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We propose a covariance stationarity test for an otherwise dependent and possibly globally non-stationary time
series. We work in a generalized version of the new setting in Jin, Wang and Wang (2015), who exploit Walsh
(1923) functions in order to compare sub-sample covariances with the full sample counterpart. They impose strict
stationarity under the null, only consider linear processes under either hypothesis in order to achieve a parametric
estimator for an inverted high dimensional asymptotic covariance matrix, and do not consider any other orthonor-
mal basis. Conversely, we work with a general orthonormal basis under mild conditions that include Haar wavelet
and Walsh functions; and we allow for linear or nonlinear processes with possibly non-iid innovations. This is
important in macroeconomics and finance where nonlinear feedback and random volatility occur in many settings.
We completely sidestep asymptotic covariance matrix estimation and inversion by bootstrapping a max-correlation
difference statistic, where the maximum is taken over the correlation lag ℎ and basis generated sub-sample counter
𝑘 (the number of systematic samples). We achieve a higher feasible rate of increase for the maximum lag and
counter H𝑇 and K𝑇 . Of particular note, our test is capable of detecting breaks in variance, and distant, or very
mild, deviations from stationarity.

Keywords: covariance stationarity; max-correlation test; multiplier bootstrap; orthonormal basis; Walsh functions

1. Introduction

Assume {𝑋𝑡 : 𝑡 ∈ Z} is a possibly non-stationary time series process in L2. We want to test whether 𝑋𝑡
is covariance stationary, without explicitly assuming stationarity under the null hypothesis, allowing
for linear or nonlinear processes with a possibly non-iid innovation, and a general memory property.
Such generality is important in macroeconomics and finance where nonlinear feedback and non-iid
innovations occur in many settings due to asymmetries and random volatility, including exchange rates,
bonds, interest rates, commodities, and asset return levels and volatility. Popular models for such time
series include symmetric and asymmetric GARCH, Stochastic Volatility, nonlinear ARMA-GARCH,
and switching models like smooth transition autoregression. See, e.g., Teräsvirtra (1994), Gray (1996)
and Francq and Zakoïan (2019).

Evidence for nonstationarity, whether generally or in the variance or autocovariances, has been
suggested for many economic time series, where breaks in variance and model parameters are well
known (e.g. Busett and Taylor, 2003, Gianetto and Raissi, 2015, Hendry and Massmann, 2007, Per-
ron, 2006). Knowing whether a time series is globally nonstationary has large implications for how
analysts approach estimation and inference. Indeed, it effects whether conventional parametric and
semi-(non)parametric model specifications are correct. Pretesting for deviations from global stationar-
ity therefore has important practical value.

There are many tests in the literature on covariance stationarity, and concerning locally stationary
processes. Tests for stationarity based on spectral or second order dependence properties have a long
history, where pioneering work is due to Priestley and Subba Rao (1969). Spectrum-based tests with
L2-distance components have many versions. Paparoditis (2010a) uses a rolling window method to
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compare subsample local periodograms against a full sample version. The maximum is taken over
the L2-distance between periodograms over all time points. An asymptotic theory for the max-statistic,
however, is not provided, although an approximation theory is (see their Lemmas 1 and 3). Furthermore,
conforming with many offerings in the literature, under the null 𝑋𝑡 is a linear process with iid Gaussian
innovations. Dette, Preuß and Vetter (2011) study locally stationary processes, and impose linearity
with iid Gaussian innovations. Their statistic is based on the minimum L2-distance between a spectral
density and its version under stationarity, and local power is non-trivial against 𝑇1/4-alternatives. Aue
et al. (2009) propose a nonparametric test for break in covariance for multivariate time series based on
a version of a cumulative sum statistic.

Wavelet methods have arisen in various forms recently. von Sachs and Neumann (2000), using
technical wavelet decomposition components from Neumann and von Sachs (1997), propose a Haar
wavelet based localized periodogram test of covariance stationarity for locally stationary processes (cf.
Dahlhaus, 1997, 2009). Local and asymptotic power are not theoretically derived. Haar wavelet func-
tions form an orthonormal basis on L2 [0,1), but the proposed frequency domain tests are complicated,
a local power analysis is not feasible, and empirical power may be weak (see Jin, Wang and Wang’s
(2015) simulation evidence).

Dwivedi and Subba Rao (2011) and Jentsch and Rao (2015) use the discrete Fourier transform [DFT]
𝐽𝑇 (𝜔𝑘) = (2𝜋𝑇)−1/2 ∑𝑇

𝑡=1 𝑋𝑡 exp {𝑖𝑡𝜔𝑘} at canonical frequencies 𝜔𝑘 = 2𝜋𝑘/𝑇 and 1 ≤ 𝑘 ≤ 𝑇 . Dwivedi
and Subba Rao (2011) generate a portmanteau statistic from a normalized sample DFT covariance,
exploiting the fact that an uncorrelated DFT implies second order stationarity. Nason (2013) presents a
covariance stationarity test based on Haar wavelet coefficients of the wavelet periodogram, they assume
linear local stationarity, and do not treat local power. See also Nason, von Sachs and Kroisandt (200).

In a promising offering in the wavelet literature, Jin, Wang and Wang (2015) [JWW] exploit so-
called Walsh functions (akin to “global square waves" although not truly wavelets; cf. Walsh 1923)
and their implied systematic samples for comparing sub-sample covariances with the full sample one.
They utilize a sample-size dependent maximum lag H𝑇 and maximum systematic sample counter K𝑇 ,
and show their Wald test exhibits non-negligible local power against

√
𝑇-alternatives. They do not

consider any other orthonormal transformation because Walsh functions, they argue, have “desirable
properties" based primarily on simulation evidence, asymptotic independence of a sub-sample and
sample covariance difference (

√
𝑇 (�̂� (𝑘1 )

ℎ
− �̂�ℎ),

√
𝑇 (�̂� (𝑘2 )

ℎ
− �̂�ℎ)) across systematic samples 𝑘1 ≠ 𝑘2,

and joint asymptotic normality (JWW, p. 897). It seems, however, that such theoretical properties are
available irrespective of the orthonormal basis used, although we do not provide a proof. See Section
2.1, below, for definitions and notation. We do, however, find in the sequel that the Walsh basis has
superlative properties vis-à-vis a Haar wavelet basis.

JWW’s asymptotic analysis is driven by local stationarity and linearity 𝑋𝑡 =
∑∞

𝑖=0 𝜓𝑖𝑍𝑡−𝑖 , with zero
mean iid 𝑍𝑡 , and 𝐸 |𝑍𝑡 |4+𝛿 < ∞, 𝛿 > 0, which expedites characterizing a parametric asymptotic covari-
ance matrix estimator. The iid and linearity assumptions, however, rule out many important processes,
including nonlinear models like regime switching, and random coefficient processes; and any pro-
cess with a non-iid error (e.g. nonlinear ARMA-GARCH). JWW’s Wald-type test statistic requires an
inverted parametric variance estimator that itself requires five tuning parameters and choice of two ker-
nels.1 Indeed, most of the tuning parameters only make sense under linearity given how they approach
asymptotic covariance matrix estimation.

1One tuning parameter _ ∈ (0, .5) governs the number 𝑄𝑇 = [𝑇_ ] of sample covariances that enter the asymptote covariance
matrix estimator (see their p. 899); and four (𝑐1, 𝑐2; b1, b2 ) are used for kernel bandwidths 𝑏 𝑗 = 𝑐 𝑗𝑇

−b 𝑗 , 𝑗 = 1, 2, for comput-
ing the kurtosis of the iid process 𝑍𝑡 under linearity (see p. 902-903). The authors set 𝑐 𝑗 equal to 1.2 times a so-called "crude
scale estimate" which is nowhere defined.
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Now define the lag ℎ autocovariance coefficient at time 𝑡:

𝛾ℎ (𝑡) ≡ 𝐸 [(𝑋𝑡 − 𝐸 [𝑋𝑡 ]) (𝑋𝑡−ℎ − 𝐸 [𝑋𝑡−ℎ])] , ℎ = 0,1, ...

The hypotheses are:

𝐻0 : 𝛾ℎ (𝑠) = 𝛾ℎ (𝑡) = 𝛾ℎ ∀𝑠, 𝑡, ∀ℎ = 0,1, ... (cov. stationary) (1.1)

𝐻1 : 𝛾ℎ (𝑠) ≠ 𝛾ℎ (𝑡) for some 𝑠 ≠ 𝑡 and ℎ = 0,1, ... (cov. nonstationary).

Under 𝐻0 𝑋𝑡 is second order stationary, and the alternative is any deviation from the null: the autoco-
variance differs across time at some lag, allowing for a (lag zero) break in variance. The null hypothesis
otherwise accepts the possibility of global nonstationarity.

In this paper we do away with parametric assumptions on 𝑋𝑡 , and impose a mixing property that
allows us to bound the number of usable covariance lags H𝑇 and systematic samples K𝑇 . The mix-
ing condition allows for global nonstationarity under either hypothesis, allowing us to focus the null
hypothesis only on second order stationarity.

Rather than operate on a Wald statistic constructed from a specific orthonormal transformation of
covariances, our statistic is the maximum generic orthonormal transformed sample correlation coef-
ficient, where the maximum is taken over (ℎ, 𝑘) with increasing upper bounds (H𝑇 ,K𝑇 ). Notice ℎ is
the covariance lag, and 𝑘 is a counter for a particular systematic subsample implied by the specific
transformation. By working in a generic setting we are able to make direct comparisons, and combine
bases for possible power improvements.

We provide examples of Haar wavelet and Walsh functions in Sections 2.1 and 2.2, and show how
they yield different systematic samples. This suggests a power improvement may be available by using
multiple orthonormal transforms. As JWW (p. 897) note, however, clearly other orthonormal transfor-
mations are feasible, although simulation evidence agrees with their suggestion that the Walsh basis
works quite well.

We use a dependent wild bootstrap for the resulting test statistic, which allows us to sidestep asymp-
totic covariance matrix estimation, a challenge considering we do not assume a parametric form, and
the null hypothesis requires us to look over a large set of (ℎ, 𝑘). We sidestep all of JWW’s tuning
parameters, and require just one governing the block size for the bootstrap. We ultimately achieve a
significantly better upper bound on the rate of increase for (H𝑇 ,K𝑇 ) than JWW. We show that penal-
ized and weighted versions of our test statistic are possible, as in JWW and Hill and Motegi (2020)
respectively. However, we argue that there is no compelling theory to justify penalties on (ℎ, 𝑘) in our
setting, and overall a non-penalized and unweighted test statistic works best in practice.

Note that Hill and Motegi (2020) study the max-correlation statistic for a white noise test, and only
show their limit theory applies for some increasing maximum lag H𝑇 , but do not derive an upper
bound. In the present paper we use a different asymptotic theory, derive upper bounds for H𝑇 and K𝑇 ,
and of course do not require a white noise property under 𝐻0.

Jin, Wang and Wang (2015, Section 2.6) rule out the use of autocorrelations because, they claim, if
the sample variance were included, i.e. ℎ ≥ 0, then consistency may still not hold because the limit the-
ory neglects the joint distribution of �̂�0 and the correlation differences. We show for our proposed test
that the difference between full sample and systematic sample autocorrelations at lag zero asymptoti-
cally reveals whether 𝐸 [𝑋2

𝑡 ] is time dependent. Further, our test is consistent whether non-stationarity
is caused by variances, or covariances, or both. See Section 3.1, and Example 3.5. Our proposed test
is consistent against a general (nonparametric) alternative, and exhibits nontrivial power against a se-
quence of

√
𝑇-local alternatives.

Finally, in the supplemental material we present an automatic method for selecting H𝑇 and K𝑇 .
The method is based on Hill and Motegi’s (2020) extension of a maximum lag selection technique
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for a Q-test based portmanteau statistic in Escanciano and Lobato (2009), cf. Inglot and Ledwina
(2006). It requires sets {0, ..., H̄𝑇 } and {1, ..., K̄𝑇 } from which optimal values {H ∗

𝑇
,K∗

𝑇
} are iteratively

selected, hence we still need pre-chosen maxima H̄𝑇 and K̄𝑇 . In simulation experiments not reported
here, however, we find the Escanciano and Lobato (2009) logic applied to an orthonormal transformed
sample covariance does not lead to a dominant test the way it can for a max-correlation white noise
test (cf. Hill and Motegi, 2020). The method systematically sets {H ∗

𝑇
,K∗

𝑇
} to the lowest value capable

of detecting a deviation from covariance stationarity. This generally leads to (very) small values of
{H ∗

𝑇
,K∗

𝑇
} and therefore low empirical power. Merely using a pre-chosen {H𝑇 ,K𝑇 } leads to sharp size

and competitive power. Whether another data-dependent method applies is left for future work.
The max-correlation difference is particularly adept at revealing subtle deviations from covariance

stationarity, similar to results revealed in Hill and Motegi (2020). Consider a distant form of a model
treated in Paparoditis (2010b, Model I) and Jin, Wang and Wang (2015, Section 3.2: models NVI,
NVII), 𝑋𝑡 = .08 cos{1.5 − cos(4𝜋𝑡/𝑇)}𝜖𝑡−𝑑 + 𝜖𝑡 with large 𝑑 (JWW use 𝑑 = 1 or 6). JWW’s test
exhibits trivial power when 𝑑 ≥ 20, while the max-correlation difference is able to detect this deviation
from the null even when 𝑑 ≥ 50. The reason is the same as that provided in Hill and Motegi (2020): the
max-correlation difference operates on the single most useful statistic, while Wald and portmanteau
statistics congregate many standardized covariances that generally provide little relevant information
under a weak signal.

In Section 2 we develop the test statistic. Sections 3 and 4 present asymptotic theory and the bootstrap
method and theory. We then perform a Monte Carlo study in Section 5, and conclude with Section
6. Proofs are presented in Appendix A. The supplemental material contains omitted proofs, a data-
dependent method for selecting (H𝑇 ,K𝑇 ), an empirical study concerning international interest rates,
and complete simulation results.

We use the following notation. [𝑧] rounds 𝑧 to the nearest integer.. L2 is the space of square inte-
grable random variables; and L2 [𝑎, 𝑏) is the class of square integrable functions on [𝑎, 𝑏). | | · | |𝑝 and
| | · | | are the 𝐿𝑝 and 𝑙2 norms respectively, 𝑝 ≥ 1. Let Z ≡ {... − 2,−1,0,1,2, ...}, and N ≡ {0,1,2, ...}.
𝐾 > 0 is a finite constant whose value may be different in different places. 𝑎𝑤𝑝1 denotes "asymp-
totically with probability approaching one". Write maxH𝑇

= max0≤ℎ≤H𝑇
. maxK𝑇

= max1≤𝑘≤K𝑇
and

maxH𝑇 ,K𝑇
= max0≤ℎ≤H𝑇 ,1≤𝑘≤K𝑇

. Similarly, maxH𝑇
𝑎(ℎ, ℎ̃) = max0≤ℎ,ℎ̃≤H𝑇

𝑎(ℎ, ℎ̃), etc.

2. Max-correlation with orthonormal transformation
Our test statistic is the maximum of an orthonormal transformed sample covariance. In order to build
intuition, we first derive the test statistic under Walsh function and Haar wavelet-based bases. We then
set up a general environment, and present the main results.

In order to reduce notation, we assume here ` ≡ 𝐸 [𝑋𝑡 ] = 0 is known. In practice this is enforced
by using 𝑋𝑡 − �̄� where �̄� ≡ 1/𝑇∑𝑇

𝑡=1 𝑋𝑡 . In the appendix we prove using 𝑋𝑡 − �̄� or 𝑋𝑡 − ` leads to
identical results asymptotically: see Lemma A.3. Thus in proofs of the main results we simply assume
` = 0.

2.1. Walsh functions
The following class of Walsh functions {𝑊𝑖 (𝑥)} ≡ {𝑊𝑖 (𝑥) : 𝑖 = 0,1,2, ...} define a complete orthonor-
mal basis in L2 [0,1). The functions 𝑊𝑖 (𝑥) are defined recursively (see, e.g., Ahmed and Rao, 1975,
Stoffer, 1987, 1991, Walsh, 1923):

𝑊0 (𝑥) = 1 for 𝑥 ∈ [0,1); and𝑊1 (𝑥) =
{

1, 𝑥 ∈ [0, .5)
−1, 𝑥 ∈ [.5,1)
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and for any 𝑖 = 1,2, ...,

𝑊2𝑖 (𝑥) =
{
𝑊𝑖 (2𝑥), 𝑥 ∈ [0, .5)
(−1)𝑖𝑊𝑖 (2𝑥 − 1), 𝑥 ∈ [.5,1) and𝑊2𝑖+1 (𝑥) =

{
𝑊𝑖 (2𝑥), 𝑥 ∈ [0, .5)
(−1)𝑖+1𝑊𝑖 (2𝑥 − 1), 𝑥 ∈ [.5,1) .

In the {−1,1}-valued sequence {𝑊𝑖 (𝑥) : 𝑖 = 0,1,2, ...}, 𝑖 indexes the number of zero crossings, yielding
a square shaped wave-form. See Figure 1, and see Stoffer (1991, Figure 5) and Jin, Wang and Wang
(2015, Figure 1) and their references. The 𝑘 𝑡ℎ discrete Walsh functions used in this paper are then for 𝑡
= 1, ...,𝑇 :

{W𝑘 (1), ...,W𝑘 (𝑇)} where W𝑘 (𝑡) =𝑊𝑘 ((𝑡 − 1)/𝑇).

Now define the covariance coefficient for a covariance stationary time series, 𝛾ℎ ≡ 𝐸 [𝑋𝑡𝑋𝑡−ℎ]; and
denote the usual (co)variance estimator �̂�ℎ ≡ 1/𝑇∑𝑇−ℎ

𝑡=1 𝑋𝑡𝑋𝑡+ℎ, ℎ ∈ N. JWW use {W𝑖 (𝑥)} to construct
a set of discrete Walsh covariance transformations:

�̂�
𝑊 (𝑘 )
ℎ

≡ 1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑋𝑡𝑋𝑡+ℎ
{
1 + (−1)𝑘−1 W𝑘 (𝑡)

}
, ℎ = 0,1, ...,𝑇 − 1, and 𝑘 = 1,2, ...,K (2.1)

for some integer K ≥ 1. As they point out, a sequence of systematic (sub)samples 𝑻𝑊
𝑘

: 𝑘 = 1,2, ...,K
in the time domain can be defined on the basis of Walsh functions:

𝑻𝑊
𝑘

≡
{
𝑡 ∈ 𝑇 : (−1)𝑘−1 W𝑘 (𝑡) = 1

}
.

