
the L, and [, norms respectively, p > 1. LetZ={... -2,-1,0,1,2,...},and N = {0,1,1,2,...}. K > 0
is a finite constant whose value may be different in different places. awp1 denotes "asymptotically with
probability approaching one". Write maxqy, = maxXo<p<s,- MaXqc, = MaX|<i<g, and maxqy. %, =
Maxo<p<ty, 1<k <k Similarly, maxqq. a(h, h) = maxgp, 7 <qq a(h, h), etc.

B. Assumptions

Write

2t (M k) ={X; Xpsnbi (t) — E [ X Xean] bic (1)}
1
Zr(hk) = > z(hk).

Define o-fields
T"f’t =0 ({X;Xe2n:0<h<Hr}rsy) and 7“7{,_00 =0 ({X;Xeen:0<h<Hr}lr<s),

and @-mixing coefficients a; = limsupy_, ., Sup, ¢z SWpAcT. B, [P(ANB) —P (AP (B)]|,
,—00” S+
for I > 0.

Assumption 1.
a. (geometric mixing): {X;} is a-mixing with coefficients a; = O (exp{—1?}) for some ¢ > 0.

b. (subexponential tails): max;<;<7 P(|X;| > ¢) < wexp{—cﬂlcﬁ;ﬂz}for some @ > 1, 91 = 29 and
% > 1, and some sequence of constants {Er}, liminfy_,o, Er > 1.

c. (nondegeneracy): liminfr_, o E[Z%(h, k)] > 0V(h, k).

d. (orthonormal basis): {B(x) : 0 < k < K} forms a complete orthonormal basis on L[0,1); By (x)
e {-1,1} on [0,1); and |ZtT:1 B (1)| = O(n(k)) for some positive strictly monotonic function n : R,
- Ry, n(k) Sooask — o

Set a block size by such that 1 < by < T, by /T* — o and bT/T]“ — 0 for some tiny ¢ > 0 that
may be different in different places.

Assumption 2.

a. (i) Wiminfr_eo s7-(h, ks 7, k) > O V(h, h, k. k); and (ii) maxqq, g, |s3-(h,k;h, k) — s> (h, ks b, k)| =
O(T™Y) for some infinitessimal t > 0.

b. by /T — oo and by = o(T'2~Y) for some infinitessimal ¢ > 0




4

C. Automatic {Hr, K7} selection

We propose picking (Hr, Kr) in a data dependent manner based on the lag selection method in Hill
and Motegi (2020, Section 3), an extension of Escanciano and Lobato’s (2009) method for lag selection.
Cf. Inglot and Ledwina (2006). We consider selecting Hr for a given Kr, and selecting K7 for a given
Hr. Finally, we discuss an empirical approach for selecting both iteratively. Assume the orthonormal
basis is comprised of Walsh functions Wy (x) to focus ideas, hence Kr = o(VT) is required, cf. Remark
8 in the main paper.

C.1. H (%)

The optimal H;.(Kr) for a given K7 is chosen from a set {0, ... Hr} for some pre-chosen upper-
bound Hr, where Hy — oo with Hy = 0(\/7 ). Similarly K7 is pre-chosen from {1, ...,‘}_(T} where
Kr — oo and K7 = o(VT). We only consider sequences {Hyz, K7} that satisfy Hy/Hr — [0, K] and
Kr /‘I?T — [0, K] for finite K > 0. Put K = 1 for ease of notation. Under Hy, Escanciano and Lobato’s
(2009) method leads to P(H;.(Kr) = 0) — 1 because higher lags do not provide useful information
and incur a high penalty (see below). Thus, we need to allow for sequences {Hr, Kr} that converge or
diverge, e.g. Hr — [0, ..., o0].

Similar to Hill and Motegi (2020), cf. Escanciano and Lobato (2009), define a penalized max-
correlation difference:

P — _ - A(k) _ A
MP (H.5) = Ma (HLK) = Pr(H. I where Mr(H.5) = max VT (1) = .

with penalty function Pr(-):

Pr(H 7()_{\/(7’{+1)7(1nTier(7-(,‘K)S\/qlnT n
TR\ BH DK if Mp(H.K) > JgInT :

where g is a fixed positive constant. We need H + 1 since H = 0 is possible, covering a test exclusively
for variance constancy. Notice (H + 1) K is the total number of objects being searched over. A small
value of ¢ leads to the AIC penalty 4/2(H + 1)% being chosen with high probability, while a large ¢

promotes selection of the BIC penalty +/(H + 1) KInT. A low q is therefore akin to the de facto AIC
penalty used in Jin, Wang and Wang (2015) applied to 4. In their setting, however, they are not choosing
{H,K}; rather, they penalize the use of higher lags and systematic samples in a maximized high
dimensional Wald statistic. Escanciano and Lobato (2009) find g = 2.4 is suitable for their penalized Q-
statistic based on empirical size and power, and based on results in Inglot and Ledwina (2006). Hill and
Motegi (2020) find that g = 3 works well for their max-correlation difference statistic. In experiments
not reported here we find g € [1/4,3/4] lead to competitive empirical size for the max-correlation
difference.

Following Escanciano and Lobato (2009) and Hill and Motegi (2020), the chosen optimal lag is for
each T:

H(Kr) =min {H : 0 <H < Hy : MY (H,Kr) > MZ (h,Kr) for h=0, ..., Hr} . (C2)

In order to characterize H.(Kr) we need

T—h
Arr(h k)= ————— 57 5ix2] Z [ Xt Xz4n] B (2).

[=l L

~




Under Assumption 1 it is straightforward to prove (see the proof of Theorem C.1):
(k) A p
n}}jakx )ph —pn—Arr(h, k)| —0.

Under Hp and Lemma 3.a in Jin, Wang and Wang (2015),

(Arr (k)| = X’X”h“ZBk(o <loul |~

' o(1/T).

Consider the global alternative E[X;X;+n] = vn + cn(¢/T), cf, (16) in the main paper, where ¢y, :
[0,1] — R are integrable functions on [0, 1] uniformly over 4. Then limr_,« 7! Zz;l E [th] =7y +

fol co (1) du >0, and
o e 0 Biwdu.

hm Arp(h, k) =Ar(h, k) =
y0+f0 co (u) du

Now define the smallest lag 4 at which the largest (in magnitude) asymptotic correlation difference
occurs over systematic samples {1, ..., K}:

kefl,...,

h*(?o() = min {h th= argmaxheN{ max  |Ar(h, k)|}} where K = Tlim Kr e [1,00],
(](‘} —00

Theorem C.1. Let Assumptions 1 and 2 hold. Let {Kr} satisfy Kr € [1, ..., Kr]| where Kr — [1, 0]
and Ky = o(NT); let Hr = O(NT); and let HyKr = o(T/In(T)).

a. Under Hy, P(H;(Kr) = 0) — 1 for any {Kr}. Further max; <x < Hy.(k) LA 0 for any fixed finite
1 <K <K = limr_eo K.

b. Under Hy, H;.(Kr) LA h*(‘]o(). Further max < <qc |H7.(k) = h* (k)| — 1.

Remark 1. Under either hypothesis (%K) converges to a plausibly most informative and efficient
value. We say both informative and efficient because we use maximal information under H( asymptot-
ically with probability approaching one (no data points are trimmed with H7.(Kr) = 0)

Under H;| we use the least lag (hence the least amount of trimmed sample points) at which K7
optimizes the correlation difference. In our simulation study, for example, i* (7() =0 or I for most
models under H| because the non-covariance stationary processes used have zero autocovariances at
lag & > 2. In alternative models 2 and 9 we have h*(‘f() = 6 and 25 because only at those lags are there
non-zero autocovariances.

Remark 2. We require a slightly more restrictive bound H7%r = o(T /In(T)) compared to Theorem
4.1 where implicitly HrKr = o(T). This ultimately arises from the logarithmic component in the
penalty selection threshold /¢ InT
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C.2. K:(Hr)

An identical procedure applies for selecting Kr for a given maximum lag Hr. The chosen optimal

K (Hr) is:
Ky (Hr) =min {K : 1 <K < Ky : ML (Hy, K) > M (Hr, k) for k=1,...,Kr} . (C.3)

Define the smallest systematic sample counter k at which the largest (in magnitude) asymptotic corre-
lation difference occurs:

k*(?-o() =min< k : k = argmax; ¢y max  |Ar(h, k)| ¢ where H = lim Hy.
he{0,...,H} T—oo

The proof of the next theorem is identical to the proof of Theorem C.1 and therefore omitted.

Theorem C.2. Let Assumption I and 2 hold. Let {Hr} be an arbitrary sequence of maximum lags,
Hy € [1,....,Hr], Hr — [1,00] and Hr = ONT); let K = o(NT); and let Hr Ky = o(T/In(T)).

a. Under Hy, P(K;.(Hr) = 1) — 1 for any {Hr}. Further supy.j, < K. (h) LA 1 for any fixed finite O
< H < H = limr_e0 Hr.

b. Under Hy, K;.(Hr) L k*(?—ol). Further supg.j, <3¢ 1%.(h) — k*(h)| — 1 for any fixed finite 1 < H
<H.

Remark 3. Under Hj the variance and autocovariances are constant over time. Since no systematic
sample provides information for detecting a break in (co)variance, the least of the set {1, ..., K7} is the
optimal choice.

C.3. Iterative {#;, K} Selection and Theorem C.1

We now discuss identifying (#,K7) iteratively for a given T, and present the main result. Write
Hi(H) = Hj(K;(H)) and K;.(K) = Ki(H;.(K)), hence H;. : N — N and K;. : N — N. Identifi-
cation of unique {H;, K7} requires ‘f{; and 7?; to be contraction mappings (see below). If we begin
with an arbitrary start hg, set h| = ﬂ;(ho) and iterate ;.1 = ﬂ;(hm), then by the Banach fixed point
theorem fyy, 2 Hy as m — oo.

The algorithm requires going back and forth between H (K. (H)) and K .(H;.(K)) due to the
cross-embedded arguments. Indeed, the iteration on Hj.(hy,,) implicitly simultaneously iterates on
‘f(}('). The steps are as follows:

(i) Pick hg and compute kg = K7.(ho) in (C.3);
(ii) Compute hy = H;.(ko) and ky = K. (hy) using (C.2) and (C.3);
(iii) Iterate

hms1 = 7-{7*"(km) and kpp41 = 7(;i(hm+l)- (C4)

(iv) Cease iterations when m > M for some preset maximum iteration M € N, or

- < - <




where (1j,,7;) > 0 are pre-chosen tolerances. Clearly |A;;,+1 — hm| and |k,11 — k5| are integer
valued, so (1,7) € {0,1,...}. In experiments not reported here 7,7, = 0 lead to m < 25 in all
simulated samples, hence convergence was easily satisfied.

