
Qian, Klasnja, and Murphy’s Linear Mixed Effects
Model with Endogenous Covariates

Hunyong Cho, Josh Zitovsky, Matthew Brown, Xinyi Li, Minxin Lu,
Kushal Shah, John Sperger, and Michael Kosorok

University of North Carolina at Chapel Hill

1/24/2020

(UNC) QKM’s LMM 1/24/2020 1 / 22



(UNC) QKM’s LMM 1/24/2020 2 / 22



• 1. Classic Linear Mixed Effects Models (LMM)

• 2. QKM’s LMM for endogenous covariate data

• 3. Our discussion
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Classic Linear Mixed Effects Models

Classic linear mixed effects models (LMM)

• Yi,t+1 = Xi,tβ + Zi,tbi + εi,t+1, i = 1, 2, .., n; t = 1, 2, ..., T

• εi,t+1 ∼ N(0, σ2I)

• bi ∼ N(0, G)

One more important assumption:

• Xi,t is {fixed},
• or {exogenous & independent of bi}.

Thanks to the independence (Xi,t ⊥ bi), β has a marginal interpretation!

• from E[Yi,t|Xi,t, bi] = Xi,tβ + Zi,tbi, we get
E[Yi,t|Xi,t] = Xi,tβ + E[Zi,tbi]︸ ︷︷ ︸

=Zi,tE[bi|Xi]=Zi,tE[bi]=0

= Xi,tβ.

(UNC) QKM’s LMM 1/24/2020 5 / 22



Classic Linear Mixed Effects Models

Classic linear mixed effects models (LMM)

• Yi,t+1 = Xi,tβ + Zi,tbi + εi,t+1, i = 1, 2, .., n; t = 1, 2, ..., T

• εi,t+1 ∼ N(0, σ2I)

• bi ∼ N(0, G)

One more important assumption:

• Xi,t is {fixed},
• or {exogenous & independent of bi}.

Thanks to the independence (Xi,t ⊥ bi), β has a marginal interpretation!

• from E[Yi,t|Xi,t, bi] = Xi,tβ + Zi,tbi, we get
E[Yi,t|Xi,t] = Xi,tβ + E[Zi,tbi]︸ ︷︷ ︸

=Zi,tE[bi|Xi]=Zi,tE[bi]=0

= Xi,tβ.

(UNC) QKM’s LMM 1/24/2020 5 / 22



Classic Linear Mixed Effects Models

Classic linear mixed effects models (LMM)

• Yi,t+1 = Xi,tβ + Zi,tbi + εi,t+1, i = 1, 2, .., n; t = 1, 2, ..., T

• εi,t+1 ∼ N(0, σ2I)

• bi ∼ N(0, G)

One more important assumption:

• Xi,t is {fixed},

• or {exogenous & independent of bi}.
Thanks to the independence (Xi,t ⊥ bi), β has a marginal interpretation!

• from E[Yi,t|Xi,t, bi] = Xi,tβ + Zi,tbi, we get
E[Yi,t|Xi,t] = Xi,tβ + E[Zi,tbi]︸ ︷︷ ︸

=Zi,tE[bi|Xi]=Zi,tE[bi]=0

= Xi,tβ.

(UNC) QKM’s LMM 1/24/2020 5 / 22



Classic Linear Mixed Effects Models

Classic linear mixed effects models (LMM)

• Yi,t+1 = Xi,tβ + Zi,tbi + εi,t+1, i = 1, 2, .., n; t = 1, 2, ..., T

• εi,t+1 ∼ N(0, σ2I)

• bi ∼ N(0, G)

One more important assumption:

• Xi,t is {fixed},
• or {exogenous & independent of bi}.

Thanks to the independence (Xi,t ⊥ bi), β has a marginal interpretation!

• from E[Yi,t|Xi,t, bi] = Xi,tβ + Zi,tbi, we get
E[Yi,t|Xi,t] = Xi,tβ + E[Zi,tbi]︸ ︷︷ ︸

=Zi,tE[bi|Xi]=Zi,tE[bi]=0

= Xi,tβ.

(UNC) QKM’s LMM 1/24/2020 5 / 22



Classic Linear Mixed Effects Models

Classic linear mixed effects models (LMM)

• Yi,t+1 = Xi,tβ + Zi,tbi + εi,t+1, i = 1, 2, .., n; t = 1, 2, ..., T

• εi,t+1 ∼ N(0, σ2I)

• bi ∼ N(0, G)

One more important assumption:

• Xi,t is {fixed},
• or {exogenous & independent of bi}.