Now let N𝑘 be the smallest power of 2 that is at least 𝑘. The first systematic sample is the first half
of the sample time domain 𝑻𝑊

1 = {1, ..., [𝑇/2]}; the second is the middle half 𝑻𝑊
2 = {[𝑇/4], [𝑇/4] +

1, ..., [3𝑇/4]}; the third 𝑻3 is the first and third time blocks, and so on. Notice 𝑻𝑊
𝑘

consists of (𝑘 +
1)/2 blocks with at least [𝑇/N𝑘] elements. Thus, when ℎ < 𝑇/N𝑘 then �̂�𝑊 (𝑘 )

ℎ
is just an estimate of 𝛾ℎ

on the 𝑘 𝑡ℎ systematic sample:

�̂�
𝑊 (𝑘 )
ℎ

=
1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑋𝑡𝑋𝑡+ℎ
{
1 + (−1)𝑘−1 W𝑘 (𝑡)

}
=

2
𝑇

∑︁
𝑡∈𝑻 𝑘

𝑋𝑡𝑋𝑡+ℎ .

The condition ℎ < 𝑇/N𝑘 holds asymptotically in the Section 4 bootstrap setting.
The difference between the 𝑘 𝑡ℎ systematic sample and full sample estimators is:

�̂�
𝑊 (𝑘 )
ℎ

− �̂�ℎ = (−1)𝑘−1 1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑋𝑡𝑋𝑡+ℎW𝑘 (𝑡).

Notice the {−1,1}-valued nature of W𝑘 (𝑡) yields a sub-sample comparison: �̂�𝑊 (𝑘 )
ℎ

− �̂�ℎ =

1/𝑇∑
𝑡∈𝑻 𝑘

𝑋𝑡𝑋𝑡+ℎ − 1/𝑇∑
𝑡≠𝑻 𝑘

𝑋𝑡𝑋𝑡+ℎ. Our test is based on the maximum |�̂�𝑊 (𝑘 )
ℎ

− �̂�ℎ |, in which
case the multiple (−1)𝑘−1 is irrelevant. We, therefore, now drop it everywhere. Under the null hypoth-
esis and mild assumptions this difference is 𝑂 𝑝 (1/

√
𝑇) at all lags ℎ and for all systematic samples 𝑘 .

Thus, a test statistic can be constructed from
√
𝑇 (�̂�𝑊 (𝑘 )

ℎ
− �̂�ℎ).
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2.2. Haar wavelet functions
Define the usual Haar wavelet functions 𝜓𝑘,𝑚 (𝑥) ≡ 2𝑘/2𝜓(2𝑘𝑥 − 𝑚) with 𝑥 ∈ R, where 0 ≤ 𝑘 ≤ K𝑇 for
some integer sequence {K𝑇 }, 0 ≤ 𝑚 ≤ 2𝑘 − 1, and mother wavelet (Haar, 1910):

𝜓(𝑥) =


1, 𝑥 ∈ [0, .5)
−1, 𝑥 ∈ [.5,1)
0 otherwise

Haar functions {𝜓𝑘,𝑚 (𝑥)} form a complete orthonormal basis in L[0,1). The discretized version is:

Ψ𝑘,𝑚 (𝑡) ≡ 𝜓𝑘,𝑚((𝑡 − 1) /𝑇) = 2𝑘/2𝜓(2𝑘 (𝑡 − 1) /𝑇 −𝑚).

Systematic samples derived from {Ψ𝑘,𝑚(𝑡)} are generally too “local": 1/𝑇∑𝑇−ℎ
𝑡=1 𝑋𝑡𝑋𝑡+ℎΨ2,𝑚 (𝑡), for

example, compares just the first eighth to the second eighth subsample (𝑚 = 0); the third eighth to the
fourth eighth subsample (𝑚 = 1); and so on.

In order to yield a test statistic that compares sub-sample complements, comparable to Walsh func-
tions, we compile (𝜓𝑘,𝑚(𝑥),Ψ𝑘,𝑚 (𝑡)) over 0 ≤ 𝑚 ≤ 2𝑘 − 1. Set 𝜓0 (𝑥) = 𝐼 (0 ≤ 𝑥 ≤ 1), and for 𝑘 =

0,1, ...

𝜓𝑘+1 (𝑥) ≡
1

2𝑘/2

2𝑘−1∑︁
𝑚=0

𝜓𝑘,𝑚(𝑥) =
2𝑘−1∑︁
𝑚=0

𝜓(2𝑘𝑥 −𝑚)

Ψ𝑘+1 (𝑡) ≡
1

2𝑘/2

2𝑘−1∑︁
𝑚=0

Ψ𝑘,𝑚 (𝑡) =
2𝑘−1∑︁
𝑚=0

𝜓(2𝑘 (𝑡 − 1) /𝑇 −𝑚).

We set 𝜓0 (𝑥) = 𝐼 (0 ≤ 𝑥 ≤ 1) in order to unify the local alternative analysis below, similar to the Walsh
basis. It can be shown that 𝜓𝑘 (𝑥) ∈ {−1,1}, and {𝜓𝑘 (𝑥) : 1 ≤ 𝑘 ≤ K𝑇 } forms a complete orthonormal
basis: see Lemma A.1 in the appendix for this and other properties. In the same manner as (2.1), define
for 𝑘 = 1,2, ...,K:

�̂�
𝐻 (𝑘 )
ℎ

≡ 1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑋𝑡𝑋𝑡+ℎ {1 +Ψ𝑘 (𝑡)} , ℎ = 0,1, ...,𝑇 − 1.

The discretized Haar functions Ψ𝑘,𝑚 (𝑡) generate systematic samples 𝑻𝐻
𝑘
≡ {𝑡 ∈ 𝑇 :

⋃2𝑘−1
𝑚=0 (Ψ𝑘,𝑚 (𝑡)

= 1)}. This yields the first sample half 𝑻𝐻
0 = {1, ..., [𝑇/2]}; the first and third quarter subsamples 𝑻𝐻

1 =

{1, ..., [𝑇/4]; 1+ [𝑇/2], ..., [3𝑇/4]}; the first, third, fifth and seventh eights 𝑻𝐻
2 ; and so on. See Figures

1 and 2 for plots of Walsh and composite Haar functions𝑊𝑘 (𝑥) and 𝜓𝑘 (𝑥), 𝑘 = 1, ...,6.
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Figure 1: Walsh functions {𝑊𝑘 (𝑥)}6
𝑘=1.
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Figure 2: Composite Haar wavelet functions {𝜓𝑘 (𝑥)}6
𝑘=1
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Walsh and Haar systematic samples are quite different for 𝑘 ≥ 2. 𝑻𝑊
𝑘

involves fewer interspersed
subsample segments, in some cases of varying lengths, while 𝑻𝐻

𝑘
have 2𝑘 segments of equal length

[𝑇/2𝑘] in all cases (ignoring truncation due to the lag ℎ). Haar subsamples are therefore non-redundant
only when 𝑇/2K𝑇 ≥ 1, hence K𝑇 ≤ ln(𝑇)/ln(2).

Indeed, it can be shown that the two bases coincide in the sense that 𝑊𝑘1 (𝑥) = 𝜓𝑘2 (𝑥) for all 𝑥 and
only (𝑘1, 𝑘2) ∈ {(1,1), (3,2), (3,7)}, or in all other cases for 𝑥 on a subset of [0,1) with Lebesgue
measure 1/2. Roughly speaking, only 50% of the data points in �̂�𝑊 (𝑘1 )

ℎ
− �̂�ℎ are the same as those in

�̂�
𝐻 (𝑘2 )
ℎ

− �̂�ℎ for nearly all systematic samples (𝑘1, 𝑘2). Thus the two bases are intrinsically different,
suggesting potential advantages and weaknesses against certain deviations from the null.

2.3. Max-correlation orthonormal transforms
Now let {B𝑘 (𝑥) : 0 ≤ 𝑘 ≤ K} denote a {−1,1}-valued orthonormal basis on L[0,1), B0 (𝑥) = 𝐼 (0 ≤ 0
≤ 1), let 𝐵𝑘 (𝑡) ≡ B𝑘 ((𝑡 − 1)/𝑇) be the discretized version, and define the usual subsample covariance
for this generic discrete basis �̂� (𝑘 )

ℎ
≡ 1/𝑇∑𝑇−ℎ

𝑡=1 𝑋𝑡𝑋𝑡+ℎ{1 + 𝐵𝑘 (𝑡)}. Under conditions imposed below,
examples of 𝐵𝑘 (𝑡) are Walsh W𝑘 (𝑡) and Haar composite Ψ𝑘 (𝑡).

Define the sample correlation coefficient:

�̂�ℎ ≡
�̂�ℎ

�̂�0
,

and a set of discrete orthonormal correlation transformations, over systematic sample 𝑘:

�̂�
(𝑘 )
ℎ,1 ≡

�̂�
(𝑘 )
ℎ

�̂�0
=

1
�̂�0

× 1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑋𝑡𝑋𝑡+ℎ {1 + 𝐵𝑘 (𝑡)} , 𝑘 = 1,2, ...,K .

Thus, the difference between systematic sample and full sample estimators is:

�̂�
(𝑘 )
ℎ,1 − �̂�ℎ =

1
�̂�0

1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡) =
�̂�
(𝑘 )
ℎ

− �̂�ℎ
�̂�0

(2.2)

The correlation difference �̂� (𝑘 )
ℎ,1 − �̂�ℎ is sensible even at lag 0, considering

�̂�
(𝑘 )
0,1 − �̂�0 =

�̂�
(𝑘 )
0

�̂�0
− 1.

Thus, under nonstationarity �̂� (𝑘 )0,1
𝑝↛ 1 for some systematic sample 𝑘 when �̂� (𝑘 )0 /�̂�0

𝑝↛ 1; that is, when
the second moment 𝐸 [𝑋2

𝑡 ] is not constant over 𝑡.
Alternatively, we may incorporate the systematic sample variance estimators �̂� (𝑘 )0 . The autocorrela-

tion estimator in that case becomes, for example:

�̂�
(𝑘 )
ℎ,2 ≡ 1

�̂�0
× 1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑋𝑡𝑋𝑡+ℎ +
1

�̂�
(𝑘 )
0

1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡)

= �̂�ℎ +
1

�̂�
(𝑘 )
0

1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡)
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hence

�̂�
(𝑘 )
ℎ,2 − �̂�ℎ =

1
𝑇

∑𝑇−ℎ
𝑡=1 𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡)

1
𝑇

∑𝑇
𝑡=1 𝑋

2
𝑡 {1 + 𝐵𝑘 (𝑡)}

.

At lag 0 notice:

�̂�
(𝑘 )
0,2 − �̂�0 =

1

�̂�
(𝑘 )
0

1
𝑇

𝑇∑︁
𝑡=1

𝑋2
𝑡 𝐵𝑘 (𝑡) =

�̂�
(𝑘 )
0 − �̂�0

�̂�
(𝑘 )
0

= 1 − �̂�0

�̂�
(𝑘 )
0

.

Compare this to �̂� (𝑘 )0,1 − �̂�0 = �̂�
(𝑘 )
0 /�̂�0 − 1. Thus, again �̂� (𝑘 )0,2

𝑝↛ 1 for some systematic sample 𝑘 when
𝐸 [𝑋2

𝑡 ] is not constant over 𝑡.
The autocorrelation estimators �̂� (𝑘 )

ℎ,𝑖
exploit orthonormal transform weights 𝐵𝑘 (𝑡) in order to reveal

autocorrelation subsample differences, but they are not identical in small samples. Asymptotically,
however, their difference is negligible in probability under the null hypothesis. Notice:

�̂�
(𝑘 )
ℎ,1 − �̂� (𝑘 )

ℎ,2 =

(
1
�̂�0

− 1

�̂�
(𝑘 )
0

)
1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡)

=

(
�̂�
(𝑘 )
0 − �̂�0

) 1

�̂�0�̂�
(𝑘 )
0

(
�̂�
(𝑘 )
ℎ

− �̂�ℎ
)
. (2.3)

This reveals �̂� (𝑘 )
ℎ,1 − �̂� (𝑘 )

ℎ,2 for each ℎ ≥ 0 simultaneously captures systematic sample differences in vari-

ance and covariance. Under 𝐻0 and general conditions presented in Section 3, maxH𝑇 ,K𝑇
|�̂� (𝑘 )

ℎ
− �̂�ℎ |

and |�̂�0 − 𝛾0 | are 𝑂 𝑝 (1/
√
𝑇), where {H𝑇 ,K𝑇 } are sequences defined below with H𝑇 → ∞ and K𝑇

→∞. Thus:

max
H𝑇 ,K𝑇

���√𝑇 (
�̂�
(𝑘 )
ℎ,1 − �̂� (𝑘 )

ℎ,2

)��� =𝑂 𝑝 (1/
√
𝑇).

Under 𝐻1, however, if and only if 𝐸 [𝑋2
𝑡 ] and 𝐸 [𝑋𝑡𝑋𝑡−ℎ] for some ℎ ≥ 1 are time dependent then√

𝑇 maxH𝑇 ,K𝑇
| �̂� (𝑘 )

ℎ,1 − �̂�
(𝑘 )
ℎ,2 |

𝑝
→∞. This suggests D𝑇 ≡ maxH𝑇 ,K𝑇

|
√
𝑇 ( �̂� (𝑘 )

ℎ,1 − �̂� (𝑘 )
ℎ,2 ) | could be used as

a third test statistic: theory developed in Section 3 can be used to show a test based on D𝑇 will reject 𝐻0
asymptotically with power approaching one when 𝑋𝑡 is non-stationary in variance and autocovariance
at some lag ℎ ≥ 1. Conversely, either maxH𝑇 ,K𝑇

|
√
𝑇 ( �̂� (𝑘 )

ℎ,𝑖
− �̂�ℎ) | is consistent against 𝐻1 in general:

power is one asymptotically if 𝐸 [𝑋2
𝑡 ] and/or some 𝐸 [𝑋𝑡𝑋𝑡−ℎ] are time dependent.

In order to focus ideas, however, we only consider the estimator �̂� (𝑘 )
ℎ,1 , so put:

�̂�
(𝑘 )
ℎ

≡ �̂� (𝑘 )
ℎ,1 .

The proposed test statistic is therefore the maximum normalized �̂� (𝑘 )
ℎ

− �̂�ℎ over (ℎ, 𝑘):

M𝑇 ≡
√
𝑇 max

H𝑇 ,K𝑇

����̂� (𝑘 )
ℎ

− �̂�ℎ
��� = 1

�̂�0
max

H𝑇 ,K𝑇

����� 1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡)
����� .

By construction M𝑇 uses the most informative systematic sample correlation difference. Notice we
search over all lags ℎ ∈ {0, ...,H𝑇 }.
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A penalized version is also possible:

M (𝑝)
𝑇

≡ max
H𝑇 ,K𝑇

{√
𝑇

����̂� (𝑘 )
ℎ

− �̂�ℎ
��� − P(ℎ, 𝑘)

}
,

where P(ℎ, 𝑘) is a non-random, positive, strictly monotonically increasing function of ℎ and 𝑘 . JWW
use the additive P(ℎ, 𝑘) = 𝑝ℎ + 𝑞ℎ with AIC-like lag penalty 𝑝ℎ = 2ℎ in an order selection-type Wald
statistic. This is sensible considering the Wald statistic is pointwise asymptotically chi-squared with
mean 2ℎ for each 𝑘 (see also Inglot and Ledwina, 2006). For 𝑞𝑘 they use

√
𝑘 − 1 based primarily on

empirical power considerations.2

In our non-Wald setting a similar reasoning for choosing P(ℎ, 𝑘) = 𝑝ℎ + 𝑞ℎ does not apply,
nor do we have any comparable requirements for penalizing 𝑘 . Indeed, a compelling reason for
"penalizing" M𝑇 at all would be to counter the loss of observations at higher lags or to con-
trol for lag specific heterogeneity, but that historically is ameliorated with a weighted correla-
tion, for example maxH𝑇 ,K𝑇

{
√
𝑇𝔚

(𝑘 )
𝑇,ℎ

| �̂� (𝑘 )
ℎ

− �̂�ℎ |}, where 𝔚
(𝑘 )
𝑇,ℎ

are possibly stochastic weights,

lim inf𝑇→∞ minH𝑇 ,K𝑇
𝔚

(𝑘 )
𝑇,ℎ

> 0 𝑎.𝑠., and maxH𝑇 ,K𝑇
|𝔚 (𝑘 )

𝑇,ℎ
− 𝔚

(𝑘 )
ℎ

|
𝑝
→ 0 where the non-stochastic

𝔚
(𝑘 )
ℎ

satisfy minH𝑇 ,K𝑇
𝔚

(𝑘 )
ℎ

> 0. Choices include Ljung-Box type weights, or an inverted non-
parametric standard deviation estimator, cf. Hill and Motegi (2020).

Consider the latter, define a sample covariance function �̂�𝑇 (𝑖; ℎ, 𝑘) ≡ 1/𝑇∑𝑇−ℎ−𝑖
𝑡=1 𝑧𝑡 (ℎ, 𝑘)𝑧𝑡+𝑖 (ℎ, 𝑘)

where

𝑧𝑡 (ℎ, 𝑘) ≡
{
𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡) −

1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡)
}
.