We implicitly have both iterations /.1 = f(}(hm) = Hi(KG(hm)) and kpppy = ﬁ;(km) =

K. (H;.(kim)). Therefore hyy, KN H; and kp, L K. as m — oo provided the fixed point theorem

applies. We therefore need 7:(; (H) and ‘f(; () to be contractions mappings awp1. Consider 7:(;, and
note that we require for any pair {hg, h; } and some finite §¢; > O:

|FL5.(hy) — F3-(ho)| = | HG- (K (h1)) — H (K (ho))| < Sg¢ |y — ol awpl.

This is trivial under Hy since by Theorem C.1.a. sup; o < H (k) L0 for all finite 1 < K < K =
limT_m 7(]“.

Conversely, under H; Theorem C.2.b yields supg, <4 |%.(h) — k*(h)| — 1 for any finite 1 < H
< 7?(, where

.....

Now invoke Theorem C.1.b to deduce:
|FL3.(hy) = FH3-(ho)| = |HG- (5 (h1)) — Ha(Kp-(ho))|

1
‘/0 cp (u) By (u)du

min | A : h = argmax max
{ 5 hEN{ke{l ..... i (hi)}

]
]

1
/0 cp (1) Br(u)du

—min {h : h=argmaxy ¢y {ke{l mak)i(ho)}

+op (1)

= Ah(hy, ho) + 0, (1),

where Ah(-) is implicitly defined. We therefore need

Ah(hy, ho) < 69¢|hy = hol Y (ho, hy). (C.5)
Property (C.5) effectively restricts directions of deviation from Hj.

Assumption 3. Let Ah(hy, hg) < dq¢|hy — ho| Y(ho, hy) and Ak(ky, ko) < g |k — kol V(ko, k1),
where 04y, 55 > 0 are fixed constants.

The discussion leading to (C.5) proves the following claim.

Theorem C.3. Let Assumptions 1-3 hold. Then hyyy = Hi(km) and kys1 = Ki(hme1) defined in

(C.4) satisfy h;, LN H; and ky, L& K as m — oo.
Theorems C.1 and C.2 now yield the following.

Theorem C.4. Let Assumptions 1-3 hold. As T — co, (hy,, ki) LA (0,1) under Hy, and under H| we
have (hyy, k) 2 (B*(K), k* (H))
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C.4. Proof of Theorem C.1
Let g be any fixed positive constant. Recall the penalty function is Pr(H,K) = /(H + 1) KInT if

Mrp(H,K) <+/gInT, else Pr(H,K) =2 (H+1)K.

In order to reduce notation we drop the argument K7 and write, e.g., My (Hr) = Mg (Hr, Kr),
Pr(Hr) = Pr(Hy. Kr). H: = Ho(Kr).

Claim (a). Let Hy be true. We will only prove the first claim P(H;.(Kr) = 0) — 1 for any {Kr}.

It then follows that H;.(K) 20 for any fixed finite 1 < K < %K. The second claim max; <k <x Hy (k)

P . o D o
— 0 requires pointwise convergence and equicontinuity. Pointwise convergence follows from the first
claim, and equicontinuity is trivial for integer-valued functions.

It suffices to prove the following. First, for any Hy, Hr — [0, o] and Hy/Hp — [0, 1], the penalty

term satisfies:
P (PT(HT) = (Hr + ) Krln T) S (C.6)

Hence M? (Hr) = My (Hr) — (Hr + 1) K7 InT asymptotically with probability approaching one.
Second, for such {Hr} the following holds:

P (MT(WT) — My(h) > (\/(WT DKy -+ 1) ’KT) \/ln(T)) (C.7)
Lif h > Hy
0 for fixed h=0, ..., Hy — 1

Together (C.6) and (C.7) prove the claim P(H;. = 0) — 1 since the following holds for every h =
0, ..., Hr if and only if Hy — 0:

lim P (MS;D)(WT) > M(TP)(h)) (C.8)

= lim P (Mr(Hy) = Mr(h) = (VOHr + D Kr =i+ D)% ) in(T)) = 1,
while . is the least of sequences that satisfy (C.8) for every h =0, ..., Hr.

(C.6). By construction of Pr(Hr) it suffices to prove P(Mq(Hp) > 4/gInT) — 0. Under Hy,

\/T(ﬁ,(lk) — pn) = 0 (1) by Theorem 3.4, hence \/T(ﬁ,(ik) —Pn)/\qInT 250 for any fixed g € (0, o).
Therefore, by Theorem 3.4 for some non-unique {Hr, Kr}, Hr, Kr — oo, Hr = o(T):

A(K) A
Mo (FHy) M8ty % VT(P;, ) —Ph)| »
= =
VgInT VgInT

Moreover Hy Ky = o(T /In(T) by assumption. By monotonicity of Mg(-) > 0, (C.9) holds for any
{Hr,Kr} where Hr — [0,00] and Hr/Hr — [0,1], K — [1,00] and K7 /Kr — [0,1]. Thus

Ma(Hr)/+/gInT L, 0 for all such {Hr}.

0. (C9)

(C.7). Suppose h > Hy. By (C.9), Mq(Hry)/VInT = op(1) and therefore Mq(Hr) — Mq(h) =

— [0, 00 — <h<H




(C.6), monotonicity of Mz(-), and infle{\/(h + 1)Kt - \/(7-17 +1)Kr} > 0, to yield that as T —

(o o

P (Mo (Hr) - Mo (h) = (\(Hr + D) % =+ 1) %) {in(T))

_» (MT(WT) - My (h)

VIn(T)

>\ (Hr+ 1)Ky =/ (h+ 1)7&)

=P((h+ D) Ky = (Hr + ) Ky >

VIn(T)
Similarly, if & = Hr then \/(h+ 1) Ky — /(Hr + 1) Kr = 0 and Mq(h) — Mq(Hr) = 0 hence the

above limit holds.
Conversely, suppose & € {0, ..., Hr — 1} and Hr > 1. Then from M7z (Hr) = 0p(1/qInT) and 1 —

V(h+1)/(Hr +1) > 0 it follows:

P (Mr(Hr) = Mr(h) = (e + D) % =+ 1 %) §in(T))

_p My (Hr) — Mt (h) S (1 - [ 41 o
V(Hr + 1) Kr/In(T) Hr+1

Mo (h) ~ My (Hy) ) L

(C.7) follows directly.

Claim (b). Let Hj hold. Similar to (a), we need only prove H.(Kr) Dop (‘K) Recall under Hj,
cf. (16) and (17), both yg + /01 co (1) du > 0 and:

T-h

D E [XeXean] Bi (1)

t=1

1 1
AFT(h, k) = #—
2
T 21 E [Xt ] r
satisfies |ﬁ}(lk) — pn — Arr(h, k)| 2 0and

S\ en () Bi(wydu
o+ fol co (u) du

Tlim Arp(h, k) =Ar(h, k) = #0forsome h >0, k > 1.

Recall K = limy—_ o0 K, and

h* = h*(K) = min{h th= argmaxheN{ max |Ar(h,k)|}} ,

I

ke{l,.... K}

and define the finite sample version:

~(k N
50 by

h}. = min{ ht : hy = argmax, q max
T T-N0r g OShSHTlSkSWT
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Define

Ny(h) = {h € N :max |Ar(h, k)| # O},
keN

and N; = minpeyN;(h), the smallest lag at which the largest k' h Walsh coefficient
fol cp (u) Br(u)du # 0.

We prove in Step 1 that for any integer sequence {Hr} such that Hy — [Ny, 0] and Hr/Hy —
[0, 1], the penalty satisfies for any sequence of maximum number of systematic samples {Kr}:

P (PT(WT) —\2(Hr + 1)7(T) - . (C.10)

We then prove in Step 2 that if and only if Hr/h7. LA [1,00], for each 0 < h < Hz we have

P (MT(fHT) > My (h) +2 (\/(WT DKy —(h+ 1) 7<T)) S, (C.11)

Moreover, Hy, Ky — oo, |,5/(qk) = pn — Arp(h k)| L)) (see (C.13) below) and Arp(h, k) — Ar(h, k)
yields:

p .
n; h = h:h= Ar(h, k .
g mm{ argmaXhEN{lgkgﬂmevﬁ' r( )I}}

Notice h* € [Ny, ) by construction of Nj.

The proof of the claim then proceeds as follows. Take any integer sequence {Hr}, Hr/h7 LA [1,00]
and Hy/Hr — [0,1]. Then (C.10) holds because h* € [Ny, o), hence M’TD(WT) = Mr(Hr) —
\/m awpl. Since such a sequence implies (C.11), we have M? (Hr) = M?(h) awpl
foreach h = 0, ..., Hr. Conversely, if (C.11) holds then 7‘(T/h*} LA [1,00]. This yields (C.10) because
h* € [Ny, 00). Therefore M¥ (Hr) > MZ (h) awp] for each h =0, ..., Hr if and only if Hr/h} KR
[1,00]. Since the optimal {7}.} is the least of such sequences, the selection H. satisfies Hr/h7. LAY

Together Hr/h7. 2 1and hy. Ly prove the claim.