Thanks to the independence (Xi,t ⊥ bi), β has a marginal interpretation!

• from E[Yi,t|Xi,t, bi] = Xi,tβ + Zi,tbi, we get
E[Yi,t|Xi,t] = Xi,tβ + E[Zi,tbi]︸ ︷︷ ︸

=Zi,tE[bi|Xi]=Zi,tE[bi]=0

= Xi,tβ.

(UNC) QKM’s LMM 1/24/2020 5 / 22



Classic Linear Mixed Effects Models

Classic linear mixed effects models (LMM)

• Yi,t+1 = Xi,tβ + Zi,tbi + εi,t+1, i = 1, 2, .., n; t = 1, 2, ..., T

• εi,t+1 ∼ N(0, σ2I)

• bi ∼ N(0, G)

One more important assumption:

• Xi,t is {fixed},
• or {exogenous & independent of bi}.

Thanks to the independence (Xi,t ⊥ bi), β has a marginal interpretation!

• from E[Yi,t|Xi,t, bi] = Xi,tβ + Zi,tbi, we get
E[Yi,t|Xi,t] = Xi,tβ + E[Zi,tbi]︸ ︷︷ ︸

=Zi,tE[bi|Xi]=Zi,tE[bi]=0

= Xi,tβ.

(UNC) QKM’s LMM 1/24/2020 5 / 22



Challenge when using LMM in Precision Medicine

Consider a micro-randomized trial (MRT).

• We need treatment variable (Ai,t):

Yi,t+1 = Xi,tβ0 +Ai,tXi,tβ1 + Zi,tb0,i +Ai,tZi,tb1,i + εi,t+1.

• Want to use historical information (Hi,t) for the next treatment, not
only the current covariate (Xi,t).

Hi,t = (Xi,1, Ai,1, Yi,2, ..., Xi,t−1, Ai,t−1, Yi,t, Xi,t).

• Yi,t+1 = f0(Hi,t)
>β0 +Ai,tf1(Hi,t)

>β1 + g0(Hi,t)
>b0,i +

Ai,tg1(Hi,t)
>b1,i + εi,t+1.

f· and g· are some summary functions with a fixed dimension.

• Is there any problem using LMM for this model?

• No, Xi,t is often endogenous.
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Challenge when using LMM in Precision Medicine, ctd

What is a endogenous covariate?

• Exogenous = X is not affected by any variables in the model (e.g.
temperature, pre-scheduled / fixed variables, etc)

Xi,t ⊥ (Hi,t−1, Ai,t−1, Yi,t)

• Endogenous = X is affected by some variables in the model (e.g.
past outcomes)

Xi,t = f(Hi,t−1, Ai,t−1, Yi,t)

for some function f.
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2. QKM’s LMM with endogenous covariates
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The HeartSteps example

• Want to increase the amount of patients exercise (Y) by push alarm
intervention (A)

• We either have push alarm or not every two hours.

• Xi,t = number of steps taken during 30 mins before treatment (Ai,t)

• Yi,t+1 = number of steps taken during 30 mins after Ai,t
• (Xi,1, Ai,1, Yi,2), ..., (Xi,t−1, Ai,t−1, Yi,t), (Xi,t︸ ︷︷ ︸

=:Hi,t

, Ai,t, Yi,t+1), ...

• Xi,t is obviously endogenous!
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QKM’s key assumption

The conditional independence assumption

Xit ⊥ (b0i, b1i)|Hi,t−1, Ai,t−1, Yi,t (10)

⇒ If this assumption (10) holds,
β̂ estimated by standard LMM packages is a valid MLE.
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QKM’s LMM - quick proof

∏
i

p(Xi, Ai, Yi|α, β, θ, σε)

=
∏
i

∫
p(Xi, Ai, Yi|bi;α, β, θ, σε)dF (bi)

=
∏
i

{
∫ ∏

t

p(Xi,t|Hi,t−1, Ai,t−1, Yi,t, bi)︸ ︷︷ ︸
=11A

p(Ai,t|Hi,t, bi)︸ ︷︷ ︸
=11B

×

p(Yi,t+1|Hi,t, Ai,t, bi;α, β, θ, σε)︸ ︷︷ ︸
=11C

dF (bi)}

= {
∏
i

∏
t

p(Xi,t|Hi,t−1, Ai,t−1, Yi,t) p(Ai,t|Hi,t)} ×

∏
i

{
∫ ∏

t

p(Yi,t+1|Hi,t, Ai,t, bi;α, β, θ, σε)dF (bi)}︸ ︷︷ ︸
L1(α,β,θ,σε|X,A,Y )
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QKM’s LMM - property

• Once conditional independence assumption holds,

• We can just use standard LMM package.