Under fourth order stationarity under the null, and because �̂�0 only operates as a scale asymptotically,
cf. Theorem 3.3 below, the weights are 𝔚

(𝑘 )
𝑇,ℎ

= 1/V̂𝑇 (ℎ, 𝑘) where, e.g.,

V̂2
𝑇 (ℎ, 𝑘) = �̂�

−2
0

{
�̂�𝑇 (0; ℎ, 𝑘) + 2

𝑇−ℎ−1∑︁
𝑖=1

K(𝑖/𝛽𝑇 )�̂�𝑇 (𝑖; ℎ, 𝑘)
}

(2.4)

with symmetric, square integrable kernel function K : R→ [−1,1] satisfying K(0) = 1,3 and band-
width 𝛽𝑇 →∞ and 𝛽𝑇 = 𝑜(𝑇).

A penalized and weighted version is thus:

M (𝑤,𝑝)
𝑇

≡ max
0≤ℎ≤H𝑇 ,1≤𝑘≤K𝑇

{√
𝑇𝔚

(𝑘 )
𝑇,ℎ

����̂� (𝑘 )
ℎ

− �̂�ℎ
��� − P(ℎ, 𝑘)

}
. (2.5)

In Monte Carlo work we study M𝑇 , M (𝑝)
𝑇

, and M (𝑤,𝑝)
𝑇

with a Walsh or Haar basis, and various
penalties and/or an inverted standard deviation weight or Ljung-Box weight. We find using P(ℎ, 𝑘) =
𝑝ℎ + 𝑞𝑘 where 𝑝ℎ = (ℎ + 1)𝑎/2 and 𝑞𝑘 = 𝑘𝑎/2 with 𝑎 = [1/8,1/2], or P(ℎ, 𝑘) =

√︁
(ℎ + 1)𝑘 , promotes

accurate empirical size but generally does not lead to dominant power, and may lead to decreased power
in some cases. Conversely, stochastic weights 𝔚 (𝑘 )

𝑇,ℎ
generally lead to over-sized tests, while Ljung-Box

weights do not offer an advantage under either hypothesis.

2The penalty 𝑞𝑘 =
√
𝑘 − 1 also satisfies a required lower bound on 𝑞𝑘 arising from a probability bound used to tackle a maximum

operator over an unbounded asymptotic set of (ℎ, 𝑘 ): see Jin, Wang and Wang (2015, eq. (3.4)).
3See, for example, class 𝔎2 in Andrews (1991), or class 𝔎 in de Jong and Davidson (2000, Assumption 1).
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Finally, a power improvement may be yielded by combining bases, in particular for bases with
uniquely defined systematic samples. Let M𝑇 (B 𝑗 ) be max-statistics based on J ∈ N orthonormal
bases B 𝑗 ,𝑘 (𝑥), 𝑗 = 1, ...,J . Then ignoring penalties and weights (to ease notation here), define the
so-called “max-max-statistic":

M̌𝑇 ≡ max
1≤ 𝑗≤J

{
M𝑇 (B 𝑗 )

}
. (2.6)

As an example, we study M̌𝑇 ≡ max {M𝑇 (W),M𝑇 (Ψ)} in simulation work, where M𝑇 (W) and
M𝑇 (Ψ) use Walsh and composite Haar bases respectively. An asymptotic theory for M̌𝑇 and its boot-
strapped p-value follow directly from results given below since J is a finite constant. Other options for
basis combinations are clearly available. Consider discretized bases 𝐵 𝑗 ,𝑘 (𝑡) and the set {�̄��̄� (𝑡)}K̄�̄�=1

=

{𝐵 𝑗 ,𝑘 (𝑡) : 𝑗 ∈ J ∗; 𝑘 ∈ K∗} where J ∗ and K∗ are index subsets of {1, ...,J} and {1, ...,K} yielding
unique B 𝑗 ,𝑘 (𝑥) ∀𝑥. Test statistics can then be derived from {�̄��̄� (𝑡)}K̄�̄�=1

.

3. Asymptotic theory
Write

𝑧𝑡 (ℎ, 𝑘) ≡ {𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡) − 𝐸 [𝑋𝑡𝑋𝑡+ℎ] 𝐵𝑘 (𝑡)} (3.1)

Z𝑇 (ℎ, 𝑘) ≡
1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑧𝑡 (ℎ, 𝑘), (3.2)

and define a variance function

𝜎2
𝑇 (ℎ, 𝑘) ≡ 𝐸

[
Z𝑇 (ℎ, 𝑘)2

]
.

In the general case 𝐸 [𝑋𝑡 ] ∈ R replace 𝑋𝑡 with 𝑋𝑡 − 𝐸 [𝑋𝑡 ].
The main result of this section delivers a class of sequences {H𝑇 ,K𝑇 }, and an array of random

variables {𝒁𝑇 (ℎ, 𝑘) : 𝑇 ∈ N}ℎ≥0,𝑘≥1 normally distributed 𝒁𝑇 (ℎ, 𝑘) ∼ 𝑁 (0, 𝜎2
𝑇
(ℎ, 𝑘)), such that the

Kolmogorov distance

𝜌𝑇 ≡ sup
𝑧≥0

����𝑃 (
max

H𝑇 ,K𝑇

|Z𝑇 (ℎ, 𝑘) | ≤ 𝑧
)
− 𝑃

(
max

H𝑇 ,K𝑇

|𝒁𝑇 (ℎ, 𝑘) | ≤ 𝑧
)����→ 0. (3.3)

The approximation does not require standardized Z𝑇 and 𝒁𝑇 in view of non-degeneracy Assumption
1.c below. We then apply the approximation to the max-correlation difference statistic.

Define 𝜎-fields

F∞
𝑇,𝑡 ≡ 𝜎 ({𝑋𝑡𝑋𝑡+ℎ : 0 ≤ ℎ ≤ H𝑇 }𝜏≥𝑡 ) and F 𝑡

𝑇,−∞ ≡ 𝜎 ({𝑋𝑡𝑋𝑡+ℎ : 0 ≤ ℎ ≤ H𝑇 }𝜏≤𝑡 ) ,

and 𝛼-mixing coefficients (Rosenblatt, 1956), 𝛼𝑙 ≡ lim sup𝑇→∞ sup𝑡∈Z supA⊂F𝑡
𝑇,−∞ ,B⊂F∞

𝑇,𝑡+𝑙
|P(A ∩

B) − P (A) P (B) |, for 𝑙 > 0.
We work in the setting of Chang, Chen and Wu (2021) who deliver high dimensional central limit

theorems for possibly non-stationary mixing sequences or under a physical dependence setting similar
to Zhang and Wu (2017). Chernozhukov, Chetverikov and Kato (2013, 2015, 2017) significantly im-
prove on results in the literature on maxima of a high dimensional sample mean of stationary indepen-
dent data. Chernozhukov, Chetverikov and Kato (2014, Appendix B), cf. Chernozhukov, Chetverikov
and Kato (2019, Supplemental Appendix), allow for almost surely bounded stationary 𝛽-mixing data.
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Zhang and Wu (2017) extend results in Chernozhukov, Chetverikov and Kato (2013) to a large class of
dependent stationary processes. Stationarity is not suitable here since even under the null we want to
allow for global non-stationarity.

Assumption 1.

𝑎. (geometric mixing): {𝑋𝑡 } is 𝛼-mixing with coefficients 𝛼𝑙 = 𝑂 (exp{−𝑙𝜙}) for some 𝜙 > 0.

𝑏. (subexponential tails): max1≤𝑡≤𝑇 𝑃( |𝑋𝑡 | > 𝑐) ≤ 𝜛 exp{−𝑐𝜗1E−𝜗2
𝑇

} for some 𝜛 ≥ 1, 𝜗1 ≥ 2𝜗2 and
𝜗2 ≥ 1, and some sequence of constants {E𝑇 }, lim inf𝑇→∞ E𝑇 ≥ 1.

𝑐. (nondegeneracy): lim inf𝑇→∞ 𝐸 [Z2
𝑇
(ℎ, 𝑘)] > 0 ∀(ℎ, 𝑘).

𝑑. (orthonormal basis): {B𝑘 (𝑥) : 0 ≤ 𝑘 ≤ K} forms a complete orthonormal basis on L[0,1); B𝑘 (𝑥)
∈ {−1,1} on [0,1); and |∑𝑇

𝑡=1 𝐵𝑘 (𝑡) | = 𝑂 ([(𝑘)) for some positive strictly monotonic function [ : R+
→ R+, [(𝑘) ↗ ∞ as 𝑘 →∞.

Remark 1. A version of (𝑎)-(𝑐) are imposed in Chang, Chen and Wu (2021, Conditions 1-3) for their
Theorem 1. Their Condition 1 implies max1≤𝑡≤𝑇 𝐸 [exp{|𝑋𝑡 |𝜗B−𝜗

𝑇
}] ≤ 2 for some 𝜗 ≥ 1 and E𝑇 ≥ 1,

hence from Markov’s inequality

max
1≤𝑡≤𝑇

𝑃 ( |𝑋𝑡 | > 𝑐) ≤ 2 exp{−𝑐𝜗E−𝜗
𝑇 }. (3.4)

(𝑏) generalizes their Condition 1 to ensure 𝑟-tuples max1≤𝑡1 ,...,𝑡𝑟 ≤𝑇 𝑃( |𝑋𝑡1 · · · 𝑋𝑡𝑟 | > 𝑐) ≤
𝑟𝜛 exp{−𝑐𝜗2E−𝜗2

𝑇
}, cf. Lemma A.2 in Appendix A. This is required for higher order asymptotics for

the bootstrapped p-value. The specific 𝜛 = 2 in Chang, Chen and Wu (2021) is cosmetic and assured
here by (𝑎) and Lemma A.2. Further, (𝑏) implies max1≤𝑡≤𝑇 𝐸 |𝑋𝑡 |𝑟 = 𝑂 (1) ∀𝑟 ≥ 1 by standard argu-
ments, ruling out monotonic trend in higher moments, but clearly permitting general forms of global
nonstationarity.

Remark 2. Nondegeneracy (𝑐) is common in the time series literature (e.g. Doukhan, 1994, Theo-
rem 1), in particular for non-standardized statistics involving nonstationary sequences.4 In our high
dimensional setting, (𝑐) is required for Theorem 1 in Chang, Chen and Wu (2021), due to their use of
Nazarov’s (2003) inequality (c.f. Chernozhukov, Chetverikov and Kato, 2017, Lemma A.1). It classi-
cally rules out degenerate dispersion and deviant negative co-dependence within the sequence {𝑋𝑡𝑋𝑡+ℎ
− 𝐸 [𝑋𝑡𝑋𝑡+ℎ]}𝑇−ℎ𝑡=1 . Simply note 𝐸 [Z2

𝑇
(ℎ, 𝑘)] = ((𝑇 − ℎ)/𝑇) × 𝐸 [(𝝀′

𝑇−ℎ �̌�𝑇−ℎ)2] where �̌�𝑇−ℎ ≡
[𝑋1𝑋1+ℎ − 𝐸 [𝑋1𝑋1+ℎ]]𝑇−ℎ𝑡=1 and 𝝀𝑇−ℎ ≡ (𝑇 − ℎ)−1/2 [𝐵𝑘 (1), ..., 𝐵𝑘 (𝑇 − ℎ)]. Notice 𝝀′

𝑇−ℎ𝝀𝑇−ℎ = 1
since 𝐵2

𝑘
(𝑡) = 1. Thus (𝑐) is satisfied by a classic positive definiteness property: inf_′_=1 𝐸 [(_′ �̌�𝑇−ℎ)2]

> 0 ∀(ℎ, 𝑘) and ∀𝑇 ≥ 𝑇 and some 𝑇 ∈ N. For example, impose fourth order stationarity (and there-
fore the null), and white noise 𝐸 [𝑋𝑡𝑋𝑡+ℎ] = 0 ∀ℎ ≥ 1 to reduce notation. Now define fourth order
correlation coefficients 𝑟 (𝑎, 𝑏, 𝑐, 𝑑) ≡ 𝐸 [𝑋𝑎𝑋𝑏𝑋𝑐𝑋𝑑] /𝐸 [𝑋2

𝑎𝑋
2
𝑐 ]. Then by expanding 𝐸 [(_′ �̌�𝑇−ℎ)2],

(𝑐) holds under pointwise non-degeneracy 𝐸 [𝑋2
1 𝑋

2
1+ℎ] > 0, and inf_′_=1{1 + ∑𝑇−ℎ−1

𝑖=1 𝑟 (0, ℎ, 𝑖, 𝑖 +
ℎ)∑𝑇−ℎ−𝑖

𝑡=1 _𝑡_𝑡+𝑖} > 0 ∀(ℎ, 𝑘), ∀𝑇 ≥ 𝑇 , ruling out deviant negative linear dependence. See also the
discussion in Chang, Chen and Wu (2021, p. 4-5). We cannot, however, impose fourth order stationar-
ity broadly, and thus the preceding sufficient conditions, because that rules out an asymptotic analysis

4See, e.g., de Jong (1997, Assumption 2.a), but also see Billingsley (1999, Theorem 19.1).
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under local or global alternatives, cf. Section 3.1. We need Assumption 1 to cover each hypothesis and
therefore all asymptotic theory.

Remark 3. If 𝑋𝑡 is (locally) sub-Gaussian then E𝑇 = 𝑂 (1) and 𝜗1 = 2, and under sub-exponentiality
E𝑇 = 𝑂 (1) and 𝜗1 = 1.5 Sub-exponentiality is equivalent to the existence of a moment generating func-
tion (in a neighborhood of zero), hence the existence of all moments (e.g. Vershynin, 2018, Proposition
2.7.).

Remark 4. As discussed above, the high dimensional limit theory and Gaussian approximation lit-
eratures typically assume global stationarity which would be a severe hindrance here. Even in the
broad literature there are trade-offs, akin to the implied exponential moment bound in (𝑏). In Cher-
nozhukov, Chetverikov and Kato (2014, Appendix B), for example, 𝑋𝑡 can be stationary 𝛽-mixing,
provided max1≤𝑡≤𝑇 maxH𝑇

|𝑋𝑡𝑋𝑡−ℎ − 𝛾ℎ | ≤ D𝑇 where D𝑇 → ∞ ultimately restricts the maximum
lag rate H𝑇 → ∞. Zhang and Wu (2017) allow for unbounded functionally dependent and stationary
{𝑋𝑡𝑋𝑡+ℎ} as long as 𝑋𝑡𝑋𝑡+ℎ is a measurable function of iid random variables, and a set of technical con-
ditions restricting dependence in high dimension hold (see their Theorem 3.2). Notice Chang, Chen and
Wu’s (2021) bound E𝑇 in (3.4) provides a significant improvement over Chernozhukov, Chetverikov
and Katos’ (2014) upper bound D𝑇 since clearly (3.4) allows for unbounded sequences.

Remark 5. Assumption 1 reveals a trade-off vis-à-vis JWW. We allow for nonlinear processes {𝑋𝑡 }
with possibly non-iid errors, and possibly global nonstationarity under the null, but 𝑋𝑡 must have
a moment generating function and exhibit geometric dependence. The latter rules out conventional
GARCH processes (which lack higher moments), but includes GARCH-type processes with errors
that have bounded support. JWW focus exclusively on linear processes 𝑋𝑡 =

∑∞
𝑖=0 𝜓𝑖𝑍𝑡−𝑖 with iid 𝑍𝑡

where 𝐸 |𝑍𝑡 |4𝜐 < ∞ for some 𝜐 > 1, excluding important nonlinear and conditionally heteroscedastic
processes. They impose 𝜓𝑖 = 𝑂 (1/[𝑖(ln 𝑖)1+^ ]) for some ^ > 0 and strict stationarity under the null,
yielding

∑∞
ℎ=1 |𝛾ℎ | < ∞ since 𝛾ℎ = 𝑜(1/ℎ). Thus JWW allow for hyperbolic and geometric memory

decay and the possible nonexistence of higher moments.

Remark 6. The bound |∑𝑇
𝑡=1 𝐵𝑘 (𝑡) | = 𝑂 ([(𝑘)) in (𝑑) is generally driven by the number of zero cross-

ings on [0,1) in the underlying smooth basis function B𝑘 (𝑥). Indeed, by Lemma 3 in JWW, Walsh
W𝑘 (𝑡) exhibit up to 𝑘 zero crossings, and |∑𝑇

𝑡=1 W𝑘 (𝑡) | ≤ 𝑘 + 1 hence [(𝑘) = 𝑘 . Conversely it is
easily seen that Haar composite Ψ𝑘 (𝑡) exhibits up to 2𝑘 zero crossings, and |∑𝑇

𝑡=1 Ψ𝑘 (𝑡) | = 𝑂 (2𝑘) by
Lemma A.1, hence [(𝑘) = 2𝑘 .

Recall 𝜙 appears in the mixing rate 𝛼𝑙 = 𝑂 (exp{−𝑙𝜙}), cf. Assumption 1.a, and recall E𝑇 in the
Assumption 1.b subexponential tail structure.

Lemma 3.1. Under Assumption 1, 𝜌𝑇 ≤ 𝑇−1/9{E2/3
𝑇

[ln (H𝑇K𝑇 )] (1+2𝜙)/(3𝜙) + E𝑇 [lnH𝑇K𝑇 ]7/6} →
0, for any sequences {E𝑇 ,H𝑇 ,K𝑇 } with 0 ≤ H𝑇 ≤ 𝑇 − 1, H𝑇 = 𝑜(𝑇), K𝑇 = 𝑜(𝑇 ^ ) for some finite ^ >
0, [(K𝑇 ) = 𝑜(

√
𝑇) where [(·) is the Assumption 1.d discrete basis summand bound, and

E𝑇 = 𝑜

(
𝑇1/6/{ln (𝑇)} (1+2𝜙)/(2𝜙)

)
. (3.5)

5Recall 𝑧 is sub-Gaussian when 𝑃 ( |𝑧 | > 𝑐) ≤ K exp{−𝜗𝑐2} for some 𝜗, K > 0, and sub-exponential when 𝑃 ( |𝑧 | > 𝑐)
≤ K exp{−𝜗𝑐}. Local sub-Gaussianicity allows for a non-zero mean and imposes an upper bound for only some 𝑐 (Chareka,
Chareka and Kennedy, 2006).
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In this case maxH𝑇 ,K𝑇
|Z𝑇 (ℎ, 𝑘) |

𝑑→ maxℎ,𝑘∈N |𝒁(ℎ, 𝑘) | where 𝒁(ℎ, 𝑘) ∼ 𝑁 (0, lim𝑇→∞𝜎2
𝑇
(ℎ, 𝑘)) and

lim𝑇→∞𝜎2
𝑇
(ℎ, 𝑘) < ∞.