Step 1: Consider (C.10). By the triangle inequality

A(k) A |
max — — max |Ar(h,k C.12
Jmax | = pu| = max |Ar(h, k) (C.12)
k) A
< max —pn—Ar(h, k |
R (h, k)
(k) A )
< max —0n—Arr(h,k)|+ max |Arr(h, k) — Ar(h, k)| .
Jmax |0y = Pn 7(h, k) 7{T’WTI 7(h, k) (h, k)|

Note under H;:

1
DENE = s0=r0+ [ colwdue (0,

=1

Nl -




T-h

1 — 1
— o — = u)Bi(u)du.
- E E[X: X111)Br(t) = wh.x /0 cn(u) By (u)

t=1

Hence, Lemma 3.1 and variance bound (A.5) yield for some integer sequences {'f(T, Kr}, '7-_(7, Kr —
00:

A P ==t
1 1
—mT Z; E[X; X14n] Bi (1)
1 T h
< 2o max |\ Z {X XesnBi(t) = E [X: Xpan] B (1)}

1
X—
%ZtTﬂE[th]?A’O

|

Th

X max ZE [X; X;en] Bi (1)

Hr, K |T

1
:Op(l/ﬁ)+0p(1/\/f) X — X max |wh,k|.
g~ Hr.Kr

0

By Assumption 1.b,d maxg¢y,. ¢, [wp k| < co. Hence

max |6 = py - Arr(h, k)‘ =0, (1/VT). (C.13)

Hr, Kr

Further:

max |Arp(h,k) — Ar(h, k)|
Hr, Kt

1
——— max
yo +f0 co (u) du M *r|T

{ ZE[XZ] (y0+/1c0(u)du)

1
LT E[XP] (yo+ fy co () du)

IA

T—h 1
7 2L E XXl B0~ [0 Bl
=1 0

X max
Hr,Kr

1
‘/0 cp (u) Br(u)du

=Ar+ B]’TBO’TBQ,T
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say where (Ar, B; ) are implicitly defined. By construction and (3.10)-(3.11) in the main paper, Ar
— 0, and:

T 1
1
Bir=|7 2, 00+t - (vo+ [ cotwdul| >0
T 0
1
= dul = 1
Boy = max /O en () By (wdu| =0 (1)
1 1

B3 5 €(0,00).

) 7 2o E [X7] (70+f01 co (u) d”) B (70+f01 co (u) du)

Hence maxgy, 5, |Arr(h, k) — Ar(h, k)| — 0. Coupled with (C.12) and (C.13), this yields:

max
Hr, Kt

})( ) —‘A) )_ max A’ h k _>O C14
h h ,(]( | ( k] )| ’ ( . )
Where

1
cp (u) By (u)du
lim max |Ar(h, k)| = max /0

: € (0,00). (C.15)
T—oo Hy, K h,keN 70_'_/0 o (u) du

Therefore for any {Hr}, Hy — [Ny, ] and Hr/Hr — [0, 1]:

A~k A
5~ o

VT (maxqe g, |Ar(h, k)| +0,(1)) p
= — 0
VgInT

This proves (C.10) by construction of the penalty term Pr(Hr), cf. (C.1).

Step 2: Next, (C.11). First, by (C.14) and (C.15) Mz (Hz)/NT LA (0, 00) for any {Hr}, Hr —

[Ny, 00] and Hy /Hr — [0, 1]. Hence My (Hy) /T /In(T) 2, oo for any Hr — [N, oo]. Monotonic-
ity ensures My (Hr) = My (h) for each 0 < h < Hr, hence for such h:

Mr(h)  Mg(h)/NT »,

Mr(Hr) My (Hy) NT 1011

Indeed, if both

Ak A
A — pn

<k<Kr

}

(h,Hr) > hy = min {hT :hr = argmaxyp < g4,  ax

then by construction My (h) /My (Hr) =1




Now suppose 0 < & and h/Hr — [0, 1), and Hr/h}. LA [0,1),hence 0 < h < Hr < hjasT — oo
awpl. Then Mz (h)/ Mr(Hr) L& [0, 1) by monotonicity and the construction of /7. Use Hr < Hr,
KrHr = o(T/In(T)), and Mr(Hr) /T /In(T) B o, to yield:

P (MT(WT) > Mr(h) +2 (\/(WT DKy —(h+ 1)7@)) (C.16)
_ Mr(h) h+1
_P(MT('?’{T) (I—W)ZZ (7’{T+1)7(T(1— 7‘[T+1))

>P

Mz (Hr) (1 _ Ma(h) ) o 1)7@) L
AT /In(T) Mr(Hr) ) ~ T/In(T)
Next, consider O < h and h/h7, L& [0, 1), and Hr/h}, 2 [1,00], hence 0 < h < h}. — 1 awpl and
Hr > iy awpl. Then P(Mr(h) = Mr(Hr) — 0 since by construction /7. is the smallest lag at
which the maximum correlation difference occurs. Monotonicity therefore yields My (h)/ Mz (Hr)
LA [0, 1), and again we deduce (C.16).

Now let (h, Hr) = h} awpl. Then by construction My (Hr) = Mz (h) awpl. Trivially if h < Hr
(h > Hr) then VHr — Vh > 0 WHr — Vh < 0). Hence

P (MT(ﬂT) > My (h) +2 [\/(‘HT DKy —(h+ 1)7(T]) — 1ifand if h > Hy.

Next, let Hr < h} < h awpl such that My (h) = Mr(h3) awpl. Use Hr/h — [0,1), h =
o(T/In(T)), My (I) [NT/In(T) 5 oo, and My (Hr) Mz (k) D> [0,1) 10 yield:

P (MT(‘HT) > My (h) +2 [\/(HT T DKy —(h+ 1)7<T])
_paf1- Hrt! h Mr(hp) (1_MT(WT)) o
h+1 |NT/In(T) =~ JT/In(T) Mz (h7)

Finally, generally My (h) = My (Hr) a.s. for some {h,Hr} and all but a finite number of 7 is
possible. For example, when /& = Hr. In this case, if and only if h > Hr:

P (M (Hr) = Mr(h) +2 |NHr + D K - R+ D % |

=P(022[\/(?{T+1)7(T—\/(h+1)7(r]) 1

Combining the above results, we deduce for every 0 < h < Hy if and only if Hy > hi:

P (MT(HT) > My (h) +2 [\/(WT DKy —(h+ 1)7@]) Y

This proves (C.11). Q€D
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D. Omitted proofs

D.1. Lemma A.2

Lemma A.2. Let max;<;<7 P(|1X;| > ¢) < wexp{—c™ 8;’92}for some @ > 0, any ¥ > 29, and 9, >
1, and some sequence of constants {Er}, iminfr_,. Er > 1. It holds that

,
[Tx

i=1

max P
1<ty,....t,<T

> c) < rwexp {—01928;92} . (D.1)

Proof. We prove (D.1) by induction. If r = 1 then max;<,<7 P(| X;| > ¢) < wexp{—cﬂla;ﬁz}
< wexp{—cﬁ28;ﬂ2} by assumption, given ©¥; > ¥ > 1. Now let (D.1) hold for some r > 1:

maxi<s, <7 P(IM_ Xi| > ¢) <rw exp{—cﬂ28;ﬂz}. Young and Bonferroni inequalities yield
for any 9, > 219,

r+1
l_[X +1X2 >c

t; C
i=1

max P 7 Xt

1<t,..., ty41 <T

1
>c| < max P| -
1<

IA

max P
1<ty,....t, <T

1 1
>¢2 |+ max P(|Xt|>c2)
1<t<T

,
1%
i=1

rw exp {—cﬂZS;ﬂz} + @ exp {—cﬂ‘/zc‘};ﬂz}

IA

IA

% o=
(r+1)wexp {—c gom 2} .

Hence (D.1) holds for r + 1. The proof is complete because r is arbitrary. QED.

D.2. Lemma A.4

Let =7 denote weak convergence in probability on /. (the space of bounded functions) as defined
in Giné and Zinn (1990, Section 3). Recall {&Er} is the Assumption 1 exponential moment scale,
liminf7_,o &7 > 1; the bootstrap index blocks are By = {(s — )by + 1,...,sbr}, s=1,....T/bT,
with block size by, 1 < by < T, by — o and bT/Tl" — 0 for some small ¢ > 0 ; &; is iid N(0, 1);
and ¢; = &; if t € B;. Recall the number of blocks Ny = [T/br], and

T—h T—h
A(d 1 !
Ag;, W)(h, k) = T Z ¥r {XtXt+th(t) T Z XtXt+th(t)}v
t=1

=1
and define

T—h | T=h 2
Pt {XtXZ+th(t) T Z E[XsXsin] Bk(s)}) .
1 s=1

=

&2(hk)=E (

5l

Recall

(k) ={X; Xyop = E [ Xi Xe4n]} Bre (1)




We refer to the following condition below:

1
3 &7 {In (Hr¥r)y 120/ G 4 &1 (1an7<T)7/6] 0. (D.2)
Lemma A.4. Let Assumptions 1 and 2 hold.

a. Let {2T(h,k) :0 < h <Hp, 1 <k <Kryr<i be a Gaussian process, éT(h,k) ~ N(0, &%(h,k)),
independent of the sample {XI}IT:r For any sequences {Er, Hr, Kr}, where 0 < Hy < T — 1, Hr =
o(T), n(Kz) = o(NT) and (D.2) hold:

0.

sup
c>0

VTASS™ (h, k)| < c|{x,}{=1) - P( max |Zr(h, k)| < c)
Hr, Kr

P| max
Hr, Kr

b. Let {Z(h, k)} be an independent copy of the Lemma 3.1 Gaussian process {Z(k,h) : h,k € N},
Z(h,k) ~ N(0,lim7_c 0'%(h, k)), independent of the asymptotic draw {X;};" . For any sequences
{br,Er, Hr, Kr}, such that 0 < Hr < T — 1, by/T* — oo, by = o(TV27Y), Hy = O(T'"4/by),
1(Kr) = o(NT), and (D.2) hold:

VTAG™) (10| =P max |Z(h, k).
s, (VAR o] =7 o [0

The proof requires two preliminary results. We first prove the following uniform sample covariance
result. Write

T=h T-h
QULKY = > XeXeBe() and gr(h k) = E[§(h )] = 3 E[X,Xes] Bi()

=1 =1

Lemma D.1. Under Assumption 1, for any {Er, Hr, Kr} satisfying 0 < Hy <T — 1, Hr = o(T), Kt
= o(T*) for some finite k > 0, n(Kr) = o(NT) and (D.2):

2(h, k) —gr(h, k)| =0, (1/VT).
Jmax (2(h.k) ~gr(h. )| =0, (1/VT)
Proof. Define
| T=h
Gr(h, k) =NT (2(h, k) = gr(h, k) = —= > {Xe Xeen = E [X: Xin]} B (1)
VT =
and s%(h, k)=E [g%(h, k)]. The argument used to prove Lemma 3.1 yields

sup -0

z>0

P ni)l<z|-P Gr(hk)| <
L 60 015) < 670100124

for some sequence of random functions {Gr(h, k)}7>; with Gr(h, k) ~ N(O, s%(h,k)), for any
{E7, Hr, Kr} satisfying 0 < Hy < T — 1, Hy = o(T), Ky = o(T*) for some finite « > 0, n(Kr)
= o(VT) and (D.2). The claim follows instantly. Q€D
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Next, define
T-h
(h,k) =4 X, X, 10 B () — L Z E [XsXs4n] Br(s)
ye(n,K) = t A+ T_hs_l sAs+h .