• Still, β only has conditional-on-random-effects interpretation.
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3. Discussion
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Discussion

• Is partial likelihood okay to use?

• How to verify the conditional independence?

• Marginal effects estimation

• Nonlinear models - kernel extension
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Discussion - 1. partial likelihood

QKM factored out the first two terms assuming that they do not involve
ξ ≡ (α, β, θ, σε).

L(α, β, θ, σε|X,A, Y ) =

{
∏
i

∏
t

p(Xi,t|Hi,t−1, Ai,t−1, Yi,t) p(Ai,t|Hi,t)}︸ ︷︷ ︸
Not involving (α,β,θ,σε)

×

∏
i

{
∫ ∏

t

p(Yi,t+1|Hi,t, Ai,t, bi;α, β, θ, σε)dF (bi)}︸ ︷︷ ︸
L1(α,β,θ,σε|X,A,Y )=Likelihood of the classic LMM!

However, Xi,t might have some information about ξ.
β1 : Ai,t → Yi,t+1

�

“treatment effect”
δ1 : Ai,t → → → Xi,t+1 “delayed treatment effect”
β1 and δ1 may not be orthogonal. So omitting the two terms may cause
efficiency loss!
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Discussion - 2. verifying the conditional independence

How to verify (10) using data?

Xit ⊥ (b0i, b1i)|Hi,t−1, Ai,t−1, Yi,t (10)

• It is not testable without further assumption.

• QKM suggests using the domain knowledge to judge independence.

• When Hi,t−1 contains enough information, additionally having bi may
not help predicting Xit. Thus, it is likely conditionally independent.

Xi,t+1 = (f1(Hi,t), Ai,t, Yi,t+1)
Tγ1 + ηi,t+1 v.s.

Xi,t+1 = (f1(Hi,t), Ai,t, Yi,t+1)
Tγ1 + bTi γ2 + ηi,t+1
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Discussion - 2. verifying the conditional independence, ctd

Develop an ad-hoc test.

• Instead of testing
Xit ⊥ (b0i, b1i)|Hi,t−1, Ai,t−1, Yi,t for all of t = 1, 2, ..., T,
• we test
Xit ⊥ (b̂0i, b̂1i)|sd(Hi,t−1, Ai,t−1, Yi,t) ∀t ∈ T ,
where sd is a d-dimensional summary function.
• Conditional Distance Independence Test (CDIT) (Wang et al., 2015)

We still have many degrees of freedom.
• Choice of d, the window width:

Wider d brings curse of dimensionality
narrower d brings false positives (undue dependence might appear).
• For what set of time points T to test:

single test: May not guarantee the results hold for all time points.
testing on every other r time points.
• How to combine the tests:

Bonferroni, Benjamini Hochberg, or L2-norm summarization.
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Discussion - 3. marginal effects estimation

wish to estimate

E(Yit+1|Hit, Ait = 1)− E(Yit+1|Hit, Ait = 0)

, or f1(hit)
Tβ + g1(hit)

TE(b1i|Hit).

• One possibility is to posit a linear model:
E(b̂1ik|Hit) = sd(Hit)

Tγk, k = 1, 2, ...,K, t = 1, 2, ..., T.

• Then do the OLS.

• We show γ̂k is consistent.
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Discussion - 4. kernel extension

When the true model is not linear, LMM may not be satisfactory.
Want a more flexible model.

• QKM’s LMM can be naturally extended to non-linear one using
kernels.

• We use the Gaussian kernel width bandwidth γ. By replacing the
predictor with the kernel matrix and having an

• L2-penalty term parametrized by λ, the model becomes a Bayesian
LMM. Standard software can be used.

• (γ, λ) can be tuned using cross-validation.
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Take home message

• You can use standard software to fit an LMM even with enogenous
covariates.

• But you have to make sure X ⊥ b given history.

• When the treatment effects on X contains some information on β,
the partial likelihood might be inefficient

• Conditional independence test can be used as a diagnostic measures.

• When interested in marginal effects, it can be estimated by further
positing a linear model.

• LMM can be extended using a kernel extension.
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