Remark 7. In a time series setting H𝑇 = 𝑜(𝑇) must hold to ensure consistency of sample autocovari-
ances (and therefore consistency of the proposed test). We require the orthonormal basis B(𝑥) bound
function [(·) and maximum systematic sample counter K𝑇 to satisfy [(K𝑇 ) = 𝑜(

√
𝑇) to ensure the

mean summation S (𝑘 )
𝑇

(ℎ) ≡ 1/
√
𝑇

∑𝑇−ℎ
𝑡=1 𝐸 [𝑋𝑡𝑋𝑡+ℎ]𝐵𝑘 (𝑡) is negligible in the proof of Theorem 3.3 be-

low. Simply note that under 𝐻0 and Assumption 1.d, |S (𝑘 )
𝑇

(ℎ) | ≤ 𝛾ℎ |1/
√
𝑇

∑𝑇−ℎ
𝑡=1 𝐵𝑘 (𝑡) | ≤ 𝛾ℎ[(𝑘)/

√
𝑇

by Assumption 1.d. Thus max1≤𝑘≤K𝑇
|S (𝑘 )

𝑇
| ≤ 𝛾ℎ[(K𝑇 )/

√
𝑇 → 0 when [(K𝑇 ) = 𝑜(

√
𝑇). We also

exploit H𝑇 = 𝑜(𝑇) and the more concrete K𝑇 = 𝑜(𝑇 ^ ) for some finite ^ > 0 (that may be arbitrarily
large) to ensure a high dimensional central limit theorem applies. The latter K𝑇 = 𝑜(𝑇 ^ ) is implied
by [(K𝑇 ) = 𝑜(

√
𝑇) for Walsh and Haar functions: see below. Together with (3.5) this yields the Kol-

mogorov distance 𝜌𝑇 → 0. Theory developed in Chang, Chen and Wu (2021, Theorem 1), however,
allows for a significantly greater (exponential) upper bound on the product H𝑇K𝑇 for general high
dimensional means with dimension H𝑇K𝑇 .

Remark 8. Walsh functions W𝑘 (𝑡) have [(𝑘) = 𝑘 hence K𝑇 = 𝑜(
√
𝑇), while Haar composite Ψ𝑘 (𝑡)

have [(𝑘) = 2𝑘 hence K𝑇 = 𝑜(ln(𝑇)), yielding K𝑇 = 𝑜(𝑇 ^ ) respectively for some, or any, ^ > 0.

Remark 9. The result reveals a memory/heterogeneity trade-off: as 𝜙↘ 0 such that geometric mix-
ing memory deepens, the maximum allowed rate E𝑇 → ∞ is slower, restricting the range of feasible
exponential tails.

The following corollary focuses on the case E𝑇 = 𝑂 (1) which automatically satisfies (3.5) e.g. when
𝑋𝑡 is sub-exponential.

Corollary 3.2. Let Assumption 1 hold with E𝑇 = 𝑂 (1). Then 𝜌𝑇 → 0 for any sequences {H𝑇 ,K𝑇 }
with H𝑇 = 𝑜(𝑇), K𝑇 = 𝑜(𝑇 ^ ) for some finite ^ > 0, and [(K𝑇 ) = 𝑜(

√
𝑇).

Now define

𝜎2 (ℎ, 𝑘) ≡ lim
𝑇→∞

𝜎2
𝑇 (ℎ, 𝑘).

Under 𝐻0 and Assumption 1, 𝜎2 (ℎ, 𝑘) ∈ (0,∞). We now have a limit theory for the max-correlation
difference.

Theorem 3.3. Let 𝐻0 and Assumption 1 hold, and let H𝑇 ,K𝑇 → ∞. Let {𝒁(ℎ, 𝑘) : ℎ, 𝑘 ∈ N}
be a zero mean Gaussian process with 𝒁(ℎ, 𝑘) ∼ 𝑁 (0, 𝜎2 (ℎ, 𝑘)). Then it holds that M𝑇

𝑑→
𝛾−1

0 maxℎ,𝑘∈N |𝒁(ℎ, 𝑘) | for any {E𝑇 ,H𝑇 ,K𝑇 } with H𝑇 = 𝑜(𝑇), K𝑇 = 𝑜(𝑇 ^ ) for some finite ^ > 0,
[(K𝑇 ) = 𝑜(

√
𝑇) and (3.5).

Remark 10. Consider the weighted/penalized version M (𝑤,𝑝)
𝑇

in (2.5), and assume the weights satisfy

lim inf𝑇→∞ infH𝑇 ,K𝑇
𝔚

(𝑘 )
𝑇,ℎ

> 0 𝑎.𝑠., and maxH𝑇 ,K𝑇
|𝔚 (𝑘 )

𝑇,ℎ
− 𝔚

(𝑘 )
ℎ

|
𝑝
→ 0 where non-stochastic 𝔚

(𝑘 )
ℎ

satisfy infℎ,𝑘∈N𝔚
(𝑘 )
ℎ

> 0. The penalty functions (𝑝𝑣 , 𝑞𝑣) are positive, monotonically increasing and
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bounded on compact sets. Then from arguments used to prove Theorem 3.3, it follows that under the
conditions of Theorem 3.3:

M (𝑤,𝑝)
𝑇

𝑑→ 𝛾−1
0 max

𝑘∈N

[
max
ℎ∈N

{
𝔚

(𝑘 )
ℎ

|𝒁(ℎ, 𝑘) | − 𝑝ℎ
}
− 𝑞𝑘

]
Now suppose we standardize with 𝔚

(𝑘 )
𝑇,ℎ

= 1/V̂𝑇 (ℎ, 𝑘) with HAC estimator V̂2
𝑇
(ℎ, 𝑘) in (2.4), and

kernel function K(·) belonging to class 𝔎 in de Jong and Davidson (2000, Assumption 1), or class
𝔎2 ⊃ 𝔎 in Andrews (1991). de Jong and Davidson (2000) allow for possibly globally nonstationary
mixing sequences (or non-mixing satisfying a near epoch dependence property). In their environment
with bandwidth 𝛽𝑇 = 𝑜(𝑇) we have 𝔚 (𝑘 )

𝑇,ℎ
> 0 𝑎.𝑠. and 𝔚

(𝑘 )
𝑇,ℎ

𝑝
→𝔚

(𝑘 )
ℎ

= 1/V(ℎ, 𝑘) where V2 (ℎ, 𝑘) =
𝛾−1

0 lim𝑇→∞𝜎2
𝑇
(ℎ, 𝑘). Uniformity maxH𝑇 ,K𝑇

|𝔚 (𝑘 )
𝑇,ℎ

− 𝔚
(𝑘 )
ℎ

|
𝑝
→ 0 can be proved using theory devel-

oped in this section, and Section 4, omitted here for space considerations.

3.1. Max-correlation difference under 𝐻1

The correlation difference expands to:

√
𝑇 ( �̂� (𝑘 )

ℎ
− �̂�ℎ) =

1
�̂�0

1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

(𝑋𝑡𝑋𝑡+ℎ − 𝐸 [𝑋𝑡𝑋𝑡+ℎ]) 𝐵𝑘 (𝑡) +
1
�̂�0

1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

𝐸 [𝑋𝑡𝑋𝑡+ℎ] 𝐵𝑘 (𝑡). (3.6)

Under either hypothesis 1/
√
𝑇

∑𝑇−ℎ
𝑡=1 (𝑋𝑡𝑋𝑡+ℎ − 𝐸 [𝑋𝑡𝑋𝑡+ℎ])𝐵𝑘 (𝑡) is asymptotically normal. For the

sample variance, we similarly have under either hypothesis and Assumption 1:

√
𝑇

(
�̂�0 −

1
𝑇

𝑇∑︁
𝑡=1

𝐸

[
𝑋2
𝑡

] )
=

1
√
𝑇

𝑇∑︁
𝑡=1

(
𝑋2
𝑡 − 𝐸

[
𝑋2
𝑡

] )
=𝑂 𝑝 (1).

Hence, �̂�0 = 𝑔0 + 𝑂 𝑝 (1/
√
𝑇) assuming existence of 𝑔0 ≡ lim𝑇→∞ 1/𝑇∑𝑇

𝑡=1 𝐸 [[𝑋2
𝑡 ]. See below for

derivations of 𝑔0 under local and global alternatives.
In order to handle 1/

√
𝑇

∑𝑇−ℎ
𝑡=1 𝐸 [𝑋𝑡𝑋𝑡+ℎ]𝐵𝑘 (𝑡) in (3.6), we need a representation of a non-stationary

covariance for fixed and local alternatives. Let 𝛾ℎ (𝑢) be the time varying autocovariance function on
[0,1]. In the framework of locally stationary processes (cf. Dahlhaus, 1997, 2009), we may state the
global alternative hypothesis as

𝐻1 :
∫ 1

0

(
𝛾ℎ (𝑢) −

∫ 1

0
𝛾ℎ (𝑣)𝑑𝑣

)2

𝑑𝑢 > 0 for some ℎ ≥ 0. (3.7)

Thus under 𝐻1 there exists a lag ℎ and subset Sℎ ⊂ [0,1] with positive Lebesgue measure such that
𝛾ℎ (𝑢) ≠

∫ 1
0 𝛾ℎ (𝑣)𝑑𝑣 on Sℎ; hence 𝛾ℎ (𝑢) is not almost everywhere constant on [0,1].

Now, by completeness of {B𝑘 (𝑢) : 0 ≤ 𝑘 ≤ K} under Assumption 1.d, we may write 𝛾ℎ (𝑢) =∑∞
𝑘=0𝜔ℎ,𝑘B𝑘 (𝑢) = 𝜔ℎ,0 + ∑∞

𝑘=1𝜔ℎ,𝑘B𝑘 (𝑢), where 𝜔ℎ,𝑘 =
∫ 1

0 𝛾ℎ (𝑢)B𝑘 (𝑢) by orthonormality. Hence,
under 𝐻1 and orthonormality, for some ℎ ≥ 0.∫ 1

0

(
𝛾ℎ (𝑢) −

∫ 1

0
𝛾ℎ (𝑣)𝑑𝑣

)2

𝑑𝑢 =

∫ 1

0

( ∞∑︁
𝑘=1

𝜔ℎ,𝑘B𝑘 (𝑢)
)2

𝑑𝑢 =

∞∑︁
𝑘=1

𝜔2
ℎ,𝑘 > 0,
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which yields under 𝐻1, maxℎ,𝑘∈N |
∫ 1

0 𝛾ℎ (𝑢)B𝑘 (𝑢) | > 0.
A sequence of local alternatives with

√
𝑇-drift logically follows. Let

𝐻𝐿
1 : 𝐸 [𝑋𝑡𝑋𝑡+ℎ] = 𝛾ℎ + 𝑐ℎ (𝑡/𝑇)/

√
𝑇, (3.8)

where 𝛾ℎ is a constant for each ℎ, maxℎ∈N |𝛾ℎ | ≤ 𝐾 <∞, and 𝑐ℎ : [0,1] →R are integrable functions on
[0,1] uniformly over ℎ (i.e. supℎ∈N |

∫ 1
0 𝑐ℎ (𝑢)𝑑𝑢) | <∞), that satisfy (3.7) Thus, under local alternative

(3.8), by the preceding discussion:

lim inf
𝑇→∞

max
ℎ,𝑘∈N

����∫ 1

0
𝑐ℎ (𝑢) B𝑘 (𝑢)𝑑𝑢

���� > 0. (3.9)

In order to ensure min𝑡∈Z 𝐸 [𝑋2
𝑡 ] > 0, assume 𝛾0 > 0 and 𝑐0 (𝑢) ≥ 0 almost everywhere. Notice

lim𝑇→∞ |𝑇−1 ∑𝑇
𝑡=1 𝑐0 (𝑡/𝑇) | = |

∫ 1
0 𝑐0 (𝑢)𝑑𝑢 | < ∞ yields under 𝐻𝐿

1 :

𝑔0 ≡ lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

𝐸 [𝑋2
𝑡 ] = 𝛾0 + lim

𝑇→∞
1
√
𝑇

1
𝑇

𝑇∑︁
𝑡=1

𝑐0 (𝑡/𝑇) = 𝛾0.

Under Assumption 1.d |∑𝑇
𝑡=1 𝐵𝑘 (𝑡) | = 𝑂 ([(𝑘)), and maxℎ∈N |𝛾ℎ | ≤ 𝐾 and [(K𝑇 ) = 𝑜(

√
𝑇) by

supposition. Hence maxH𝑇 ,K𝑇
|1/

√
𝑇

∑𝑇−ℎ
𝑡=1 𝐵𝑘 (𝑡) | = 𝑜(1). Thus under 𝐻𝐿

1 :

1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

𝐸 [𝑋𝑡𝑋𝑡+ℎ] 𝐵𝑘 (𝑡) = 𝛾ℎ
1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

𝐵𝑘 (𝑡) +
1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑐ℎ (𝑡/𝑇)𝐵𝑘 (𝑡) (3.10)

= 𝑜 (1) + 1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑐ℎ (𝑡/𝑇)𝐵𝑘 (𝑡) →
∫ 1

0
𝑐ℎ (𝑢) B𝑘 (𝑢)𝑑𝑢,

where here and below 𝑜(1), and all subsequent 𝑂 𝑝 (·) and 𝑜𝑝 (·) terms, do not depend on (ℎ, 𝑘).
Asymptotics in our mixing setting rest on uniform limit theory over (ℎ, 𝑘), which here needs to

extend to the limit in (3.10). We therefore enhance local alternative (3.8) by assuming 𝑐ℎ (·) satisfies for
any {H𝑇 ,K𝑇 }:

max
H𝑇 ,K𝑇

����� 1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑐ℎ (𝑡/𝑇)𝐵𝑘 (𝑡) −
∫ 1

0
𝑐ℎ (𝑢) B𝑘 (𝑢)𝑑𝑢

�����→ 0. (3.11)

Now define:

C(ℎ, 𝑘) =
∫ 1

0
𝑐ℎ (𝑢) B𝑘 (𝑢)𝑑𝑢. (3.12)

Then under 𝐻𝐿
1 , lim inf𝑇→∞ maxℎ,𝑘∈N |C(ℎ, 𝑘) | > 0 in view of (3.9). Use arguments in the proof of

Theorem 3.3 to yield under 𝐻𝐿
1 :

√
𝑇

(
�̂�
(𝑘 )
ℎ

− �̂�ℎ
)
=

1
𝑔0

1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

(𝑋𝑡𝑋𝑡+ℎ − 𝐸 [𝑋𝑡𝑋𝑡+ℎ]) 𝐵𝑘 (𝑡)

+ 1
𝑔0

(∫ 1

0
𝑐ℎ (𝑢) B𝑘 (𝑢)𝑑𝑢 + 𝑜 (1)

)
+𝑂 𝑝 (1/

√
𝑇),
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hence by Lemma 3.1, for any {E𝑇 ,H𝑇 ,K𝑇 } with H𝑇 = 𝑜(𝑇), K𝑇 = 𝑜(𝑇 ^ ) for some finite ^ > 0, [(K𝑇 )
= 𝑜(

√
𝑇) and (3.5):

max
H𝑇 ,K𝑇

���√𝑇 (
�̂�
(𝑘 )
ℎ

− �̂�ℎ
)��� 𝑑→ 1

𝑔0
max
ℎ,𝑘∈N

|𝒁(ℎ, 𝑘) + C(ℎ, 𝑘) | (3.13)

Thus the max-correlation difference test has non-negligible power under the sequence of
√
𝑇-local

alternatives (3.8) when 𝑐ℎ (·) satisfy (3.7), for any complete orthonormal basis in view of (3.9). Notice
under 𝐻0 we have 𝑔0 = 𝛾0, and 𝑐ℎ (𝑢) = 0 ∀𝑢, ℎ so that C(ℎ, 𝑘) = 0 ∀ℎ, 𝑘 , yielding Theorem 3.3.

As a global generalization of 𝐻𝐿
1 , we may write 𝐻1 in discrete form as

𝐻1 : 𝐸 [𝑋𝑡𝑋𝑡+ℎ] = 𝛾ℎ + 𝑐ℎ (𝑡/𝑇), (3.14)

where as above 𝑐ℎ (·) satisfies (3.7). In this case 𝑔0 ≡ lim𝑇→∞𝑇−1 ∑𝑇
𝑡=1 𝐸 [𝑋2

𝑡 ] is identically:

𝑔0 = 𝛾0 + lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

𝑐0 (𝑡/𝑇) = 𝛾0 +
∫ 1

0
𝑐0 (𝑢) 𝑑𝑢 > 0.

Repeating the above derivations, we find similar to (3.10),

1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝐸 [𝑋𝑡𝑋𝑡+ℎ] 𝐵𝑘 (𝑡) = 𝛾ℎ
1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝐵𝑘 (𝑡) +
1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑐ℎ (𝑡/𝑇)𝐵𝑘 (𝑡) =
∫ 1

0
𝑐ℎ (𝑢) B𝑘 (𝑢)𝑑𝑢 + 𝑜 (1) .

and therefore

√
𝑇

(
�̂�
(𝑘 )
ℎ

− �̂�ℎ
)
=

1
𝑔0

1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

(𝑋𝑡𝑋𝑡+ℎ − 𝐸 [𝑋𝑡𝑋𝑡+ℎ]) 𝐵𝑘 (𝑡)

+ 1
𝑔0

√
𝑇

(∫ 1

0
𝑐ℎ (𝑢) B𝑘 (𝑢)𝑑𝑢 + 𝑜(1)

)
+𝑂 𝑝 (1/

√
𝑇).

Thus maxH𝑇 ,K𝑇
|
√
𝑇 ( �̂� (𝑘 )

ℎ
− �̂�ℎ) |

𝑝
→∞ given lim inf𝑇→∞ maxH𝑇 ,K𝑇

|
∫ 1

0 𝑐ℎ (𝑢) B𝑘 (𝑢)𝑑𝑢 | > 0.
The next result summarizes the preceding discussion.