We decompose the following summand into big and little blocks:

T—h T-h
Agr(h, k) = T Z ¥t {Xth+th(t) I —, Z E[XsXs4n] Bk(s)} Z ¢iye (b, K.

t=1

Let b7 and I be block sizes, (br,Ir) — oo, with 1 < by < T, bT =o(T), 1 <y <by,and [; =
o(br). In each index set {1,....,T — h} the number of blocks is NT(h) =[(T - h)/b br]. Denote the

blocks by By = {(s — )by +1,...,sbr} with s =1, ., Nr(h), and ?BN )+ = {NT(h)bT, v T+
h}. Then
1 Ny (h) ibr Nr(h) (i-1)br+ir
MR =2 > ) ewhbEs D > ek
i=1 t=(i-1)bp+ir+1 i=1 t=(i-1)br+1
1 T-h
LD SR SRR

i=Np (h)br+1

Lemma D.2. Under Assumptions 1 and 2, for any {Er, Hr, Kr} satisfying 0 < Hy < T — 1, Hr =
o(T), K = o(T*) for some finite k > 0, n(Kr) = o(NT) and (D.2:

NT(h) ibr

max |AgT(h k)| max Z Z ey (h k)| |=0p (1/‘/?)

i=1 = (i— l)bT+lT+1

Proof. The triangle inequality yields for any real-valued functions {a(h, k), b(h, k)}

h,k)| - b(h, k
ﬂnTl%la( )| WI;I%I( )|

< h, k) —b(h,k)|.
Wrg%la( ) —b(h, k)|

We therefore prove

NT(h) ibr
g g bl-|7 30, ek |=o, (1147).

i=1 = (i— l)bT+lT+1
Step 1. It suffices to replace y; (h, k) with z; (4, k) uniformly awp1:

Th

Z @i {ye(h k) = 2 (hK)}| =

max

max =o,(1). (D.3)

This follows by noting:

1 T-h 1 T-h
'; D, evi(hk) == > grz(h. k)‘
| =1 =1 |




ﬂ

Z Pt {E [X: Xi4n] Bi(t) — — Z E [ XsXs+n] Bk(s)}

t=1

T-h
<[5 > @ (XX Buo)|+ 0, (1/V7)
t=1

in view of maxWT % (T - h)“ZZ;lhE[XSXHh] By (s)| £ K under Assumption 1.b,d, and

maxqq, [1/T Zt | ¢p,| = 0p(1/\/T). The latter follows by construction of ¢;:

T-h [(T—=h)/br] 1 [AnT/bT]

1 1 h
T 2 b Q2 GwithAi=1-gel D

where iid & ~ N(0,1). By Donsker’s theorem extended to P[0, 1], and the mapping theorem,

supefo.1) 11/ VN Z2 il = 0, (1) (cf Dudley, 1999).
Next, by constructlon

T-h
- Z; @1 E [X; Xesn] Bi(7)
 LT-myerl iy N
T fiEtz(i_%leﬂE[X,Xﬁh] Bi) = 77 ; R
say, where @i (h,k) = 1/b7 £, E[X:Xr+ 1Bk (1) and Nt (h) = [(T — h)/br]. Given &; is

t=(i-1)br+1
iid N(0,1), a generalization of Nemirovski’s £,-moment bound, g > 1, for independent sequences
yields (see, e.g., Biihlmann and Van De Geer, 2011, Lemma 14.24):

N (h) q 81n(27-{T7(T) max  max zzr%i(h, k) a1
Z Giori(hk)| | < ArPo =l (D.4)
Hr Ky T/bT Ly ST B T/br C
Moreover:
1 ibr 2
ma ma h,k) = ma ma. E[X: X, B (t D.5
wr,v)éﬂsxs/v);(h)w“( )= < o\ by 2, EXXalB@| (DI

t= (i—l)bT+l

2

< (max max |E [X,Xt+h]|) = ‘%.
Hr 1<

Now combine (D.4) and (D.5), choose ¢ = 2, and invoke b1 = o(TY2=Y), Hy = o(T), Ky = o(T*) for

some finite x > 0, and @y = O(1) under Assumption 1.b and the Cauchy-Schwartz inequality, to yield:

Nt (h)

E h, k
Ky T/bT Z §iori(h k)

In (HrKr) 52
- T/br r
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This proves (D.3) by Chebyshev’s inequality.

Step 2. Now observe that

(T-h) /bt ibr

NG5 (h, k) —% Z Z ©rz: (h, k)

i=1 t:(i—l)bT+lT+1

1 Nr(h) (i-V)br+ly | T—h
2 VD YRR EAUN ] B = D LA Nl

i=l f=(i-1)br+l i=N7 (h)br+1

<

Lemma 3.1 and b7 /I = o(1) yield under the assumed properties for {Er, Hr, Kr}:

| Ny (h) (i-1)br+ir i | N (h) (i-1)br+ir
max = > Y gz (hk)|=.2=

ma |5
Hr Kr | T 4 A Hr K ; A
e N br HrFr \Tlr[br 55554

SDtZt(h»k)

Ir/br

p —
NTlr/br

Similarly, for any (h, k), the integer-valued discrepancy implicitin 7 — h — Ny (h)br =T — h — [(T —
h)/br]br yields:

=0 =0,,(1/ TET/ZT)zop(m/T).

s B Y R A .
ﬂn;% T ~Z~ @121 (h, k)| =0p I;;?Tx T (D.6)
=Nt (h)br+1

\/1 - [EQ =T | 5y
=0p | max =0, (1/7).

Hr \NT

This completes the proof. Q€D

We are now ready to prove Lemma A.4. Assume (T — h)/br and related ratios are integers to reduce
notation. The resulting error otherwise is asymptotically negligible, as in (D.6).

Proof of Lemma A .4.

Claim (a). Define the sample X7 = {X;}_ ., and define

t=1’

T-h T-h
; ! !
Agp(h k) =% > @ {XtXHth(r) ~ 7 2 E1XsXou] Bk<s)} .
s=1

t=1

Let {Ag;dw) (i)}?:SWT, etc., denote the stacked {Ag;dw) (h, k)}Z{ZTO’l(:Tl:

fA(dw):.J:fA(dw)U k) with ind i '=(£—]]1[ / (D.7)




and define

$.) =TE |2gf™ (0agf™ (DI%r | and $3. /) =TE [Agy()Agy())|%7]

Ar=  max f%(i,j)—f%(i,j)|,

0<i,j<HrKr
hence §%(i,i) = &%(h, k) where i = (k — 1)Hr + h.!
Let {ZT(i)}Tsl be sequences of normal random variables ZT(i) ~N(0, E%(i ,i)) independent of X 7.

Lemma 3.1 in Chernozhukov, Chetverikov and Kato (2013), cf. Chernozhukov, Chetverikov and Kato
(2015, Theorem 2, Proposition 1) and Chen (2018, Lemma C.1), yields:

E1 = sup (D.8)

c>0

P( max

VT A ) i|£c% -P max
0<i<HrKr gT () I T

0<i<HrKr

ZT(i)| < c)

=0, (A1T/3 max {1,1n (7—(T'KT/AT)}2/3) .

'We prove below Ar = O, (1/T*) for some ¢ > 0. Now use Hr = o(T) and Kr = o(T*) for some finite
k > 0 to reach:

&r=0, (AITB max {1, In (HrKr /AT)}2/3)
2/3
_o, ( Ay max {1, n (VTHrr ) +In (VTAr )| ) -0, (# {In (T)}2/3) %o,

This suffices to prove the claim in view of the correspondence i = (k — 1)Hr + h.
We now prove Ar = O, (1/T*). Define for any g € R

Ibr

€ r(hkig)= > {X:XenBi() - g},
t=(1-1)br+1

and define
1 T-h 1 T-h
UKy =7 ) XeXeonBi(n) and gr(h, k) = = > E [XiXoon] Bic().

t=1 =1

By construction of ¢, via iid {fl}l(:TI_h)/bT, & ~N(0,1):

J (T-h) /bt
A (k=2 Y ECLr(hkig(h k)
=1
(T-h)/br

Agp(h k)= > &Cur(hkigr(hk)).
=1

I The correspondence i = (k — 1)H7 + h is unique. In particular, it is understood that we set k and move through h €
{0,,,.Hr}. Thus, (i) set k = 1 and move through h =0, ..., Hy for i = 0, ..., Hp; (ii) set k =2 and then h =0, ..., Hp
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Serial independence, and independence of X7, for &; yield for some couplets (4, k) and (71, IE).

.. =TE [agf™ hagy™ () %r
1 (T-h)/br (T-h) /bt
=TE|= > &€r(hk:@(hk)=
T - N ERAK] s T

fm@m,T(ljlv ]’%,g(~’ ];))lfT

m=1

1 (T—h\/fl)/bT
=7 ; 1 (hk: 8 (h k) Gpr (7 K 6 (7 ).

Similarly:

(T-hVi) /by
§2.Gi, ) = T €, (h, ki gr(h, k)€, 1 (h,k;gr(h,k)).
=1

Now observe for any (i, j) and some associated couplets (%, k) and (%, k):

[$3..) - $3.))|
1 (T-hVh)/br
<|7 (€17 (h, ks g(h, %)) — € 7 (R ks gr(h,K))}
=1
X { € 1(h,k;g(h,k)) — € 7(h k;gr(h, k))}]
| (T-hVh) /bt
= €7 (h kigr(h, k) { € 1 (h k;g(h,k)) — € r(h,k;gr(h,k))}

T =1

1 (T-hVh)/br
2 Curlukigr(h i) {€r(hEg(h k) - €1y (hKigr(h. k)

I=1

=Sk, h k) +Sy7(h k,h, k) +S31(h,k, h k).