Theorem 3.4. Let Assumption 1 hold, and let {E𝑇 ,H𝑇 ,K𝑇 } satisfy 0 ≤ H𝑇 ≤ 𝑇 − 1, H𝑇 → ∞, K𝑇

→∞, H𝑇 = 𝑜(𝑇), and (3.5).

𝑎. Under 𝐻𝐿
1 , (3.13) holds for non-zero C(ℎ, 𝑘) in (3.12), and any sequence {K𝑇 } with K𝑇 = 𝑜(𝑇 ^ ) for

some finite ^ > 0 and [(K𝑇 ) = 𝑜(
√
𝑇).

𝑏. Under 𝐻1, maxH𝑇 ,K𝑇
|
√
𝑇 ( �̂� (𝑘 )

ℎ
− �̂�ℎ) |

𝑝
→∞ for any {K𝑇 }.

In the following example we study a simple break in variance in order to show how the max-test
behaves asymptotically.

Example 3.5 (Structural Break in Variance). Assume covariances do not depend on time:
𝐸 [𝑋𝑡𝑋𝑡−ℎ] = 𝛾ℎ for every ℎ ≥ 1, but there is a structural break in variance at mid-sample (for simplicity
of discussion), cf. Perron (2006):

𝐸 [𝑋2
𝑡 ] = 𝑔1,𝑇 for 𝑡 = 1, ..., [𝑇/2] and 𝐸 [𝑋2

𝑡 ] = 𝑔2,𝑇 for 𝑡 = [𝑇/2] + 1, ...,𝑇
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for some strictly positive finite sequences {𝑔1,𝑇 , 𝑔2,𝑇 }, 𝑔1,𝑇 ≠ 𝑔2,𝑇 . In terms of, e.g., Walsh or compos-
ite Haar systematic samples and 𝐻𝐿

1 , this translates to

𝑐0 (𝑢) = 𝑐0,1 > 0 for 𝑢 ∈ [0,1/2), and 𝑐0 (𝑢) = 𝑐0,2 > 0 for 𝑢 ∈ [1/2,1],

where 𝑐0,1 ≠ 𝑐0,2. All other 𝑐ℎ (𝑢) = 0 on [0,1], ℎ ≥ 1. Hence, by construction of the first Walsh
function𝑊1 (𝑢) (or Haar composite 𝜓1 (𝑢)):∫ 1

0
𝑐0 (𝑢)𝑊1 (𝑢)𝑑𝑢 =

∫ 1/2

0
𝑐0 (𝑢) 𝑑𝑢 −

∫ 1

1/2
𝑐0 (𝑢) 𝑑𝑢 =

𝑐0,1 − 𝑐0,2

2
≠ 0.

Further:

𝑔0 ≡ lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

𝐸 [𝑋2
𝑡 ] = 𝛾0 +

∫ 1

0
𝑐0 (𝑢) 𝑑𝑢 = 𝛾0 +

𝑐0,1 + 𝑐0,2

2
.

The normalized correlation difference therefore satisfies for ℎ ≥ 1,

√
𝑇

(
�̂�
(𝑘 )
ℎ

− �̂�ℎ
)
=

1
𝑔0

1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

(𝑋𝑡𝑋𝑡+ℎ − 𝐸 [𝑋𝑡𝑋𝑡+ℎ]) 𝐵𝑘 (𝑡) + 𝑜𝑝 (1).

Under 𝐻1 at lag ℎ = 0 and 𝑘 = 1 we then have:

√
𝑇

(
�̂�
(1)
0 − �̂�0

)
=

1
𝑔0

1
√
𝑇

𝑇∑︁
𝑡=1

(
𝑋2
𝑡 − 𝐸

[
𝑋2
𝑡

] )
W1 (𝑡) +

√
𝑇

(
𝑐0,1 − 𝑐0,2

2𝑔0

)
+ 𝑜𝑝 (1)

=Z𝑇 + C𝑇 + 𝑜𝑝 (1),

say. In view of asymptotic normality of Z𝑇 , and |C𝑇 | → ∞, the max-correlation difference test is
consistent when only the variance 𝐸 [𝑋2

𝑡 ] exhibits a break given maxH𝑇 ,K𝑇

√
𝑇 | �̂� (𝑘 )

ℎ
− �̂�ℎ | ≥

√
𝑇 | �̂� (1)0

− �̂�0 | =
√
𝑇 |Z𝑇 + C𝑇 |

𝑝
→∞.

4. Dependent wild bootstrap

We exploit a blockwise wild (multiplier) bootstrap for p-value approximation (cf. Liu, 1988). The
method appears in various places as a multiplier bootstrap extension of block-based bootstrap methods
(e.g. Künch, 1989). Shao (2010) presents a general nonoverlapping dependent wild bootstrap, exploit-
ing a class of kernel smoothing weights that omits the truncated kernel, and uses only "big" blocks
of data ("little" block size is effectively zero). Shao (2011) uses the same method exclusively with a
truncated kernel for a white noise test for a stationary process that is a measurable function of an iid
sequence. In both cases a sequence {𝑋𝑡 }𝑇𝑡=1 is decomposed into [𝑇/𝑏𝑇 ] blocks of size 1 ≤ 𝑏𝑇 < 𝑇 , 𝑏𝑇
→∞ and 𝑏𝑇 = 𝑜(𝑇).

Chernozhukov, Chetverikov and Kato (2019) exploit a Bernstein-like "big" and "little" block multi-
plier bootstrap for high dimensional sample means of stationary, dependent and bounded sequences.
They apply a wild bootstrap on big blocks and effectively remove the asymptotically negligible little
blocks. Zhang and Cheng (2014) expand that method for stationary processes by using two mutually
independent iid sequences, one each for big and small blocks.
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We expand ideas in Shao (2011) to non-stationary sequences. The use of only one set of "big" blocks
and a truncated kernel eases technical arguments and notation, but a more general use of smoothing
kernels and big/little blocks is readily supported by the theory presented here.

Set a block size 𝑏𝑇 such that 1 ≤ 𝑏𝑇 < 𝑇 , 𝑏𝑇/𝑇 ] → ∞ and 𝑏𝑇/𝑇1− ] → 0 for some tiny ] > 0. The
number of blocks is N𝑇 = [𝑇/𝑏𝑇 ]. Denote the index blocks by 𝔅𝑠 = {(𝑠 − 1)𝑏𝑇 + 1, . . . , 𝑠𝑏𝑇 } with
𝑠 = 1, . . . ,N𝑇 , and 𝔅N𝑇+1 = {N𝑇𝑏𝑇 , ...,𝑇}. Generate iid random numbers {b1, . . . , bN𝑇

} with 𝐸 [b𝑖]
= 0, 𝐸 [b2

𝑖
] = 1, and 𝐸 [b4

𝑖
] < ∞. Typically in practice b𝑖 is iid 𝑁 (0,1), and we make that assumption

here to shorten the proof of a key supporting Lemma A.4. See its proof in the supplemental material
for further comments.

Define an auxiliary variable 𝜑𝑡 = b𝑠 if 𝑡 ∈ 𝔅𝑠 , and let Δ�̂� (𝑑𝑤)
𝑇

(ℎ, 𝑘) be a (centered) bootstrapped

version of �̂� (𝑘 )
ℎ

− �̂�ℎ = 𝑇−1 ∑𝑇−ℎ
𝑡=1 𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡):

Δ�̂�
(𝑑𝑤)
𝑇

(ℎ, 𝑘) ≡ 1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝜑𝑡

{
𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡) −

1
𝑇

𝑇−ℎ∑︁
𝑠=1

𝑋𝑠𝑋𝑠+ℎ𝐵𝑘 (𝑠)
}
. (4.1)

An asymptotically equivalent technique centers only on 𝑋𝑡𝑋𝑡+ℎ, the key stochastic term:

Δ�̂�
(𝑑𝑤)
𝑇

(ℎ, 𝑘) ≡ 1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝜑𝑡

{
𝑋𝑡𝑋𝑡+ℎ −

1
𝑇

𝑇−ℎ∑︁
𝑠=1

𝑋𝑠𝑋𝑠+ℎ

}
𝐵𝑘 (𝑡).

The bootstrapped test statistic is then M (𝑑𝑤)
𝑇

≡ �̂�−1
0 maxH𝑇 ,K𝑇

|
√
𝑇Δ�̂�

(𝑑𝑤)
𝑇

(ℎ, 𝑘) |. Repeat 𝑀 times.
As a by-product of the main result below, conditional on the sample {𝑋𝑡 }𝑇=1 this results in a sequence

{M (𝑑𝑤)
𝑇,𝑖

}𝑀
𝑖=1 of iid draws M (𝑑𝑤)

𝑇,𝑖
from the limit null distribution of M𝑇 as 𝑇 →∞ asymptotically with

probability approaching one. The approximate p-value is:

𝑝
(𝑑𝑤)
𝑇,𝑀

≡ 1
𝑀

𝑀∑︁
𝑖=1

𝐼

(
M (𝑑𝑤)

𝑇,𝑖
≥M𝑇

)
.

The bootstrap test rejects 𝐻0 at significance level 𝛼 when 𝑝 (𝑑𝑤)
𝑇,𝑀

< 𝛼.
The multiplier bootstrap has been studied in many contexts with intuitive insights given. Con-

sult, e.g., Liu (1988), Shao (2010), and Shao (2011) to name a few. Centering 𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡) −
1/𝑇∑𝑇−ℎ

𝑠=1 𝑋𝑠𝑋𝑠+ℎ𝐵𝑘 (𝑠) is required because we use {𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡)} to approximate the null distri-
bution, whether it is true or not, and 𝐸 [𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡)] ≠ 0 for some (ℎ, 𝑘) under 𝐻1. The block-
wise independent zero-mean Gaussian multiplier 𝜑𝑡 serves the purpose that 𝜑𝑡 {𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡) −
1/𝑇∑𝑇−ℎ

𝑠=1 𝑋𝑠𝑋𝑠+ℎ𝐵𝑘 (𝑠)}, conditioned on sample 𝔛𝑇 ≡ {𝑋𝑡 }𝑇𝑡=1, is zero mean normally distributed;

indeed, Δ�̂� (𝑑𝑤)
𝑇

(ℎ, 𝑘) |𝔛𝑇 ∼ 𝑁 (0,V𝑇 (ℎ, 𝑘)) for some V𝑇 (ℎ, 𝑘) > 0 𝑎.𝑠. The blocks are constructed
such that the dispersion term V𝑇 (ℎ, 𝑘) well approximates the null limiting variance under general
dependence, that is V𝑇 (ℎ, 𝑘)

𝑝
→ 𝜎2 (ℎ, 𝑘). Thus, in the jargon of Giné and Zinn (1990, Section 3),

Δ�̂�
(𝑑𝑤)
𝑇

(ℎ, 𝑘) |𝔛𝑇
𝑑→ 𝒁(ℎ, 𝑘) ∼ 𝑁 (0, 𝜎2 (ℎ, 𝑘)) in probability,6 ensuring the bootstrapped process yields

the null distribution, irrespective of whether 𝐻0 holds or not.

6Thus, convergence is in distribution, asymptotically with probability approaching one for any drawn sample {𝑋𝑡 }𝑇𝑡=1.
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Recall 𝑧𝑡 (ℎ, 𝑘) in (3.1) and Z𝑇 (ℎ, 𝑘) ≡ 1/
√
𝑇

∑𝑇−ℎ
𝑡=1 𝑧𝑡 (ℎ, 𝑘). Write 𝑔𝑇 (ℎ, 𝑘) ≡ 1/(𝑇 − ℎ)∑𝑇−ℎ

𝑢=1
𝐸 [𝑋𝑢𝑋𝑢+ℎ] 𝐵𝑘 (𝑢) and

𝔛𝑇,𝑙 (ℎ, 𝑘) ≡
𝑙𝑏𝑇∑︁

𝑡=(𝑙−1)𝑏𝑇+1

{𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡) − 𝑔𝑇 (ℎ, 𝑘)} ,

and define pre-asymptotic and asymptotic long run covariance functions 𝑠2
𝑇
(ℎ, 𝑘; ℎ̃, �̃�) ≡

1/𝑇∑(𝑇−ℎ∨ℎ̃)/𝑏𝑇
𝑙=1 𝐸 [𝔛𝑇,𝑙 (ℎ, 𝑘)𝔛𝑇,𝑙 ( ℎ̃, �̃�))] and 𝑠2 (ℎ, 𝑘; ℎ̃, �̃�) ≡ lim𝑇→∞ 𝑠2

𝑇
(ℎ, 𝑘; ℎ̃, �̃�).

Assumption 2.

𝑎. (𝑖) lim inf𝑇→∞ 𝑠2
𝑇
(ℎ, 𝑘; ℎ̃, �̃�) > 0 ∀(ℎ, ℎ̃, 𝑘, �̃�); and (𝑖𝑖) maxH𝑇 ,K𝑇

|𝑠2
𝑇
(ℎ, 𝑘; ℎ̃, �̃�) − 𝑠2 (ℎ, 𝑘; ℎ̃, �̃�) | =

𝑂 (𝑇− ]) for some infinitessimal ] > 0.

𝑏. 𝑏𝑇/𝑇 ] →∞ and 𝑏𝑇 = 𝑜(𝑇1/2− ]) for some infinitessimal ] > 0.

Remark 11. (𝑎.𝑖) is the fourth order block bootstrap version of Assumption 1.c, used to ensure a
high dimensional central limit theory extends to a long run bootstrap variance, cf. Chernozhukov,
Chetverikov and Kato (2013, Lemma 3.1). (𝑎.𝑖𝑖) seems unavoidable, and is required to link covariance
functions for a high dimensional bootstrap theory, cf. Chernozhukov, Chetverikov and Kato (2013,
Lemma 3.1) and Chernozhukov, Chetverikov and Kato (2015, Theorem 2, Proposition 1). The property
is trivial under stationary geometric mixing, and otherwise restricts the degree of allowed heterogeneity.

Remark 12. (𝑏) simplifies a bootstrap weak convergence proof, but can be weakened at the cost of
added notation, e.g. 𝑏𝑇/(ln(𝑇))𝑎 →∞ and 𝑏𝑇 = 𝑜(𝑇1/2/(ln(𝑇))𝑏) for some 𝑎, 𝑏 > 0.

Remark 13. A general sacrifice is the reduced lag upper bound H𝑇 = 𝑂 (𝑇1− ]/𝑏𝑇 ) required for The-
orem 4.1 below. In particular, in the proof of supporting Lemma A.4, we exploit a high dimensional
multiplier bootstrap central limit theorem, which requires high dimensional uniform convergence of a
bootstrap variance at rate 𝑂 (1/𝑇 ]) for some tiny ] > 0. In view of the block size 𝑏𝑇 → ∞ that natu-
rally appears in the variance, and lagging in a covariance setting, we yield upper bounds in the proof
similar to 𝑏𝑇 ℎ

𝑇−ℎ , hence 𝑏𝑇 ℎ
𝑇−ℎ = 𝑂 (1/𝑇 ]) uniformly over ℎ when 𝑏𝑇

H𝑇

𝑇
= 𝑂 (1/𝑇 ]). This suggests

a logical trade-off: we can enforce a slow block size growth rate to reach H𝑇/
√
𝑇 → ∞, although we

cannot achieve H𝑇 = 𝑜(𝑇). In simulation work we find block sizes 𝑏𝑇 ∝ 𝑇1/2− ] work well, effectively
restricting H𝑇 = 𝑂 (𝑇1/2− ]).

The blockwise wild bootstrap is valid asymptotically.

Theorem 4.1. Let Assumptions 1-2 hold, let H𝑇 ,K𝑇 → ∞, and let the number of bootstrap samples
𝑀 = 𝑀𝑇 → ∞ as 𝑇 → ∞. Let {E𝑇 ,H𝑇 } satisfy 0 ≤ H𝑇 ≤ 𝑇 − 1, H𝑇 = 𝑂 (𝑇1− ]/𝑏𝑇 ) and (3.5),
where block size 𝑏𝑇 →∞ and 𝑏𝑇 = 𝑂 (𝑇1/2− ]). Under 𝐻0, 𝑃(𝑝 (𝑑𝑤)

𝑇,𝑀
< 𝛼) → 𝛼 for any sequence {K𝑇 }

satisfying K𝑇 = 𝑜(𝑇 ^ ) for some finite ^ > 0 and [(K𝑇 ) = 𝑜(
√
𝑇). Under 𝐻1 in (3.14) where 𝑐ℎ (·)

satisfy (3.9), 𝑃(𝑝 (𝑑𝑤)
𝑇,𝑀

< 𝛼) → 1 for any {K𝑇 }.
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5. Monte carlo study

We now study the proposed bootstrap test in a controlled environment. We generate 1000 independently
drawn samples from various models, with sample sizes 𝑇 ∈ {64,128,256,512}. The models under the
null and alternative hypotheses are detailed below.

5.1. Empirical size

We use four models of covariance stationary processes: MA(1), AR(1), and Self Exciting Threshold
AR(1) [SETAR], in each case with iid or GARCH innovations; and GARCH (1,1) with iid errors.

null-1 MA(1) 𝑋𝑡 = 𝜖𝑡
null-2 AR(1) 𝑋𝑡 = .5𝑋𝑡−1 + 𝜖𝑡
null-3 SETAR 𝑋𝑡 = .7𝑋𝑡−1 − 1.4𝑋𝑡−1𝐼 (𝑋𝑡−1 > 0) + 𝜖𝑡 ,
null-4 GARCH(1,1) 𝑋𝑡 = 𝜎𝑡 𝑧𝑡 , 𝑧𝑡

𝑖𝑖𝑑∼ 𝑁 (0,1), 𝜎2
𝑡 = 1 + .3𝜖2

𝑡−1 + .6𝜎
2
𝑡−1

Models #1-#3 have an iid error 𝜖𝑡 distributed 𝑁 (0,1) or Student’s-𝑡 with 5 degrees of freedom (𝑡5);
or 𝜖𝑡 is stationary GARCH(1,1) 𝜖𝑡 = 𝜎𝑡 𝑧𝑡 , 𝑧𝑡

𝑖𝑖𝑑∼ 𝑁 (0,1), 𝜎2
𝑡 = 1 + .3𝜖2

𝑡−1 + .6𝜎2
𝑡−1, with iteration 𝜎2

1 =

1 and 𝜎2
𝑡 = 1 + .3𝜖2

𝑡−1 + .6𝜎2
𝑡−1 for 𝑡 = 2, ...,𝑇 . The SETAR model switches between AR(1) regimes

with correlations .7 and −.7. GARCH and SETAR models, and any model with GARCH errors, do
not have a linear form 𝑋𝑡 =

∑∞
𝑖=0 𝜓𝑖𝑍𝑡−𝑖 , with iid 𝑍𝑡 and non-random 𝜓𝑖 , and therefore do not satisfy

conditions in JWW and elsewhere. We simulate 2𝑇 observations for each model and retain the latter
𝑇 observations for analysis. Test results in GARCH cases should be viewed with caution: max-test
asymptotics have only been established under sub-exponentail tails, and JWW’s test requires a linear
model with an iid error.

5.2. Empirical power

We study empirical power by using models similar to those used in Paparoditis (2010b); Dette, Preuß
and Vetter (2011), Preuß, Vetter and Dette (2013) and JWW, with the addition of allowing for non-iid
errors and non-stationarity in variance. The models are as follows:

alt-1 (NI) 𝑋𝑡 = 1.1 cos{1.5 − cos(4𝜋𝑡/𝑇)}𝜖𝑡−1 + 𝜖𝑡
alt-2 (NVIII) 𝑋𝑡 = .8 cos{1.5 − cos(4𝜋𝑡/𝑇)}𝜖𝑡−6 + 𝜖𝑡
alt-3 (NII) 𝑋𝑡 = .6 × sin(4𝜋𝑡/𝑇)𝑋𝑡−1 + 𝜖𝑡
alt-4 (NIII) 𝑋𝑡 =

{
.5𝑋𝑡−1 + 𝜖𝑡 for {1 ≤ 𝑡 ≤ 𝑇/4} ∪ {3𝑇/4 < 𝑡 ≤ 𝑇}
−.5𝑋𝑡−1 + 𝜖𝑡 for 𝑇/4 < 𝑡 ≤ 3𝑇/4

alt-5 (NVI) 𝑋𝑡 =

{
.5𝑋𝑡−1 + 𝜖𝑡 for 1 ≤ 𝑡 ≤ 𝑇/2
−.5𝑋𝑡−1 + 𝜖𝑡 for 𝑇/2 < 𝑡 ≤ 𝑇

alt-6 (eq. (16)) 𝑋𝑡 = 2𝜖𝑡 − {1 + .5 cos(2𝜋𝑡/𝑇)} 𝜖𝑡−1

alt-7 (NV) 𝑋𝑡 = −.9
√︁
(𝑡/𝑇)𝑋𝑡−1 + 𝜖𝑡

alt-8 𝑋𝑡 = .5𝑋𝑡−1 + 𝑣𝑡 :
{
𝑣𝑡 = 𝜖𝑡 for 1 ≤ 𝑡 ≤ 3𝑇/4
𝑣𝑡 = 2𝜖𝑡 for 3𝑇/4 < 𝑡 ≤ 𝑇

alt-9 𝑋𝑡 = .8 cos{1.5 − cos(4𝜋𝑡/𝑇)}𝜖𝑡−25 + 𝜖𝑡
Models 1-7 are used in JWW: we display parenthetically their corresponding model/equation num-

ber. Models 1, 2, 4 are considered in Paparoditis (2010b); Dette, Preuß and Vetter (2011) use models
1, 2, 4, and 6; and Preuß, Vetter and Dette (2013) study 2, 5, and 7. Alt-8 presents a structural change
in variance only, and alt-9 is a distant version of alt-2 and therefore more difficult to detect (lag 25 as
opposed to lag 6). As above, we use either iid standard normal, iid 𝑡5, or GARCH(1,1) 𝜖𝑡 .
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Table 1. H𝑇 , K𝑇 Combinations by Basis

Walsh Basis {𝑊𝑘 (𝑡)} Haar Basis {Ψ𝑘 (𝑡)}

Case 1 (JWW) Case 2 Case 1 (JWW) Case 2

𝑇 𝐻𝑇 𝐾𝑇 𝐻𝑇 𝐾𝑇 𝐻𝑇 𝐾𝑇 𝐻𝑇 𝐾𝑇

log2 (𝑇).99 − 3 𝑇1/3 2𝑇 .49 .5𝑇 .49 log2 (𝑇).99 − 3 (ln(𝑇)).99 2𝑇 .49 (ln(𝑇)).99

64 2 4 14 3 2 4 14 4
128 3 5 20 5 3 5 20 5
256 4 6 30 7 4 5 30 5
512 5 8 42 10 5 6 42 6

5.3. Tests
5.3.1. Max-test

We perform the bootstrapped max-correlation difference test with M𝑇 and M (𝑝)
𝑇

. The latter has penal-
ties 𝑝ℎ = (ℎ + 1)1/4/2 and 𝑞𝑘 = 𝑘1/4/2. More severe penalties, e.g. 𝑞𝑘 = 𝑘1/2/2, do not improve test
performance. A weighted version of the test with HAC estimator (2.4) leads to competitive size but
generally lower power, hence we focus only on M𝑇 and M (𝑝)

𝑇
. We use Walsh or Haar functions for

two max-tests, and a third combined max-max-statistic shown below (2.6). We only report results based
on Walsh functions because (𝑖) the Haar-based tests (max-test, and JWW’s test detailed below) yielded
far lower power across most alternatives under study here; hence (𝑖𝑖) the max-max test performed es-
sentially on par with the Walsh-based test.

We use 500 bootstrap samples with multiplier iid variable b𝑡 ∼ 𝑁 (0,1). Theorem 4.1 requires a block
size bound 𝑏𝑇 = 𝑜(𝑇1/2− ]) for some tiny ] > 0, hence we use 𝑏𝑇 = [𝑇1/2−[] where [ = 10−10. Similar
block sizes, e.g. 𝑏𝑇 = [𝑏𝑇1/2−[] with 𝑏 ∈ [.5,2] lead to similar results.7

Theorem 4.1 also requires H𝑇 = 𝑂 (𝑇1− ]/𝑏𝑇 ), K𝑇 = 𝑜(𝑇 ^ ) for some ^ > 0, and [(K𝑇 ) = 𝑜(
√
𝑇).

In the Walsh case [(𝑘) = 𝑘 hence K𝑇 = 𝑜(
√
𝑇); in the Haar case [(𝑘) = 2𝑘 hence K𝑇 = 𝑜(ln(𝑇)). In

the Walsh case, we used two pairings of sequences {H𝑇 ,K𝑇 }. The first H𝑇 = [log2 (𝑇).99 − 3] and K𝑇

= [𝑇1/3] is used in JWW. The second H𝑇 = [2𝑇 .49] and K𝑇 = [.5𝑇 .49] satisfies our assumptions but
are not valid in JWW. The latter (H𝑇 ,K𝑇 ) are generally larger, where H𝑇 is larger by an order of ×7.
This will lead to higher power for large 𝑇 in theory, but in small samples obviously a larger ℎ results in
fewer observations for computation, and therefore a loss in sharpness in probability. In the Haar case
we use either H𝑇 above, and K𝑇 = [(ln(𝑇)).99]. Refer to Table 1.

5.3.2. JWW test

Write �̂�ℎ ≡ [�̂�1, ..., �̂�ℎ]′, �̂� (𝑘 )
ℎ

≡ [�̂� (𝑘 )1 , ..., �̂�
(𝑘 )
ℎ

]′. The test statistic is:

D̂𝑇 ≡ max
1≤𝑘≤K𝑇

[
max

1≤ℎ≤H𝑇

{
𝑇

(
�̂� (𝑘 )
ℎ

− �̂�ℎ

) ′ (
Γ̂
(𝑘 )
ℎ

)−1 (
�̂� (𝑘 )
ℎ

− �̂�ℎ

)
− 2ℎ

}
−
√
𝑘 − 1

]
,

7Shao (2011) uses 𝑏𝑇 = [𝑏𝑇1/2 ] with 𝑏 ∈ {.5, 1, 2}, leading to qualitatively similar results. Hill and Motegi (2020) also use 𝑏

= 1, but find qualitatively similar results for values 𝑏 ∈ {.5, 1, 2}.
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where Γ̂
(𝑘 )
ℎ

is an estimator of the ℎ× ℎ asymptotic covariance matrix of
√
𝑇 (�̂� (𝑘 )

ℎ
− �̂�ℎ). See Jin, Wang

and Wang (2015, Sections 2.3-2.5) for details on computing Γ̂
(𝑘 )
ℎ

(under the assumption of linearity
𝑋𝑡 =

∑∞
𝑖=0 𝜓𝑖𝑍𝑡−𝑖 with an iid 𝑍𝑡 ).8 We use both Walsh (as in JWW) and Haar bases, the same tuning

parameters that JWW use for covariance matrix estimation, and the same {H𝑇 ,K𝑇 } described above.9

We perform the test both based on a simulated critical values (denoted D̂𝑐𝑣
𝑇

), and bootstrapped p-
values (D̂𝑑𝑤

𝑇
) in order to make a direct comparison with the method developed here. We simulate

critical values for each basis and each pair (H𝑇 ,K𝑇 ) by running a separate simulation with 200,000
independently drawn samples of size 𝑇 of iid 𝑁 (0,1) distributed random variables 𝑋𝑡 , and use the
true excess kurtosis value 0 in the covariance estimator Γ̂ (𝑘 )

ℎ
. The bootstrap is performed by replacing

�̂� (𝑘 )
ℎ

− �̂�ℎ in D̂𝑇 with Δ�̂�
(𝑑𝑤)
𝑇

(ℎ, 𝑘) from (4.1). We do not prove asymptotic validity of the bootstrapped

p-value, but once uniform consistency of Γ̂
(𝑘 )
ℎ

is established, it follows identically from arguments
given in the proof of Theorem 4.1. Indeed, the bootstrap is valid for linear and nonlinear processes with
iid or non-iid innovations, and covering the nonstationary processes under 𝐻1. The simulated critical
values, however, are suitable in theory only for linear processes with iid innovations since they rely on
the specific form of Γ̂ (𝑘 )

ℎ
used here, and a pivotal Gaussian null limit distribution, cf. Jin, Wang and

Wang (2015, Sections 2.3-2.5).

5.4. Results

Tables A.3-A.6 in Appendix F of the supplemental material present rejection frequencies at
(1%,5%,10%) significance levels when a Walsh basis is used.

The penalized max-test does not perform better than the non-penalized test, and generally performs
worse under the alternative. Indeed, as discussed above, there is no theory driven reason for adding
penalties for a max-test. In the sequel we therefore only discuss the non-penalized test.

Similarly, the bootstrapped JWW test is generally over-sized, and massively over-sized at small 𝑛
under (H ,K) Case 1, the only valid case in this study. We suspect the cause is the estimated variance
matrix due to its many components and tuning parameters. We henceforth only discuss results based
on simulated critical values.

5.4.1. Null

Both tests are comparable for MA and AR models with iid Gaussian or 𝑡5 errors, with fairly accurate
empirical size. The max-test has accurate size in many cases, and is otherwise conservative. JWW’s
test tends to be over-sized in the AR model with GARCH errors under both (H ,K) cases, and is over-
sized in the AR model with 𝑡5 errors under Case 2 when 𝑛 ≤ 128. Recall H𝑇 is much larger under
Case 2, which will be a hindrance at smaller 𝑛 for test statistics that simultaneously incorporate a set of
autocovariances (e.g. Wald or portmanteau statistics).

8There is a typo in Jin, Wang and Wang (2015, Theorem 2) concerning their covariance matrix and therefore its estimator.
A parameter ^4, referred to as the kurtosis of the iid 𝑍𝑡 , is in fact the excess kurtosis (kurtosis −3). See Proposition 7.3.1 in
Brockwell and Davis (1991), in particular eq. (7.3.5), cf. Jin, Wang and Wang (2015, p. 915).
9The bandwidth parameter _ in [𝑇_ ], the number of sample covariances that enter the asymptote covariance matrix estimator,
is set to _ = .4 based on a private communication with the authors. Second, in order to compute the (excess) kurtosis of iid
𝑍𝑡 under linearity, similar to Jin, Wang and Wang (2015, eq. (15)) we use an estimator in Kreiss and Paparoditis (2015), with
two bandwidths 𝑏 𝑗 = 𝑐 𝑗𝑇

−1/3 where 𝑐 𝑗 = 1.25×crude scale estimate (see Jin, Wang and Wang, 2015, p. 903). A private
communication with one coauthor states the scale estimate used was �̂� (0) , hence 𝑐 𝑗 = 1.25 × �̂� (0) .



A bootstrapped test of covariance stationarity 25

Table 2. Test Dominance Summary

(H ,K) Case 1 (H ,K) Case 2

𝐻1\𝜖𝑡 𝑁 (0,1) 𝑡5 GARCH 𝑁 (0,1) 𝑡5 GARCH

alt-1 D̂𝑇 small 𝑛 D̂𝑇 small 𝑛 D̂𝑇 D̂𝑇 small 𝑛 D̂𝑇 small 𝑛 D̂𝑇

alt-2 M̂𝑻 M̂𝑻 M̂𝑻 M̂𝑻 M̂𝑻 M̂𝑻
alt-3 D̂𝑇 small 𝑛 D̂𝑇 small 𝑛 D̂𝑇 D̂𝑇 small 𝑛 D̂𝑇 small 𝑛 D̂𝑇

alt-4 D̂𝑇 small 𝑛 D̂𝑇 small 𝑛 D̂𝑇 D̂𝑇 small 𝑛 D̂𝑇 small 𝑛 D̂𝑇

alt-5 M̂𝑻 M̂𝑻 M̂𝑻 M̂𝑻 M̂𝑻 M̂𝑻

alt-6 M̂𝑻 M̂𝑻 similar M̂𝑻 M̂𝑻 similar
alt-7 D̂𝑇 larger 𝑛 D̂𝑇 large n D̂𝑇 large 𝑛 D̂𝑇 large 𝑛 D̂𝑇 large 𝑛 D̂𝑇 large 𝑛
alt-8 M̂𝑻 M̂𝑻 M̂𝑻 M̂𝑻 M̂𝑻 M̂𝑻

alt-9 M̂𝑻 M̂𝑻 M̂𝑻 M̂𝑻 M̂𝑻 M̂𝑻

Each cell dictates which test performed best (in certain cases). For example “D̂𝑇 small 𝑛" implies D̂𝑇 dominates
for smaller sample sizes, and for other 𝑛 the two tests are comparable. “M̂𝑇 " implies M̂𝑇 dominates across

sample sizes.

In the SETAR case JWW’s test is largely over-sized, while the max-test is slightly under-sized with
improvement under (H ,K) Case 2. JWW’s test is over-sized for small 𝑛 with the GARCH model, but
otherwise works well.

5.4.2. Alternative

In Table 2 we give a simple summary of which test generally dominates for each model and case based
on the complete simulation results. In brief, each test dominates for certain models, and in some cases
they are comparable. JWW’s test generally dominates in models 1, 3, and 4, and for model 7 for larger
sample sizes. This applies across error cases, including GARCH errors.

The max-test dominates in models 2, 6, 8 and 9, with strong domination for model 8 (break in vari-
ance), and models 2 and 9 (distant nonstationarity). Indeed, JWW’s test has only negligible power for
models 2, 8 and 9: by construction it cannot detect a break in variance (model 8), and seems incapable
of detecting a distant (model 9), or even semi-distant (model 2), form of covariance nonstationarity.

Overall, both tests clearly have merit, and seem to complement each other based on the different
cases in which they each excel. Both tests could be applied in practice to glean whether covariance
stationarity applies. We do exactly that in the supplemental material for international exchange rates:
see Appendix E.

6. Conclusion
We present a max-correlation difference test for testing covariance stationarity in a general setting
that allows for nonlinearity and random volatility, and heterogeneity under either hypothesis. Our test
exploits a generic orthonormal basis under mild conditions, with Walsh and Haar wavelet function
examples. We do not require estimation of an asymptotic covariance matrix, our test can detect a break
in variance, and we deliver an asymptotically valid dependent wild bootstrapped p-value. Orthonormal
basis based tests direct power toward alternatives implied by basis-specific systematic samples. Thus,
by combining bases a power improvement may be achievable. In controlled experiments, however, we
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find the Walsh basis yields superior properties compared to a composite Haar basis. We leave for future
endeavors the question of whether other bases may yet perform better than the Walsh basis for a test of
covariance stationarity.

Furthermore, the max-test dominates JWWs in some case, while JWW’s dominates in others. The
max-test is best capable of delivering sharp empirical size for a nonlinear process and when errors are
non-iid; and is particularly suited for detecting distant (large lag) forms of covariance non-stationarity,
and a break in variance. The former corroborates findings in Hill and Motegi (2020), who find a max-
correlation white noise test strongly dominates Wald and portmanteau tests when there is a distant
non-zero correlation. We conjecture this will carry over to other nonstationary models with distant
breaks in covariance, but leave this idea for future consideration.

Appendix A: proofs
The following result shows the composite Haar wavelets {𝜓𝑘 (𝑥)} form a complete orthonormal basis.

Lemma A.1. 𝑎. {𝜓𝑘 (𝑥) : 1 ≤ 𝑘 ≤ K𝑇 } forms a {−1,1}-valued complete orthonormal basis in L[0,1);
𝑏. |∑𝑇

𝑡=1 Ψ𝑘 (𝑡) | = 𝑂 (2𝑘); 𝑐. lim𝑇→∞ 1/𝑇∑𝑇
𝑡=1 Ψ𝑘 (𝑡) = 0; 𝑑.

∑𝑇
𝑡=1 Ψ𝑘 (𝑡) = 0 if 2𝑘 is a multiple of 𝑇 .

Proof.