It follows A7 = O, (1/T*) for some tiny ¢ > O if we show each:

max |S; r(h,k,h,k)| =0, (1/T"). (D.9)
Hr, Kr
Consider Sy 7(+); S1,7(-) and S3 7 (+) are similar. Use
{Xe Xe4nBi (1) = §(h. k) } = {Xe Xe4n Bi (1) — g7 (h, k)} == {&(h, k) — gr(h, k)}
with Lemma D.1 to yield:
max |S 7 (h,k, h, k)|
Hr,Kr
1 (T—thl)/bT b1
< = X XpenBi(t) — hk)i|xXb o(h,k)— h,k
ﬁr?’a%TIT 2 z_(!%:blﬂ{ 1 Xesn B (1) — g1 ( )}I 7 max |8(h k)~ gr(h.k)|




= max |15 (XX E X Xpan]) B(D)| X 0 (br VT,

Moreover, by the same argument used to prove (see eq. (A.4) in the main paper):

sup ( max IZT(1)|<z) ( max |ZT(i)|§z) — 0,
z>0 0<i<HrKr 0<i<HrKr

we have for any {Hr}, 0 < Hr <T — 1, Hy = o(T), Kt = o(T*) for some finite « > 0 and n(Kr) =
o(VT), provided (D.2) holds:

T—-hVh

max | > AKX, - E [ XX, ]} Br(0)|= 0, (1NT).

Hr K |T 4
Therefore
max |Sy 7 (h,k,h,k)|=0,(br/T)=0,(1/T")
Hr, Kr
given by = o(T'~*), proving (D.9).

Claim (b). Now let {Z(h, k) :0 < h < Hp,1 <k <Kr} be an independent copy of the Lemma 3.1

law Z(h, k) ~ N(0,lim7_c o’%(h, k)), independent of the asymptotic draw {X;}7° , where

T—h
1
oi(hk) =2 3 Elze(h bz (h )]
s,t=1
Let [Z(l)] HrKr e the stacked version, cf. (D.7) and footnote 1, and define
v2(i,j) = EIZWZ())],

hence v2(i,i) = lim7_ e 0'%(11, k) with i = (k — 1)Hy + h. We prove below

&r = sup 2. (D.10)

c>0

ZT(i)’ < CIXT) - P( max
0<i<HrKr

Z(i)| < c)

P max
0<i<HrKr

Together Claim (a) with (D.10) yield

0.

sup
>0

VA (h, k)| <c|3eT) (wr?% 2(h,k)( Sc)

P( max
Hr,

Therefore

max |\/_A (dw)(h k)‘ - max |Z(h k)| awp1 with respect to {X;};7 ;.

This yields as claimed by definition (cf. Giné and Zinn, 1990, Section 3):

max ‘\/_A <dw)(h k)‘ =P max )Z(h k)|

Hr K




22

We now prove (D.10). With §%(i,j) =TE[Agr()Agy(j)1X7] and v2(i, j) define

Ar = max §2 i,] -2 ).
0<i,j<HrKr T( ]) ( ])

As above Er = 0, (A} x max{1,In(Hr%r/Az)}*/?). The proof is complete if we show
Ar=0(1/T") for some ¢ > 0, (D.11)
since then

&r=0, (AITB max {1, In(HrKr /Ar)}! 3) =0, (T“/3 {ln(T)}2/3) 2.

We now prove (D.11). Define

T-h T-h
« 1 1
Agp(h, k) = T Z ¥r {XtXt+th(t) “Th Z E [XsXs4n] Bk(S)},
s=1

t=1

and let Ag7.(7) stack Ag7.(h, k). Define

§3:(i, ) =TE |Agy () Ags (/) ¥7]
§2.(i,j) = TE [AgH (DA ()) 1 X7
s7(i, ) =TE [Ag; () A& ()]

$(i.j) = lim TE [Ag7 (DA ()] -

We prove (D.11) by showing in order:

0<i. JS 5y §.J) - 3%(i’j)| =0, (T™) (D.12)
0<i, S Hr Ky 7. J) "S%(i’f)| =0p(T7) (D.13)
I W 2. =007 (D.14)
oy M 570 ) VG j)|=0T7"). D15)

1B (t). After expanding, and

Step 1 (57.(i, /). 571, /). Recall gr(h,k) = 1/T £/ E[X: Xy

n,K,

I, K W1 =(K— &




hand j= (k- 1)Hr +h:

.0 - 53.)|

1 (T—hvfz)/bT bt
=T Z Z {-gr(h.k)X; X, ;B (1) — g7 (h, k) X; X; 11 Bic (1)
=1 s,t=(1-1)by+1

+gr(h k)gr(h k) + gr(h, k)X X, ;B (1)

T-h

" . T
er(h, k)X Xy en Br(t) — —

.\ T T
T-h T-hT-h

gr(h.k)gr(h, 12)}’

n (T-hVh)/br Ibr
< lerhb Y > XX, ;B (1)
=1 s,t=(I=1)bp+l
1 (T-hVh)/br bt

" sr(h Bz ) > XeXenB(r)

+ =
T—h =1 s,t=(1-1)br+1

T(h+h)+hh |1 (T=hvh)/br L

= gr(h.k)gr(h,k)
(T-m(T-h)|T H s.t=(I-1)bp+1

=Dr1(hk;h k) + Dro(h ki h k) + Dr 3(h, ki h, k)

Now twice wield the fact that uniform exponential tails Assumption 1.b implies uniform L,-
boundedness for any > 1, with uniform law Lemma D.I and Hy = O(T'~*/br), to yield:

A | (T-hVh)/br Ibr
max D hk;h,k) < max { —— h, k)= X X,.;B(t
Jmax T.1( ) S\ T gr( )T 2 Z .00 2:710))
= s,t=(1-1)br+1
(T-hVh)/br Ibr

1
< max |— Z Z XtXt+ﬁBl€(t)
T—HT Hr, Kt T =1 s,t=(1-1)br+1

| (T-hVh)[br Iby

T
T — Hr Hr. % |T/br

X X, ;B (1)
I=1 t=(1=1)br+1

7‘(T 7'(T 1 [2
-0n(25g) =00 ()00 [ ) -er

Similarly, maxqy,. 9c, Dr2(h,k;h k) = 0, (1/T*) . Furthermore, use for any h v h € {1,..., Hr}:

1 (T—thl)/bT bt
DY > er(hker(h b

=1

| =1 55

< brlgr(h,k)gr(h, k)|

t=(1—-1b++1
1=t HOF+1 |

t
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with Hy = O(T'~*/br) to arrive at:

1 (T—hVE)/bT Lbr

>, er(hkgr(hk

. T(h+h)+hh
max D7 3(h,k;h, k) < max ( )
Hr-Ke I=1 s,t=(1—1) b+l

Hr, Kr | (T —h) (T - ]71) T

2T7‘{T + 7—{% < KbTWT

gt <Ko (e =0,
—Jr

proving (D.12).

Step 2 (32.(i, j), s2.(i, j)).  Write

T—h
_ 1
grihk)=o—r Zl E [ X, X;4n] Bi(1).
For some unique couplet (A, k; h, k) with i = (k — 1)Hr + h and j = (k — 1)Hy + h, expand terms in
S’%(i,j), and use

1 (T-hvh)/br Ibr }
7 ; s,t:(l—Zl)bTH =(1=hVh/T)br
to deduce:
(T-hVh)/br Ibr
CEIEDY > XeXeunXi X, ;B ()Bi (1) (D.16)

=1 se=(I-1)br+l
| (T-hVh) /by Ibr o

~T/by Xs Xs+nBi (s) X gr(h, k)

=1 s=(I=1) b+l

| (T-hVh)/br Ibr

" T/br Z Z X X, ;B (t) X gr(h, k)
=1 r=(-1)br+

+(1={hV h}/T)brgr(h,k)gT(h, k).

Now use s%(i,j) = E[E’%(i,j)] to obtain:

max [53(./) - 53, /)| < Dyr+ D,

0<i,j<HrKr
where
1 (T-hVh)/br Ibr
Dir= max | > D AXXenXi X, — E [XsXean X X, 5]} Bi(s) B (1)

=1 s,t=(I-1)by+1

(T—h\/il)/bT bt
D X Xown = E [XeXeun]} Bi(s) x g1 (R, )|

=1 s=(l—1)b++1
=+ S={ HO7F+1

t

Dy =2 max
’ Hr.Kr

T/br




Consider D1 7 and write

lbt

1 - - . -
Xri(h k)= — Z X: XienBi(t) and Dr 1 (h k;h, k) =X 1 (h, k)X 1(h, k),
Vbr t=(1=1)br+1

hence:

(T-hVh)/br

Dir= max |——
’ Hr % | T [br ;

(Dr,1(h, ks h k) — E [Dr,1(h, ks b, B)])| .-

Let [YT,l(i,j)]?i.T:%(T stack D7 ;(h, k; h, k), with correspondence i = (k — 1)Hzr + h and j = (k —

1)7_{ =~ . . o 7‘{%7(12- . . ‘HT«T . _ . .
T+ h. Similarly [Y7,(D)],_5 " stacks [Y1 (i, j)]; /=0 with [ = (j — 1)HrKr +i. Hence
| (T-hVh) /by

Dir= max —_—
’ 0<I<HZKZ T/br

(Fro - £ [Fr.an|)|

=1
We show below that Io/'T,l(l) satisfies Conditions 1-3 in Chang, Chen and Wu (2021). Hence, similar to
(A.4)-(A.6) in the main paper, D1 1 = OP(blT/z/T]/z) =0p(1) provided

1
T1/9

(In(HrKr))*~? = o(T?).

&7 {in (Hr %)} 29169+ &7 (nHr 9/ - 0

The latter hold since Hy = O(T'~¢/by), by /T* — oo, and Kt = o(T*) for some finite x > 0, and
therefore Er = o(T'/6/{In (T)}<1+2¢)/(2¢’)). Now bt = o(T'™*) yields D11 =0p(1/T*) for some ¢ >
0.

We now show IO/TJ(I) satisfies Chang, Chen and Wu’s (2021) Conditions 1-3. For Condition 1,
Bonferroni’s inequality and Lemma A.2 yield

Ibr

. 1
max P(‘YT’I(I)|>C)= max Pll— > XXunX, X, ;Bi(s)B (1) >c)

H29C2 b
0<I<HGKG Hr- K \|PT (T by

2

b 2

< b2 P (X, X, 10X, X,.:| > brc) < 2wb? L Y
<bpmax max P (X XXX, > bre) <2 Texp{ P

Use by /T* — oo by supposition to deduce for any ¢ > 0 37 € N such that
b% exp{—b?Z/ZS;ﬂzcﬂz} < exp{—cﬁzé‘;ﬂz} VT > 7.