Claim (a). By construction, for 𝑘 = 1,2, ...,

𝜓𝑘 (𝑥) =
2𝑘−1−1∑︁
𝑚=0

𝜓(2𝑘−1𝑥 −𝑚) = 𝜓(2𝑘−1𝑥) + 𝜓(2𝑘−1𝑥 − 1) + · · · + 𝜓(2𝑘−1𝑥 − 2𝑘−1 + 1),

where 𝜓(𝑥) ∈ {−1,0,1}, and

𝜓(2𝑘𝑥 −𝑚) = 𝐼
(
𝑚

2𝑘
≤ 𝑥 < 𝑚 + 1/2

2𝑘

)
− 𝐼

(
𝑚 + 1/2

2𝑘
≤ 𝑥 < 𝑚 + 1

2𝑘

)
.

For a given couplet (𝑥, 𝑘), by mutual exclusivity it follows 𝜓(2𝑘𝑥 − 𝑚) ∈ {−1,1} for only one 𝑚 ∈
{0, ...,2𝑘 − 1}. Hence 𝜓𝑘 (𝑥) ∈ {−1,1}.

Next, by construction of the Haar wavelet functions 𝜓(2𝑘𝑥 −𝑚):

∫ 1

0
𝜓𝑘 (𝑥)𝑑𝑥 =

2𝑘−1∑︁
𝑚=0

∫ 1

0
𝜓(2𝑘−1𝑥 −𝑚)𝑑𝑥 =

2𝑘−1−1∑︁
𝑚=0

(∫ (𝑚+1/2)/2𝑘−1

𝑚/2𝑘−1
𝑑𝑥 −

∫ (𝑚+1)/2𝑘−1

(𝑚+1/2)/2𝑘−1
𝑑𝑥

)
= 0.

Furthermore, 𝜓𝑘 (𝑥) ∈ {−1,1} implies
∫ 1

0 𝜓2
𝑘
(𝑥)𝑑𝑥 = 1. Finally, let 𝑘1 > 𝑘2 to yield by the orthogonality

of {𝜓𝑘1 ,𝑚 (𝑥), 𝜓𝑘2 ,𝑚 (𝑥) : 𝑘1 ≠ 𝑘2}:∫ 1

0
𝜓𝑘1 (𝑥)𝜓𝑘2 (𝑥)𝑑𝑥 =

2𝑘1−1−1∑︁
𝑚1=0

2𝑘2−1−1∑︁
𝑚2=0

∫ 1

0
𝜓(2𝑘1−1𝑥 −𝑚1)𝜓(2𝑘2−1𝑥 −𝑚2)𝑑𝑥

=
1

2𝑘1−1/22𝑘2−1/2

2𝑘1−1−1∑︁
𝑚1=0

2𝑘2−1−1∑︁
𝑚2=0

∫ 1

0
𝜓(2𝑘1−1𝑥 −𝑚1)𝜓(2𝑘2−1𝑥 −𝑚2)𝑑𝑥
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=

2𝑘2−1−1∑︁
𝑚1=0

2𝑘2−1−1∑︁
𝑚2=0

∫ 1

0
𝜓(2𝑘1−1𝑥 −𝑚1)𝜓(2𝑘2−1𝑥 −𝑚2)𝑑𝑥

+
2𝑘1−1−1∑︁

𝑚1=2𝑘2−1+1

2𝑘2−1−1∑︁
𝑚2=0

∫ 1

0
𝜓(2𝑘1−1𝑥 −𝑚1)𝜓(2𝑘2−1𝑥 −𝑚2)𝑑𝑥

=

2𝑘2−1−1∑︁
𝑚=0

∫ 1

0
𝜓(2𝑘1−1𝑥 −𝑚)𝜓(2𝑘2−1𝑥 −𝑚)𝑑𝑥

+
2𝑘1−1−1∑︁

𝑚1=2𝑘2−1+1

2𝑘2−1−1∑︁
𝑚2=0

∫ 1

0
𝜓(2𝑘1−1𝑥 −𝑚1)𝜓(2𝑘2−1𝑥 −𝑚2)𝑑𝑥 = 0.

Hence {𝜓𝑘 (𝑥) : 1 ≤ 𝑘 ≤ K𝑇 } forms a {−1,1}-valued orthonormal basis. Completeness follows from
completeness of {𝜓𝑘,𝑚(𝑥) : 1 ≤ 𝑘 ≤ K𝑇 } and the definition 𝜓𝑘 (𝑥) ≡ 2−(𝑘−1)/2 ∑2𝑘−1−1

𝑚=0 𝜓𝑘,𝑚 (𝑥).

Claim (b). By construction:

𝑇∑︁
𝑡=1

Ψ𝑘 (𝑡) =
2𝑘−1∑︁
𝑚=0

𝑇∑︁
𝑡=1

𝜓(2𝑘 (𝑡 − 1) /𝑇 −𝑚) =
2𝑘−1∑︁
𝑚=0

(
2
[(
𝑚 + 1/2

2𝑘

)
𝑇

]
−

[ 𝑚
2𝑘
𝑇

]
−

[(
𝑚 + 1

2𝑘

)
𝑇

] )
(A.1)

Now use [𝑎𝑇] − 𝑎𝑇 ∈ [−1/2,1/2] ∀𝑎 ∈ [0,1] to yield for any 𝑚 ∈ {0, ...,2𝑘−1}:����2 [(
𝑚 + 1/2

2𝑘

)
𝑇

]
−

[ 𝑚
2𝑘
𝑇

]
−

[(
𝑚 + 1

2𝑘

)
𝑇

] ����
≤

����2 (
𝑚 + 1/2

2𝑘

)
𝑇 − 𝑚

2𝑘
𝑇 −

(
𝑚 + 1

2𝑘

)
𝑇

���� + 2
���� [ (𝑚 + 1/2

2𝑘

)
𝑇

]
−

(
𝑚 + 1/2

2𝑘

)
𝑇

����
+
��� [ 𝑚

2𝑘
𝑇

]
− 𝑚

2𝑘
𝑇

��� + ���� [ (𝑚 + 1
2𝑘

)
𝑇

]
−

(
𝑚 + 1

2𝑘

)
𝑇

����
≤ 1 + 1/2 + 1/2 = 2.

Therefore |∑𝑇
𝑡=1 Ψ𝑘 (𝑡) | ≤ 2𝑘+1 =𝑂 (2𝑘).

Claim (c). Use (a) with 𝑥𝑡 = (𝑡 − 1)/𝑇 and 𝑑𝑥𝑡 = 1/𝑇 to yield 1/𝑇∑𝑇
𝑡=1 Ψ𝑘 (𝑡) =

∫ 1
0 𝜓(2𝑘𝑥𝑡 − 𝑚)𝑑𝑥𝑡

→
∫ 1

0 𝜓(2𝑘𝑥 − 𝑚)𝑑𝑥 = 0 as 𝑇 →∞.

Claim (d). The claim follows from identity (A.1), and [2−𝑘 (𝑚 +1/2)𝑇] = 2−𝑘 (𝑚 + 1/2)𝑇 if 2𝑘 divides
𝑇 (in which case 𝑇/2𝑘 is even, hence 2−𝑘 (𝑚 + 1/2)𝑇 ∈ N). QED.

The proof of Lemma 3.1 relies on an extension of Assumption 1.b to
∏𝑟

𝑖=1 𝑋𝑡𝑖 for any 𝑟-
tuple {𝑡1, ..., 𝑡𝑟 }, 𝑟 ∈ N. This is required here for both couplets 𝑋𝑡𝑋𝑡−ℎ and their cross-products
𝑋𝑠𝑋𝑠−𝑙𝑋𝑡𝑋𝑡−ℎ for our high dimensional results. See Appendix D.1 of the supplemental material for a
proof.
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Lemma A.2. Let max1≤𝑡≤𝑇 𝑃( |𝑋𝑡 | > 𝑐) ≤ 𝜛 exp{−𝑐𝜗1E−𝜗2
𝑇

} for some𝜛 > 0, any 𝜗1 ≥ 2𝜗2 and 𝜗2 ≥
1, and some sequence of constants {E𝑇 }, lim inf𝑇→∞ E𝑇 ≥ 1. It holds that

max
1≤𝑡1 ,...,𝑡𝑟 ≤𝑇

𝑃

(���∏𝑟

𝑖=1
𝑋𝑡𝑖

��� > 𝑐) ≤ 𝑟𝜛 exp
{
−𝑐𝜗2E−𝜗2

𝑇

}
. (A.2)

Proof. We prove (A.2) by induction. If 𝑟 = 1 then max1≤𝑡≤𝑇 𝑃( | 𝑋𝑡 | > 𝑐) ≤ 𝜛 exp{−𝑐𝜗1E−𝜗2
𝑇

}
≤ 𝜛 exp{−𝑐𝜗2E−𝜗2

𝑇
} by assumption, given 𝜗1 > 𝜗2 ≥ 1. Now let (A.2) hold for some 𝑟 ≥ 1:

max1≤𝑡1 ,...,𝑡𝑟 ≤𝑇 𝑃( | ⊓𝑟
𝑖=1 𝑋𝑡𝑖 | > 𝑐) ≤ 𝑟𝜛 exp{−𝑐𝜗2E−𝜗2

𝑇
}. The proof is complete if we show (A.2)

holds for 𝑟 + 1. Young and Bonferroni inequalities yield for any 𝜗1 ≥ 2𝜗2

max
1≤𝑡1 ,...,𝑡𝑟+1≤𝑇

𝑃

(���∏𝑟+1

𝑖=1
𝑋𝑡𝑖

��� > 𝑐) ≤ max
1≤𝑡1 ,...,𝑡𝑟+1≤𝑇

𝑃

(
1
2

(∏𝑟

𝑖=1
𝑋𝑡𝑖

)2
+ 1

2
𝑋2
𝑡𝑟+1

> 𝑐

)
≤ max

1≤𝑡1 ,...,𝑡𝑟 ≤𝑇
𝑃

(���∏𝑟

𝑖=1
𝑋𝑡𝑖

��� > 𝑐 1
2

)
+ max

1≤𝑡≤𝑇
𝑃

(
|𝑋𝑡 | > 𝑐

1
2

)
≤ 𝑟𝜛 exp

{
−𝑐𝜗2E−𝜗2

𝑇

}
+𝜛 exp

{
−𝑐𝜗1/2E−𝜗2

𝑇

}
≤ (𝑟 + 1)𝜛 exp

{
−𝑐𝜗2E−𝜗2

𝑇

}
. QED .

In the following we allow for a non-zero mean 𝐸 [𝑋𝑡 ] ∀𝑡.

Proof of Lemma 3.1. Allowing for a non-zero mean, recall:

𝑧𝑡 (ℎ, 𝑘) ≡ (𝑋𝑡 − 𝐸 [𝑋𝑡 ]) (𝑋𝑡+ℎ − 𝐸 [𝑋𝑡−ℎ]) 𝐵𝑘 (𝑡) − {𝐸 [(𝑋𝑡 − 𝐸 [𝑋𝑡 ]) (𝑋𝑡+ℎ − 𝐸 [𝑋𝑡−ℎ])] 𝐵𝑘 (𝑡)}

and Z𝑇 (ℎ, 𝑘) ≡ 1/
√
𝑇

∑𝑇−ℎ
𝑡=1 𝑧𝑡 (ℎ, 𝑘). Here, and in the sequel, let {Z𝑡 (𝑖),ℨ𝑇 (𝑖)}H𝑇K𝑇

𝑖=0 denote {𝑧𝑡 (ℎ, 𝑘),
Z𝑇 (ℎ, 𝑘)}H𝑇 ,K𝑇

ℎ=0,𝑘=1, stacked ℎ-wise over 𝑘 . For example:

ℨ𝑇 (𝑖) =Z𝑇 (ℎ, 𝑘) with index correspondence 𝑖 = (𝑘 − 1)H𝑇 + ℎ. (A.3)

Thus ℨ𝑇 (1), ...,ℨ𝑇 (H𝑇 ) = Z𝑇 (1,1), ...,Z𝑇 (H𝑇 ,1); ℨ𝑇 (H𝑇 + 1), ...,ℨ𝑇 (2H𝑇 ) = Z𝑇 (1,2), ...,
Z𝑇 (H𝑇 ,2); and so on. Define 𝜎2

𝑇
(𝑖) ≡ 𝐸

[
ℨ2
𝑇
(𝑖)

]
and let {𝒁𝑇 (𝑖) : 𝑇 ∈ N}𝑖≥0 be normally distributed

𝒁𝑇 (𝑖) ∼ 𝑁 (0, 𝜎2
𝑇
(𝑖)). It suffice to prove the claim for ℨ𝑇 (𝑖).

Under Assumption 1 and Lemma A.2, Z𝑡 (𝑖) satisfies Conditions 1-3 in Chang, Chen and Wu (2021).
Their Theorem 1 and the mapping theorem therefore imply:

sup
𝑧≥0

����𝑃 (
max

0≤𝑖≤H𝑇K𝑇

|Z𝑇 (𝑖) | ≤ 𝑧
)
− 𝑃

(
max

0≤𝑖≤H𝑇K𝑇

|𝒁𝑇 (𝑖) | ≤ 𝑧
)����→ 0 (A.4)

provided

1
𝑇1/9

[
E2/3
𝑇

{ln (H𝑇K𝑇 )} (1+2𝜙)/(3𝜙) + E𝑇 (lnH𝑇K𝑇 )7/6
]
= 𝑜(1) (A.5)

(ln(H𝑇K𝑇 ))3−𝜙 = 𝑜(𝑇3𝜙), (A.6)
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where E𝑇 is the Assumption 1 exponential scale, lim inf𝑇→∞ E𝑇 ≥ 1, and 𝜙 > 0 the mixing coef-
ficient.10 We need H𝑇 = 𝑜(𝑇) for consistency, and K𝑇 = 𝑜(𝑇 ^ ) for some finite ^ > 0 and [(K𝑇 )
= 𝑜(

√
𝑇) by Remark 7. Then (A.6) is trivial, and (A.5) becomes 1/𝑇1/9 [E2/3

𝑇
{ln (𝑇)} (1+2𝜙)/(3𝜙) +

E𝑇 (ln𝑇)7/6] → 0. It is easy to show that the first term dominates ∀𝜙 > 0, which reduces to E𝑇 =

𝑜(𝑇1/6/{ln (𝑇)} (1+2𝜙)/(2𝜙) ).
Finally, (A.4) implies max0≤𝑖≤H𝑇K𝑇

|Z𝑇 (𝑖) |
𝑑→ max𝑖∈N |𝒁(𝑖) | where 𝒁(𝑖) ∼ 𝑁 (0, lim𝑇→∞𝜎2

𝑇
(𝑖))

with lim𝑇→∞𝜎2
𝑇
(𝑖) < ∞ shown below. Just note that convergence in distribution follows by construc-

tion of 𝒁(𝑖): lim𝑇→∞ 𝑃(max0≤𝑖≤H𝑇K𝑇
|𝒁𝑇 (𝑖) | ≤ 𝑧) = 𝑃(max𝑖∈N |𝒁(𝑖) | ≤ 𝑧) ∀𝑧 ≥ 0.

It remains to prove lim𝑇→∞𝜎2
𝑇
(𝑖) < ∞. We will prove a uniform bound

max
1≤𝑖≤H𝑇K𝑇

𝜎2
𝑇 (𝑖) =𝑂 (1) (A.7)

for future reference. Under Assumption 1 and by measurability, {𝑧𝑡 (ℎ, 𝑘)} is uniformly (in (ℎ, 𝑘))
L𝑟 -bounded for any 𝑟 > 2, and 𝛼-mixing with coefficients 𝛼𝑙 = 𝑂 (exp{−𝑙𝜙}) for some 𝜙 > 0. Then
{𝑧𝑡 (ℎ, 𝑘)} forms a zero-mean L2-mixingale array with coefficients �̊�𝑙 = 𝛼

1/2−2/𝑟
𝑙

for any 𝑟 > 2 and
constants 𝐾 | |𝑧𝑡 (ℎ, 𝑘) | |𝑟 by Lemma 2.1 in McLeish (1975). The constants satisfy maxH𝑇 ,K𝑇

| |𝑧𝑡 (ℎ, 𝑘) | |𝑟
≤ 𝐾maxH𝑇

| |𝑋𝑡𝑋𝑡−ℎ | |𝑟 ≤ 𝐾 by Minkowsky and Jensen inequalities, |𝐵𝑘 (𝑡) | = 1, and Assumption 1.b.
Furthermore, �̊�𝑙 =𝑂 (exp{−𝑙 �̊�}) for some �̊� > 0. Now use Theorem 1.6 in McLeish (1975) with uniform
boundedness of the mixingale constants maxH𝑇 ,K𝑇

| |𝑧𝑡 (ℎ, 𝑘) | |2 ≤ 𝐾 to yield (A.7), completing the
proof. QED .

The following result proves that we may assume 𝐸 [𝑋𝑡 ] = 0 in subsequent proofs to ease notation.

Lemma A.3. Under Assumption 1, for any {E𝑇 ,H𝑇 ,K𝑇 } with K𝑇 = 𝑜(𝑇 ^ ) for some finite ^ > 0,
[(K𝑇 ) = 𝑜(

√
𝑇) and (3.5):

max
H𝑇 ,K𝑇

����� 1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

{(
𝑋𝑡 − �̄�

) (
𝑋𝑡−ℎ − �̄�

)
− (𝑋𝑡 − `) (𝑋𝑡−ℎ − `)

}
𝐵𝑘 (𝑡)

����� =𝑂 𝑝

(
1
√
𝑇

)
.

Proof. Write �̃�𝑡 ≡ 𝑋𝑡 − ` and �̂�𝑡 ≡ 𝑋𝑡 − �̄� . We have:

1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

{
�̂�𝑡 �̂�𝑡−ℎ − �̃�𝑡 �̃�𝑡−ℎ

}
𝐵𝑘 (𝑡) =

(
�̄�2 − `2

) 1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

𝐵𝑘 (𝑡) − 2`
(
�̄� − `

) 1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

𝐵𝑘 (𝑡)

−
(
�̄� − `

) 1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

{𝑋𝑡−ℎ − ` + 𝑋𝑡 − `} 𝐵𝑘 (𝑡)

= 𝔄𝑇 (ℎ, 𝑘) +𝔅𝑇 (ℎ, 𝑘) +ℭ𝑇 (ℎ, 𝑘).