Hence Condition 1 holds:

max P (’I?T,l(l)’ > c) < ﬁexp{—c”zcﬁ;ﬂz} VT > 7 and some @& > 2.
0<I<HZ K2
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For D, 7, use Lemma D.1, and b = O(Tl/z_‘) under Assumption 2.b, to get:

(T-hVvR) /by by

.Z)z T<K max {XsXs+h -E [XSXS+h]}Bk(S)

Hr K | T /bt =1 s=(I-D)br+l
| Ty
= Kbr ma{]’é - Z {Xe Xevn = E [Xe Xean]} Bi(2) =0p (bT/Tl/Z)ZOp (7).
T T

Step 3 (szT(i, 7), s2(i, j)). The property holds by Assumption 2.a(ii).

Step 4 (s>(i, j),v>(i, j)). For some (h, k; h, k), s*(i, j) is identically

{XSXHth(s) Z [XuXysn Bk(m}

! (T-hVh) /bt by
lim — > E
=1 s,t=(1-1)br+1

x[XrXH,;Bg(r) Z [XuX,0s Bk<u>”

and by rearranging terms

1 T-hvh T-h
v3(i, ) =T1£20T Z E {X Xs+hBi(s) — — ZE [ XuXuin] Bk(“)}
s,t=1

1
X\ XXy B (1) = 7—= D EXuX,i] Brw)
u=1

Further, block size b7 — co. Hence s2(i, j) = v2(i, j) Vi, j. This completes the proof. Q€D.

Remark 4. We technically only need the iid random numbers {1, ..., &ny } to satisfy E[£;] =0, E[&; 2]
=1,and E [54] < co. In this general setting VT'AZ (dw) (7)|%7 is not necessarily normally distributed,

hence the Gaussian-to-Gaussian result (D.8) may not hold. We will need the added step:

sup 20

c>0

P max
0<i<HrKr

\/TAg;dW)(i)| < c|3ET) iy ( max

0<i<HrKr

VT ()% | < c)

where VT Ag7(i)| X7 ~ N(O, TE[Ag} gdw) (/)?|%7]). We would then need to alter (D.8), and prove in-
stead

Er = sup

c>0

P max
0<i<HrKr

\/TAng(i)| < Cle) —P( max

0<i<HrKr

ZT(i)| < c)

= 0 (8] max {1,n (Hr%r/Ap)Y3) D 0.




E. Empirical study

We now apply our test and the test in Jin, Wang and Wang (2015) to quarterly international (ex post)
real interest rates. We analyze 16 countries over the period 1960.Q1 - 2019.Q4. The data were collected
from the U.S. Federal Reserve Bank data archive (FRED), which itself is taken from the OECD data
archives. The countries are Australia, Austria, Belgium, Canada, Denmark, France, Germany, Ireland
Italy, Japan, Netherlands, Norway, Switzerland, UK and US.

Following Rapach and Weber (2004), we use the 10-year government bond yield as our measure of]
the nominal interest rate r, ;, and the Consumer Price Index in order to compute inflation i;. The (ex
post) real bond rate is 7 ; = r,; — i;. See Table A.1 for the exact date range available for each series
and subsequent size. Figure 1 contains plots of each series.

Unit root tests have been proposed as a standard for testing for non-stationarity in interest rates. See,
e.g., Rose (1988) and Rapach and Weber (2004) and their historical references. In that framework, it is
implicitly assumed that real interest rates are unbounded (asymptotically with probability approaching
one), in particular if a unit root is present. In the case of a unit root, of course, variance is unbounded
asymptotically, and @-mixing fails to hold.

Testing real interest rates is complicated by the fact that nominal rates r, ; and inflation i, may be
nonstationary while real rates r,; = r,; — i; can yet be stationary. In a unit root test setting, it is
possible that r,, ; ~ I(1) and i; ~ I(1) yet (r,,i;) are cointegrated with integrating vector [-1, 1],
hence r,; are stationary. Conversely, nonstationarity necessarily exists when just . ; ~ I(1) or just i;
~ I(1). Rose (1988) finds the latter for each country in our study based on quarterly post-war data and
conventional unit root tests, hence Rose (1988) broadly concludes unit root nonstationarity. Rapach and
Weber (2004) obtain more nuanced results. They find nonstationarity in nominal rates for all countries
except Germany and Switzerland, and mixed results for inflation based on Phillips and Perron (1988)
and Ng and Perron (1997, 2001) unit root tests. In order to handle the evident cases r, ; ~ I(1) and i; ~
I(1) they apply several cointegration tests, including tests by Ng and Perron (2001) and one eventually
published in Perron and Rodriguez (2016).

A different approach for studying structural time variation in interest rates couches rates in a para-
metric regime switching regression model. See, e.g., Garcia and Perron (1996), Bekdache (1000), and
Ang and Bekaert (2002). See also Terdsvirtra (1994) and Gray (1996).

In our setting, under either hypothesis we assume a moment generating function exists uniformly
over ¢, and a geometric mixing condition holds. Thus, we implicitly assume a unit root does not exist.
The moment conditions can be assured simply by assuming nominal interest rates and inflation are
bounded. This is a fairly natural assumption empirically for interest rates which are typically managed
by government market actions, and lie in the range [—1, 1]. In any case, in our sample range bond
yields and inflation never surpass the total range [—.02,.30]. We therefore test for a (non-unit root
based) deviation from covariance stationarity. Our setting of course is nonparametric: we do not need
to specify a (switching) regression model (e.g. Augmented Dickey Fuller, or Markov Switching), and
indeed our test is relevant irrespective of any underlying parametric features.
We report test results for the max-test based on a dependent wild bootstrap, and Jin, Wang and
Wang’s (2015) test based both on simulated critical values and dependent wild bootstrap. Both tests
exploit a Walsh basis in view of simulation evidence suggesting the inferiority of the composite Haar
basis. We simulate critical values for each series and each country (hence, 54 simulated sets of critical
values), rather than for each sample size. We use Hy = [27-*°] and K7 = [.5T*°]. See Table A.2
for test results. Tests are performed on nominal and real bond yields, and inflation, but we focus our
discussion on real bond yields given is importance in the literature.

Consider the max-correlation difference test. In all countries except one, when the test finds evidence
non-covariance stationarity in nominal rate he same result applies for real rate onsider Italy:
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the p-values are .024 and .032 for nominal and real rates respectively, while the p-value for inflation is
.216. Thus, nominal rates are the driving force for non-stationarity. New Zealand is the sole exception:
p-values for nominal and real rates and inflation are .156, .080 and .162. Thus, we reject stationarity at
the 10% level for real rates, but fail to reject for nominal rates and inflation. It is easily verified, however,
that if random variables X; and Y; are covariance stationary then so is any linear combination. A deeper
study into this is left for future work.

The bootstrapped JWW test, on par with the Monte Carlo study, almost never leads to a rejection
of the covariance stationarity null hypothesis. Tests based on simulated critical values, however, match
across nominal and real bond yields, with four exceptions: Belgium, Japan, New Zealand and the UK.
The JWW test generally yields strong rejections (well under the 1% level) when nonstationarity is
detected, while the max-correlation test is more moderate, with rejections variously at the 1%, 5%, and
10% levels.

Finally, in five countries the max-correlation test and JWW test disagree: Australia, France, Italy,
New Zealand and Switzerland (denoted by bold in Table A.2). In the first four the max-correlation dif-
ference test yielded rejections of covariance stationarity (p-values are .056, .022, .032, and .080), while
the JWW test failed to reject. The JWW test with simulated critical value detected non-stationarity for
Switzerland at the 1% level (@T =58.1, 1% c.v. =7.9), but the max-correlation test did not at the 10%
(p-value .144).




Table A.1. Dates and Sample Sizes

Nominal Bond r, ‘ Inflation i | Real Bond r
Dates n ‘ Dates n ‘ Dates n
Australia 1969.Q3-2021.Q4 210 | 1960.Q2-2021.Q4 246 | 1969.Q3-2021.Q4 210
Austria 1990.Q1-2021.Q4 128 | 1960.Q2-2021.Q4 246 | 1990.Q1-2021.Q4 128
Belguim 1960.Q1-2021.Q4 248 | 1960.Q2-2021.Q4 246 | 1960.Q2-2021.Q4 246
Canada 1960.Q1-2021.Q4 248 | 1960.Q2-2021.Q4 244 | 1960.Q2-2021.Q4 246
Denmark 1987.Q1-2021.Q4 140 | 1967.Q2-2021.Q4 218 | 1987.Q1-2021.Q4 140
France 1960.Q1-2021.Q4 248 | 1960.Q2-2021.Q4 246 | 1960.Q2-2021.Q4 246
Germany 1960.Q1-2021.Q4 248 | 1960.Q2-2021.Q4 246 | 1960.Q2-2021.Q4 246
Ireland 1971.Q1-2021.Q4 204 | 1976.Q2-2021.Q4 182 | 1976.Q2-2021.Q4 182
Italy 1991.Q2-2021.Q4 122 | 1960.Q2-2021.Q4 246 | 1991.Q2-2021.Q4 122
Japan 1989.Q1-2021.Q4 132 | 1960.Q2-2021.Q4 246 | 1989.Q1-2021.Q4 132
Netherlands 1960.Q1-2021.Q4 248 | 1960.Q3-2021.Q4 246 | 1960.Q3-2021.Q4 246
New Zealand | 1970.Q1-2021.Q4 208 | 1960.Q2-2021.Q4 246 | 1970.Q1-2021.Q4 208
Norway 1985.Q1-2021.Q4 148 | 1960.Q2-2021.Q4 246 | 1985.Q1-2021.Q4 148
Switzerlnad 1960.Q1-2021.Q4 248 | 1960.Q2-2021.Q4 246 | 1960.Q2-2021.Q4 246
UK 1960.Q1-2021.Q4 248 | 1960.Q2-2021.Q4 246 | 1960.Q2-2021.Q4 246
UsS 1960.Q1-2021.Q4 248 | 1960.Q2-2021.Q4 246 | 1960.Q2-2021.Q4 246

goods and services; and real bond yields r =r, —i.

Nominal bond r, are 10 year government bond yields; inflation i is derived from the Consumer Price Index for all
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Table A.2.

Empirical Study: Covariance Stationarity Tests

‘ Nominal Bond r, ‘ Inflation ¢ ‘ Real Bond r

| M DEY DIV | My DEY DIV | My DEY D
Australia .080 | 65.5 (3.5,4.8,7.5) *** | 729 174 | 5.57 (3.8,5.1,7.9) ** 605 | 056 | -2.28 (3.5,4.8,7.5) 854
Austria 002 | 123 (2.9,4.9, 6.6) *** .198 158 | 62.7 (3.8, 5.1,7.9) ##* 134 1 .000 | 352 (2.9,4.1,6.6) *** 024
Belguim 032 | 2.03 (3.8,5.1,7.9) 876 | 236 | 9.90 (3.8,5.1,8.0) *** | 537 | .023 | 44 (3.8,5.1,7.9) *** 919
Canada 014 | 24.1 (3.8,5.1,7.9) #** 904 | 158 | 10.4 (3.8,5.1,7.9) #** .361 018 | 17.7 (3.8,5.1,7.9) *** 756
Denmark .000 | 241 (3.0,4.1,6.7) *** 246 | .066 | 29.1 (3.6,4.8,7.6) *** 319 | .000 | 217 (3.0,4.1, 6.6) *** 273
France 020 | -.543 (3.8,5.1,7.9) .661 174 | 2.27 (3.8,5.1,7.9) 541 | 022 | -2.00 (3.8,5.1,7.9) .866
Germany 80 | 28.9 (3.8,5.1,7.9) ##k 858 | .046 | 109 (3.8,5.1,7.9) ##* 170 | .090 | 879 (3.8,5.1,7.9) #** 399
Ireland 101 | 6.12 (3.4,4.7,7.5) ** 998 | 242 | 30.6 (3.4,4.6,7.2) **¥* | 248 | .012 | 161 (3.4,4.6,72) *** .563
Ttaly 024 | 1.92 (2.9,4.0,6.5) 246 | 216 | 218 (3.8,5.1,7.8) *** .076 | .032 | 1.80 (2.9, 4.0, 6.6) .836
Japan 054 | 143 (2.9,4.1,6.6) 331 331 | 3.34 (3.8,5.1,7.9) A73 014 | 92.7 (2.9,4.0, 6.6) *** | 581
Netherlands 068 | 284 (3.8,5.1,7.9) *** .585 A14 | 12,9 (3.8, 5.1, 7.9) ##* 251 | .026 | 184 (3.8,5.1,7.9) *** 394
New Zealand | .156 | 11.0 (3.5,4.8,7.5) *** 820 | 162 | 213 (3.8,5.1,7.9) 819 | .080 | -2.86 (3.5,4.8,7.5) 982
Norway 014 | 632 (3.0,4.2,6.8) = | 273 | .042 | -3.49(3.8,5.1,7.9) 719 | .006 | 23.7 (3.0, 4.1, 6.8) *** 102
Switzerlnad 136 | 853 (3.8,5.1,7.9) #kk 345 | 265 | 16.2 (3.8, 5.1, 7.9) 371 144 | 58.1 (3.8,5.1, 7.9) *** 334
UK .032 | -2.02(3.8,5.1,7.9) 994 | 222 | 542 (3.8,5.1,7.9) *** 699 | .006 | 21.5 (3.8,5.1,7.9) *** .890
Us 036 555 (3.8,5.1,7.9) *** 647 | 124 9.49 (3.8,5.1,7.9) *** 307 | 024 652 (3.8,5.1,7.9) *#** 222

M is the proposed max-test based on a bootstrapped p-value: reported values are p-values computed by
dependent wild bootstrap. D;" is JWW’s test based on simulated critical values, shown in parentheses: *, %, **%

denote rejection at the 10%, 5% and 1% levels. ZA);ZW is JIWW’s test based dependent wild bootstrapped p-values.
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F. Complete simulation results
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Table A.4.: Rejection Frequencies under Hy: Walsh Basis
Case 2: Hy =2T-*° and K = .5T%
&« N©,1)
n=>64 f n=128

1

> () A Ad 5 () A Ad
Mo M DY D 7 My M DY D
MA(1) .000, .012, .054 .001. .010, .066 .018, .040, .075 .005, .085, .255 .001, .008, .046 .001, .017, .053 .008, .034, .074 .001, .031, .195
AR(1) .001, .019, .072 .001, .024, .087 .068, .110, .161 .027, .073, .166 .001, .020, .084 .001, .030, .094 074, 123, 172 .022, .068, .130
SETAR .001, .017, .037 .003, .019, .041 .040, .089, .152 .014, .093, .202 .001, .027, .050 .003, .024, .046 .051, .124, .171 .015, .062, .148
GARCH .000, .021, .095 .000, .025, .109 .014, .047, .103 .004, .077, .247 .003, .044, .113 .004, .047, .128 .008, .034, .085 .000, .023, .156

| n =256 n=512

MAC(1) .000, .011, .049  .000, .015, .059 | .008,.045,.088  .000,.019, .146 | .004,.027,.061  .004,.032,.079 | .013,.047,.109  .000, .025, .161
AR(1) .002,.015,.057  .002,.019, .058 | .048,.100,.154  .017,.036,.087 | .002,.027,.085 .005,.028,.080 | .033,.079,.149  .004,.021, .065
SETAR .004, .033,.059  .003,.032,.058 | .030,.100,.174  .003,.024,.108 | .004,.031,.067  .005,.033,.069 | .026,.097,.176  .000, .016, .069
GARCH | .003,.033,.095 .004,.032,.098 | .007,.037,.086  .001,.031,.173 | .003,.035,.108  .002,.035,.116 | .017,.045,.083  .001,.030, .159

i
&'~ is

n=064 | n=128

>v$1 \QQV Mwm;_\ Mw&% 7 >w$; \Qm.uv Mwuo.k N@%E

MA() .000, .013,.050  .001, .013,.057 | .005,.030,.078  .008,.072,.175 | .001,.021,.059  .002,.026,.073 | .006,.026,.064 .001,.022, .094
AR(1) .002,.020, .066  .005, .030,.081 | .056,.091,.150  .025,.067,.132 | .000,.027,.081  .000,.033,.091 | .034,.077,.124  .005, .017, .056
SETAR .001, .018,.057  .001, .023, .057 .026, .067, .118 .012, .061, .155 .001, .014, .038  .001, .014, .045 | .020,.083,.152  .002, .018, .048

| n =256 n=512

MAC(1) .000, .017, .060  .000, .019, .067 | .003,.028,.064  .001,.016,.061 | .002,.021,.080 .003,.028,.086 | .006,.033,.070 .000,.006, .026
AR(1) .003,.014,.049  .003,.018,.052 | .018,.048,.093  .002,.013,.023 | .003,.027,.087 .003,.034,.094 | .007,.049,.090  .000,.001,.005
SETAR .001, .014,.033  .002, .012,.037 | .038,.115,.191 .001,.007,.024 | .003,.014,.049  .002,.015,.047 | .056,.165,.263  .000,.002,.008

& ~ GARCH
n =64 | n=128

>w$; >w~Cuv Mwm< Mw%s\ 7 >w$; b%hv Mwmu\ Mw%é

MA(1) .000, .019, .071  .000, .020, .082 | .014,.047,.103  .006,.082,.253 | .002,.031,.096  .002,.035,.112 | .008,.034,.085  .000,.017, .160
AR(1) .003,.025,.077  .004, .031,.087 | .082,.130,.190  .034,.086,.195 | .001,.022,.085 .001,.033,.092 | .073,.123,.170 .031, .057, .127
SETAR .004, .019, .057  .004,.022,.063 | .063,.122,.179  .028,.094, .226 | .001,.014,.050  .001,.016,.056 | .040, .106, .155 .01, .041, .108

| n =256 n=512

MA() .002,.021,.076 ~ .002,.020,.091 | .007,.037,.086  .000,.024, .161 .004,.038, .110 ~ .003, .044, .116 | .017,.045,.083  .000,.025, .158
AR(1) .001, .019, .064  .001, .025, .077 .064, .114, .164  .016, .044, .098 | .000,.034,.109  .001,.032,.108 | .033,.077,.123  .006, .028, .070
SETAR .000, .013,.042  .000, .013, .044 | .023,.092,.159  .002,.017,.091 | .000,.023,.071  .001,.025, .082 .027, .100, .174  .001, .009, .064

Mz and >xwm ) are the proposed max-tests with and without a penalty, based on a bootstrapped p-value. ®%< is JWW’s test based on simulated critical values,
and 6%% uses bootstrapped p-values. The GARCH error is based on an iid N (0, 1) innovation.
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Table A.5.: b. Rejection Frequencies under H|: Walsh Basis
Case 1: Hr = [log, (n)*° — 3.5] and K7 = [n'/3 + .01]
€r ~ nm

| n=064 | n=128

7 \ﬁﬂ \&%ﬁv Mwmu\ M)u%% 7 \&ﬂ \(N%ﬁv ey Mw&:\

alt-1 | .064,.267,.339  .072, .286, 433  .160,.360,.503  .021,.127, .223 342, .351, .449 331, .377,.385 799, .921, .951 .021, .130, .303
alt-2 | .007,.041, 157 .008, .047, .165 .002,.024, .061  .206, .336,.397 | .024,.079,.214  .047,.083,.225  .007,.031,.060  .062,.194, .268
alt-3 | .034, .066, .141 .031, .065, .124 173, .386, .513 .051, .206, .276 | .124,.297,.365  .117,.274, .340 413, .643,.753 015, .114, .207
alt-4 | .005, .248,.386  .042,.244, 279 171, .386, .535 .050, .199, .288 | .566, .698, .824 467, .581,.706  .737,.899,.947  .050,.190, .358
alt-5 | .110,.270,.294  .101, .183, .239 .056, .096, .138  .175,.270, .308 | .295, .464, .684 214, .494,.697  .130, .297, 411 .025, .084, .139
alt-6 | .020, .087, .119 .014, .066, .120  .021,.050, .091  .147,.247, .297 .094, .162, .231 .082, .151,.234  .031,.099, .182  .025, .103, .157
alt-7 | .009, .046, .096  .005, .041, .071 .020,.053,.094 129, .221, .267 084, 126, .249  .072,.102, .211 .059, .142, .231 .047, .098, .134
alt-8 | .021,.082,.125  .021,.069, .114 .056, .096, 138  .180, .269, .313 .046, .102, .311 .008, .111,.320  .029, .068, .107  .053, .124, .163
alt-9 | .002,.025,.084 .002,.024,.094 .007,.032,.067 .203,.361, .426 | .039,.077, .178 .013, .087, .201 .001,.025,.070  .071, .171, .247