By Assumption 1 |1/
√
𝑇

∑𝑇
𝑡=1 𝐵𝑘 (𝑡) | = 𝑂 ([(𝑘)/

√
𝑇). Arguments yielding (A.7) identically yield �̄� −

` = 𝑂 𝑝 (1/
√
𝑇) by Chebyshev’s inequality, hence �̄�2 − `2 = 𝑂 𝑝 (1/

√
𝑇) by the mapping theorem.

10Technically (A.5) and (A.6) require H𝑇K𝑇 + 1 instead of H𝑇K𝑇 in view of the length of the sequence {ℨ𝑇 (𝑖) }H𝑇K𝑇
𝑖=0 .

.Asymptotically, however, the modification is irrelevant.
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Therefore, e.g.,

max
H𝑇 ,K𝑇

�����{�̄�2 − `2
} 1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

𝐵𝑘 (𝑡)
����� =𝑂 (

maxK𝑇
[(𝑘)

𝑇

)
=𝑂 𝑝

(
[(K𝑇 )
𝑇

)
.

Now use [(K𝑇 ) = 𝑜(
√
𝑇) to yield maxH𝑇 ,K𝑇

|𝔄𝑇 (ℎ, 𝑘) | = 𝑜𝑝 (1/
√
𝑇). Similarly maxH𝑇 ,K𝑇

|𝔅𝑇 (ℎ, 𝑘)
= 𝑜𝑝 (1/

√
𝑇).

The remaining term ℭ𝑇 is handled by applying arguments in the proof of Lemma 3.1 to deduce for
some mean zero Gaussian process �̊�(ℎ, 𝑘) ∼ 𝑁 (0, lim𝑇→∞ �̊�2

𝑇
(ℎ, 𝑘)) and lim𝑇→∞ �̊�2

𝑇
(ℎ, 𝑘) < ∞:

max
H𝑇 ,K𝑇

����� 1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

{𝑋𝑡−ℎ − ` + 𝑋𝑡 − `} 𝐵𝑘 (𝑡)
����� 𝑑→ max

ℎ,𝑘∈N
|𝒁(ℎ, 𝑘) | .

Hence maxH𝑇 ,K𝑇
|ℭ𝑇 | = 𝑂 𝑝 (1/

√
𝑇), completing the proof. QED .

Proof of Theorem 3.3. In view of 𝜎2
𝑇
(𝑖) = 𝑂 (1), it follows �̂�0 − 𝛾0 = 𝑂 𝑝 (1/

√
𝑇) by Chebyshev’s

inequality.
Moreover, by construction

1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

{𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡) − 𝐸 [𝑋𝑡𝑋𝑡+ℎ] 𝐵𝑘 (𝑡)} =
√
𝑇 (�̂� (𝑘 )

ℎ
− �̂�ℎ) −

1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

𝐸 [𝑋𝑡𝑋𝑡+ℎ] 𝐵𝑘 (𝑡). (A.8)

Under covariance stationarity 𝐻0, |𝐸 [𝑋𝑡𝑋𝑡+ℎ] | < 𝐸 [𝑋2
𝑡 ] <∞ for all ℎ and 𝑡. The Assumption 1.d basis

properties yield for all {ℎ, 𝑘} and some finite 𝐶 > 0:

1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

𝐸 [𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡)] = 𝛾ℎ ×
1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

𝐵𝑘 (𝑡) =𝑂
(
[(𝑘)
√
𝑇

)
. (A.9)

Hence:

√
𝑇

(
�̂�
(𝑘 )
ℎ

− �̂�ℎ
)
=

1

𝛾0 +𝑂 𝑝 (1/
√
𝑇)

1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

{𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡) − 𝐸 [𝑋𝑡𝑋𝑡+ℎ] 𝐵𝑘 (𝑡)} (A.10)

+ 1

𝛾0 +𝑂 𝑝 (1/
√
𝑇)

1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

𝐸 [𝑋𝑡𝑋𝑡+ℎ] 𝐵𝑘 (𝑡)

=
1

𝛾0 +𝑂 𝑝 (1/
√
𝑇)

1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

{𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡) − 𝐸 [𝑋𝑡𝑋𝑡+ℎ] 𝐵𝑘 (𝑡)} +𝑂 𝑝

(
[(𝑘)
√
𝑇

)
,

where the 𝑂 𝑝 (·) terms do not depend on ℎ. Now exploit [(K𝑇 ) = 𝑜(
√
𝑇) to yield:

max
H𝑇 ,K𝑇

���√𝑇 (
�̂�
(𝑘 )
ℎ

− �̂�ℎ
)

(A.11)

− 1

𝛾0 +𝑂 𝑝 (1/
√
𝑇)

1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

{𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡) − 𝐸 [𝑋𝑡𝑋𝑡+ℎ] 𝐵𝑘 (𝑡)}
����� = 𝑜𝑝 (1).
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The claim now follows from Lemma 3.1. QED.

We require a weak convergence result for the bootstrapped correlation difference in order to prove
Theorem 4.1. Let ⇒𝑝 denote weak convergence in probability on 𝑙∞ (the space of bounded func-
tions) as defined in Giné and Zinn (1990, Section 3). Recall {E𝑇 } is the Assumption 1 exponential
moment scale, lim inf𝑇→∞ E𝑇 ≥ 1; the bootstrap index blocks are 𝔅𝑠 = {(𝑠 − 1)𝑏𝑇 + 1, . . . , 𝑠𝑏𝑇 },
𝑠 = 1, . . . ,𝑇/𝑏𝑇 , with block size 𝑏𝑇 , 1 ≤ 𝑏𝑇 < 𝑇 , 𝑏𝑇 → ∞ and 𝑏𝑇/𝑇1− ] → 0 for some small ] > 0 ; b𝑖
is iid 𝑁 (0,1); and 𝜑𝑡 = b𝑠 if 𝑡 ∈ 𝔅𝑠 . Recall

Δ�̂�
(𝑑𝑤)
𝑇

(ℎ, 𝑘) ≡ 1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝜑𝑡

{
𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡) −

1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡)
}
,

and define

�̊�2
𝑇 (ℎ, 𝑘) ≡ 𝐸


(

1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

𝜑𝑡

{
𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡) −

1
𝑇

𝑇−ℎ∑︁
𝑠=1

𝐸 [𝑋𝑠𝑋𝑠+ℎ] 𝐵𝑘 (𝑠)
})2 .

Recall 𝜎2
𝑇
(ℎ, 𝑘) ≡ 𝐸 [(1/

√
𝑇

∑𝑇−ℎ
𝑡=1 𝑧𝑡 (ℎ, 𝑘))2] with 𝑧𝑡 (ℎ, 𝑘) ≡ {𝑋𝑡𝑋𝑡+ℎ − 𝐸 [𝑋𝑡𝑋𝑡+ℎ]}𝐵𝑘 (𝑡). Bound

(A.7) trivially yields lim𝑇→∞𝜎2
𝑇
(ℎ, 𝑘) < ∞ ∀(ℎ, 𝑘). Let ] > 0 be an infinitessimal number that may be

different in different places. See Appendix D.2 of the supplemental material for a proof.

Lemma A.4. Let Assumptions 1 and 2 hold.

𝑎. Let {�̊�𝑇 (ℎ, 𝑘) : 0 ≤ ℎ ≤ H𝑇 ,1 ≤ 𝑘 ≤ K𝑇 }𝑇≤1 be a Gaussian process, �̊�𝑇 (ℎ, 𝑘) ∼ 𝑁 (0, �̊�2
𝑇
(ℎ, 𝑘)),

independent of the sample {𝑋𝑡 }𝑇𝑡=1. For any sequences {E𝑇 ,H𝑇 ,K𝑇 }, where 0 ≤ H𝑇 < 𝑇 − 1, H𝑇 =

𝑜(𝑇), K𝑇 = 𝑜(𝑇 ^ ) for some finite ^ > 0, [(K𝑇 ) = 𝑜(
√
𝑇) and (A.5) hold:

sup
𝑐>0

����𝑃 (
max

H𝑇 ,K𝑇

���√𝑇Δ�̂� (𝑑𝑤)
𝑇

(ℎ, 𝑘)
��� ≤ 𝑐 |{𝑋𝑡 }𝑇𝑡=1

)
− 𝑃

(
max

H𝑇 ,K𝑇

����̊�𝑇 (ℎ, 𝑘)
��� ≤ 𝑐)���� 𝑝

→ 0.

𝑏. Let {�̊�(ℎ, 𝑘)} be an independent copy of the Lemma 3.1 Gaussian process {𝒁(𝑘, ℎ) : ℎ, 𝑘 ∈ N},
𝒁(ℎ, 𝑘) ∼ 𝑁 (0, lim𝑇→∞𝜎2

𝑇
(ℎ, 𝑘)), independent of the asymptotic draw {𝑋𝑡 }∞𝑡=1. For any sequences

{𝑏𝑇 ,E𝑇 ,H𝑇 ,K𝑇 }, such that 0 ≤ H𝑇 < 𝑇 − 1, 𝑏𝑇/𝑇 ] → ∞, 𝑏𝑇 = 𝑜(𝑇1/2− ]), H𝑇 = 𝑂 (𝑇1− ]/𝑏𝑇 ), K𝑇

= 𝑜(𝑇 ^ ) for some finite ^ > 0, [(K𝑇 ) = 𝑜(
√
𝑇), and (A.5) hold: maxH𝑇 ,K𝑇

|
√
𝑇Δ�̂�

(𝑑𝑤)
𝑇

(ℎ, 𝑘) | ⇒𝑝

maxℎ,𝑘∈N | �̊�(ℎ, 𝑘) |.

Proof of Theorem 4.1. Operate conditionally on the sample 𝔛𝑇 ≡ {𝑋𝑡 }𝑇𝑡=1. Define max-covariance

differences M̌𝑇 ≡ maxH𝑇 ,K𝑇
|
√
𝑇 (�̂� (𝑘 )

ℎ
− �̂�ℎ) | and M̌ (𝑑𝑤)

𝑇
≡ maxH𝑇 ,K𝑇

|
√
𝑇Δ�̂�

(𝑑𝑤)
𝑇

(ℎ, 𝑘) |. Compare

this to, e.g., the max-correlation difference M (𝑑𝑤)
𝑇

≡ �̂�−1
0 maxH𝑇 ,K𝑇

|
√
𝑇Δ�̂�

(𝑑𝑤)
𝑇

(ℎ, 𝑘) |. Thus, by con-
struction:

𝑝
(𝑑𝑤)
𝑇,𝑀

≡ 1
𝑀

𝑀∑︁
𝑖=1

𝐼

(
M (𝑑𝑤)

𝑇,𝑖
≥M𝑇

)
=

1
𝑀

𝑀∑︁
𝑖=1

𝐼

(
M̌ (𝑑𝑤)

𝑇,𝑖
≥ M̌𝑇

)
. (A.12)

It suffices to prove the claim for the bootstrapped p-value based on M̌𝑇 and M̌ (𝑑𝑤)
𝑇,𝑖

.
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By the Glivenko-Cantelli theorem, as 𝑀 →∞,

𝑝
(𝑑𝑤)
𝑇,𝑀

𝑝
→ 𝑃

(
max

H𝑇 ,K𝑇

���√𝑇Δ�̂� (𝑑𝑤)
𝑇

(ℎ, 𝑘)
��� ≥ max

H𝑇 ,K𝑇

���√𝑇 (�̂� (𝑘 )
ℎ

− �̂�ℎ)
��� | 𝔛𝑇

)
. (A.13)

Further, maxH𝑇 ,K𝑇
|
√
𝑇Δ�̂�

(𝑑𝑤)
𝑇

(ℎ, 𝑘) | ⇒𝑝 maxℎ,𝑘∈N | �̊�(ℎ, 𝑘) | by Lemma A.4, hence

sup
𝑐>0

����𝑃 (
max

H𝑇 ,K𝑇

���√𝑇Δ�̂� (𝑑𝑤)
𝑇

(ℎ, 𝑘)
��� ≤ 𝑐 |𝔛𝑇

)
− 𝑃

(
max
ℎ,𝑘∈N

����̊�(ℎ, 𝑘)��� ≤ 𝑐)���� 𝑝
→ 0, (A.14)

where {�̊�(ℎ, 𝑘) : ℎ, 𝑘 ∈ N} is an independent copy of 𝒁(ℎ, 𝑘) ∼ 𝑁 (0, lim𝑇→∞𝜎2
𝑇
(ℎ, 𝑘)) from Lemma

3.1, independent of the asymptotic draw 𝔛∞. See Giné and Zinn (1990, eq. (3.4)).
Now impose 𝐻0 and define �̄� (0)

𝑇
(𝑐) ≡ 𝑃(maxH𝑇 ,K𝑇

| �̊�(ℎ, 𝑘) | > 𝑐). Limit (A.14) implies:

𝑃

(
max

H𝑇 ,K𝑇

���√𝑇Δ�̂� (𝑑𝑤)
𝑇

(ℎ, 𝑘)
��� ≥ M̌𝑇 |𝔛𝑇

)
− 𝑃

(
max

H𝑇 ,K𝑇

����̊�(ℎ, 𝑘)��� ≥ M̌𝑇

)
𝑝
→ 0.

[�̊�(ℎ, 𝑘)]H𝑇 ,K𝑇

ℎ=0,𝑘=1 is independent of 𝔛𝑇 , hence:

𝑃

(
max

H𝑇 ,K𝑇

���√𝑇Δ�̂� (𝑑𝑤)
𝑇

(ℎ, 𝑘)
��� ≥ M̌𝑇 |𝔛𝑇

)
− �̄� (0)

𝑇

(
M̌𝑇

)
𝑝
→ 0. (A.15)

�̄�
(0)
𝑇

is continuous by Gaussianicity, thus Lemma 3.1 and Slutsky’s theorem yield:�����̄� (0)
𝑇

(
M̌𝑇

)
− �̄� (0)

𝑇

(
max

H𝑇 ,K𝑇

|𝒁(ℎ, 𝑘) |
)���� 𝑝
→ 0. (A.16)

Together, (A.13), (A.15) and (A.16) yield for any sequence of integers {𝑀𝑇 }, 𝑀𝑇 →∞:

𝑝
(𝑑𝑤)
𝑇,𝑀𝑇

= �̄�
(0)
𝑇

(
max

H𝑇 ,K𝑇

|𝒁(ℎ, 𝑘) |
)
+ 𝑜𝑝 (1). (A.17)

Further, �̄� (0)
𝑇

(maxH𝑇 ,K𝑇
|𝒁(ℎ, 𝑘) |) is distributed uniform on [0,1] since {�̊�(ℎ, 𝑘) : ℎ, 𝑘 ∈ N} is an

independent copy of {𝒁(ℎ, 𝑘) : ℎ, 𝑘 ∈ N}. Thus 𝑃(𝑝 (𝑑𝑤)
𝑇,𝑀𝑇

< 𝛼) = 𝑃(�̄� (0)
𝑇

(maxH𝑇 ,K𝑇
|𝒁(ℎ, 𝑘) |) < 𝛼) +

𝑜(1) = 𝛼 + 𝑜(1) → 𝛼 from (A.17) as required.
Next, impose 𝐻1 defined by (3.14), with drift/basis property (3.9). Thus

1
𝑇

𝑇−ℎ∑︁
𝑡=1

𝐸 [𝑋𝑡𝑋𝑡+ℎ]𝐵𝑘 (𝑡) →
∫ 1

0
𝑐ℎ (𝑢) B𝑘 (𝑢)𝑑𝑢 ≠ 0 for some ℎ and 𝑘. (A.18)

By the triangle inequality, Lemma 3.1, �̂� (𝑘 )
ℎ

− �̂�ℎ = 1/𝑇∑𝑇−ℎ
𝑡=1 𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡) and the definition of M̌𝑇 :

max
H𝑇 ,K𝑇

����� 1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

𝐸 [𝑋𝑡𝑋𝑡+ℎ] 𝐵𝑘 (𝑡)
�����

≤ max
H𝑇 ,K𝑇

����� 1
√
𝑇

𝑇−ℎ∑︁
𝑡=1

{𝑋𝑡𝑋𝑡+ℎ𝐵𝑘 (𝑡) − 𝐸 [𝑋𝑡𝑋𝑡+ℎ] 𝐵𝑘 (𝑡)}
����� + max

H𝑇 ,K𝑇

���√𝑇 (�̂� (𝑘 )
ℎ

− �̂�ℎ)
��� =𝑂 𝑝 (1) + M̌𝑇 .
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Lemma 3.1 and (A.18) therefore yield:

M̌𝑇 ≥
√
𝑇 max

H𝑇 ,K𝑇

����∫ 1

0
𝑐ℎ (𝑢) B𝑘 (𝑢)𝑑𝑢 + 𝑜(1)

���� +𝑂 𝑝 (1)
𝑝
→∞. (A.19)

Finally, combine (A.13), (A.14) and (A.19) to deduce 𝑃(𝑝 (𝑑𝑤)
𝑇,𝑀𝑇

< 𝛼) → 1 for any 𝛼 ∈ (0,1) because:

𝑝
(𝑑𝑤)
𝑇,𝑀𝑇

= 𝑃

(
max

H𝑇 ,K𝑇

���√𝑇Δ�̂� (𝑑𝑤)
𝑇

(ℎ, 𝑘)
��� ≥ max

H𝑇 ,K𝑇

���√𝑇 (�̂� (𝑘 )
ℎ

− �̂�ℎ)
��� | 𝔛𝑇

)
+ 𝑜𝑝 (1)

= 𝑃

(
max

H𝑇 ,K𝑇

|𝒁(ℎ, 𝑘) | ≥ max
H𝑇 ,K𝑇

���√𝑇 (�̂� (𝑘 )
ℎ

− �̂�ℎ)
���) + 𝑜𝑝 (1)

= �̄�
(0)
𝑇

(
max

H𝑇 ,K𝑇

���√𝑇 (�̂� (𝑘 )
ℎ

− �̂�ℎ)
���) + 𝑜𝑝 (1) 𝑝

→ 0.

This proves the claim. QED.
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