n=256 n=>512

alt-1 | .624,.763,.846  .689,.734,.821  .978,.996,.998  .011, .116, .373 905, .950,.976 920, .945, 971  1.00, 1.00, 1.00  .237,.721, .877
alt-2 | .024,.058,.168  .033,.062, .171 .004, .026, .069  .030,.093, .144 | .050, .161, .307 .049, .166, .306  .005,.029, .061  .010, .039, .063
alt-3 | .612,.725,.847  .805,.796,.823  .935,.981,.991  .035,.239, 468 | .890,.984,1.00  .828,.928,.998  .984,.999,.999  .013,.158, .419
alt-4 | .690,.803, 910  .697,.801,.904  .920,.974,.992  .029, .165, .361 .989,.997,1.00  .928,.974,.985 997, 1.00, 1.00  .050, .303, .518
alt-5 | .858,.878,.944  .802,.868,.947  .888,.961,.983  .018,.127, .288 934, .977, 987  .938,.977,.987 100, 1.00, 1.00  .381, .740, .816
alt-6 | .119, .245,.304 118, .252, .314 069, .199, 294  .011, .044,.080 | .332, .418,.592  .341, .440, .605  .164,.350, .468  .006,.034,.073
alt-7 | .092, .217, .372 .084,.207, .297 182, .388, .515 .007, .038,.099 | .481,.505,.768  .498, .425,.690 .697,.882,.935  .029,.129, .266
alt-8 | .093,.190,.368  .064, .147, .388 .012,.056, .100  .012,.042,.051 | .404, .654,.884  .418,.670,.920  .016,.091, .187 .003, .004, .006
alt-9 | .071,.192,.232  .041, .124,.235  .006,.025,.073  .033,.090, .127 | .181,.370, .428 141, .269, 433 .004, .040, .084  .010, .038, .059

M and >XAH% ) are the proposed max-tests with and without a penalty, based on a bootstrapped p-value. M)u%< is JWW’s test based on simulated critical values,
and Mw%s\ uses bootstrapped p-values.
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Table A.6.: a. Rejection Frequencies under H;: Walsh Basis
Case 2: Hy =2T-*° and Ky = .5T-%
€ ~N(0,1)

| n=064 | n=128

7 \«Nﬂ b%ﬁv Dev @%s\ 7 My >\~Cuv PDev MU%E

alt-1 | .121,.234,.326  .142, .276, .431 146, .395,.552  .003,.031,.129 | .583,.685,.702  .563,.628,.667  .803,.934,.967  .001,.065, .211
alt-2 | .020,.059,.190  .022,.067,.202  .025,.058,.089  .010,.066, .233 | .033,.197, .410 .034, 213, .427  .009, .043,.086  .002, .025, .177
ale-3 | .200, .313, 417 200, .303, .422 150, .406, .553  .006, .060, .195 | .332,.579,.687  .333,.518, .661 .382,.674, 790 .000, .022, .127
alt-4 | .073,.292,.399  .065,.284,.397  .160, .402,.548  .011,.050, .190 661, .678, .828  .668, .681,.837  .739,.906,.942  .001, .097,.292
alt-5 | .121,.207, .335 .101, 145, .383 .080, .129, .178 .033,.085, .188 | .403, .688,.869  .455,.731,.895  .143,.323, 471 .012, .040, .106
alt-6 | .041, .123 .166 .031, .113, .179 .064, .121, .190 .017, .062, .156 072, 134, .278  .076, .155,.308  .053,.137,.252  .010, .024, .089
alt-7 | .021,.073, .137 .017,.063, .137 .050, .096, .145  .022,.072, .180 | .058, .115, .211 .045, 103, .219  .066, .135,.220  .018, .052, .104
alt-8 | .020, .115, .164 .021,.082, 133 .080, .129, .178 .033,.085, .188 | .052,.106,.365  .032,.122, 414  .075, .115, 157 .030, .067, .119
alt-9 | .011,.039, .102 .012,.027,.088  .014,.051,.099  .010,.095, .287 | .043,.038,.123  .025,.060, .168  .003,.024,.070  .000, .036, .159

n=256 n=>512

alt-1 | .815,.932,.987  .889,.908,.987 .972,.998,1.00 .001,.059,.220 | 1.00,1.00,1.00  .991, 1.00, 1.00 1.00, 1.00, 1.00  .079, .401, .585
alt-2 | .483,.946,.994  518,.942, 989  .012,.033,.074  .000, .016, .146 1.00, 1.00, 1.00  .999, 1.00, 1.00  .010, .037, .085 .000, .020, .127
alt-3 | .883,.891,.939  .878,.879,.937  .931,.982,.990 .003,.132,.325 | 1.00 1.00, 1.00 965, 1.00, 1.00  .984, .999,1.00  .003, .086, .249
alt-4 | .893,.977,.996  .809,.979,.995 .929,.981,.992  .005,.096, .273 | 1.00,1.00,1.00  1.00, 1.00,1.00  .997,1.00,1.00  .013,.209, .384
alt-5 | .886,.983,.999  .867,.989,.999  .908,.977,.991  .003,.058,.223 | 1.00,1.00,1.00  1.00, 1.00, 1.00  1.00, 1.00, 1.00  .363,.720, .753
alt-6 | .131,.250, 428  .141, .276, 478 .067,.189,.293  .002,.012,.091 | .403,.762,.877  .449,.805,.907  .131,.306, .449  .000,.024, .136
alt-7 | 121, .247, .331 119, .224, 314 151, .349,.503  .007,.022, .058 | .514,.666,.709  .557,.636,.768  .675,.850,.920  .035,.087, .171

alt-8 | .083,.252,.358  .042,.174, .410 .049, .106, .158  .018, .035, .091 .537, .851, .975 516, .870,.983  .060, .173,.285  .001, .020, .067
alt-9 | .702,.973,.998  .673,.951,.989  .004,.034,.081 1.00,.026,.145 | .994,1.00, .00  .994, 1.00, 1.00  .009, .048, .101 1.00, .029, .147

>v_ﬂ and \me ) are the proposed max-tests with and without a penalty, based on a bootstrapped p-value. @w.k is JWW’s test based on simulated critical values,
and @%E uses bootstrapped p-values.
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Table A.6.: c. Rejection Frequencies under H;: Walsh Basis
Case 2: Hy =2T-*° and Ky = .5T-%°
€ ~ GARCH

| n =64 | n=128

7 \(Xﬂ g%tv Mw%—\ Mw&% 7 \6—‘\, >XQVV Mw%k Mw%%

alt-1 | .065, 211, .360  .085,.277,.367  .139,.378,.546  .002,.030,.128 | .308, .422,.591  .305, .407,.560  .820,.939,.970  .000, .057, .183
alt-2 | .021,.054,.162  .021,.062,.173  .022,.051,.106 ~ .008, .079, .257 | .044,.099,.266 .043,.104,.277  .005,.033,.088  .001,.032,.168
alt-3 | .085, .217, .371 .078, 216, .379  .156, 418, .588  .007,.046, .170 | .218, .311, .467 .209, .300, .453  .371, .657, .778 .001, .017, .114

alt-4 | .120,.339,.389  .087,.242,.291  .152, 408, .554  .007,.046, .171 421, .496, 590 325, .400,.593  .758,.909,.953  .001, .086, .281
alt-5 | .056, .156,.223  .043, .127,.216  .073,.120, .163 .027, .071, 150 157,.368,.522 136, .394,.506  .148,.324, 455  .015,.028, .078
alt-6 | .04l, .116, .195 .041, .101, .181 .066, .133,.203  .019, .040, .141 .082, .172, .278 .081, .164, 270  .046, .149, .245  .004, .017, .081
alt-7 | .052,.123,.199  .030,.105, .135  .056, .117, .159 .018, .061, .163 .092, .117, .208 .094, .106, .196  .062, 129, .210  .018, .035, .092
alt-8 | .046, .117, .159 .035,.103, .147  .073, .120, .163 .028, .076, .158 | .043,.095,.248  .034,.089,.269  .055,.090,.148  .020, .051, .115
alt-9 | .020,.038,.098 .016,.029,.096 .012,.049,.083  .004,.067,.271 | .057,.087,.162 .049, .080, .189  .009, .038,.081  .000, .031, .168

n=256 n=>512

alt-1 | .447,.589,.677 442, .567,.647 .974,.998,.999  .005,.051,.228 | .557,.665,.807  .539,.657,.803  1.00, 1.00, 1.00  .076, .375, .540
alt-2 | .282,.370,.576  .287,.353,.551  .009,.042,.102  .000, .029, .142 | .517, .689, .803 590, .667, 798  .009, .051,.099  .000, .031, .155
alt-3 | 421, 498, .600 418, .489,.688  .927,.982,.992  .003, .117, .311 .635,.767, .865  .636,.766, .868  .986,.999,1.00  .004, .080, .247
alt-4 | .518, .580, .675 .527,.583,.675  .916,.979,.989  .003,.087,.241 | .746,.794, .888  .755,.808,.889  .995,1.00,1.00 .015, .181, .339
alt-5 | .424,.596,.721 449, 518,.709  .892,.962,.983  .002,.056,.229 | .829, .916,.963  .587,.828,.909  1.00, 1.00, 1.00  .347, .674,.719
alt-6 | .107,.174, .296 108, .179,.295  .085, .214,.325  .000, .017, .085 | .135,.384,.428  .143,.302, 434  .169, .350, .491 1.00, .030, .137
alt-7 | .102, .247, .357 102, .227, 377 171, .378, .507 .006, .027, .055 | .331, .468,.660  .321, .428,.622  .686,.880,.928  .031,.093, .178
alt-8 | .103,.275,.350  .104,.240, .321  .049, .100, .166 ~ .010, .029, .082 | .335, .415,.638  .252,.392,.649 .062,.181,.284  .006, .028, .063
alt-9 | .197,.577, 754 168, .499, .711 .012,.046,.105  .001, .025, .160 | .503,.775,.884  .424,.740,.859  .009,.045,.090 .000,.028, .150

My and \S%s ) are the proposed max-tests with and without a penalty, based on a bootstrapped p-value. Mwmk is JWW’s test based on simulated critical values,
and Mw%s\ uses bootstrapped p-values.
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