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scRNA-seq data example
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Motivating example

A typical scRNA-seq data (a specific gene count).

600

How would you model this?

400

Negative binomial? g

200

Zero-inflated Negative binomial?

counts



Models - NB and ZINB

Negative binomial (NB) - the mean (u) and the overdispersion (@)

Zero-inflated Negative binomial (ZINB) - u, ¢, and the zero-inflation ()

NB?

NB (6, 0.1) T = 01




The nature of over-dispersion in NB

X ~ Poisson (u) Mean = u, variance = u
What if the mean parameter is random? Then, variance is higher.
X ~ Poisson(R) where R ~ Gamma(1/@, ue).

Then, mean = u, variance = u + g
X is fuzzier by p?g.

We reparametrize X as X ~ Negative Binomial (u, @)



A method paper - BZINB model

A bivariate zero-inflated negative binomial model for identifying underlying

dependence with application to single cell RNA sequencing data
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SuMMARY: Measuring gene-gene dependence in single cell RNA sequencing (scRNA-seq) count data is often of

interest and remains challenging, because an unidentified portion of the zero counts represent non-detected RNA due

https://www.biorxiv.org/content/10.1101/2020.03.06.977728v1



Valentine Svensson (2020)
Nature



Valentine Svensson (2020) Nature.

correspondence

Droplet scRNA-seq is not zero-inflated

the | — Potential users of
smglc -cell RNA-sequencing (scRNA-seq)
often encounter a choice hetween high-
throughput droplet-based methods and
high-sensitivity plate-based methods. There
is a widespread belief that scRNA-seq will
often fail 1o generate measurements for some
nes from some cells owing to technical
molecular inefficiencies. It is believed that
this causes data to have an overabundance
of zero values compared to what is expected
from random sampling and that this effect
is particularly pronounced in droplet-based

dimensionality reduction methods with
special handling of zero values had been
introduced™ All these approaches share
two common themes (which deviate from
SCDE): first, expression data are considered
continuous with additional zero values, and
second, a proportional relation is identified
between the number of zero values and the
average expression level of a gene ™.

In the field of computational methods
for scRNA-seq analysis, many methods
have been designed to correct zero values
in data, with the aim of allowing users to

control data with no biological variation.
This will answer whether technical
shortcomings in scRNA-seq methods
produce an excess of technical zeros
compared to expectations.
Negative-control datasets have been
generated by adding a solution of RNA to
the fluid in microfluidic systems, making
the RNA content in each droplet identical.
Five such datasets have been published:
one to benchmark Drop-seq, one to
benchmark InDrops™, one to benchmark
an early version of the commercial scRNA-
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Key message:
- “ZINB is not necessary; NB is enough”
- “Zero-inflation is not technical but mostly biological

1. Literature 1: NB has good fit for the UMI data, ZINB not necessary.
2. Literature 2: The zero inflation seems to reflect the biological variation.

3. Literature 3: zero-inflation appears to be an artifact of log transformation.

4. An experiment comparing
the biological data vs. the negative control data

b
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Literature 1: NB has good fit for the UMI data, ZINB

not necessary.
powsimR: power analysis for bulk and single
cell RNA-seq experiments

Model Comparisons

ZINB
>NB

Beate Vieth*, Christoph Ziegenhain, Swati Parekh, Wolfgang Enard and

. . . o . . . ' Poisson
Anthropology & Human Genomics, De partment of Biology I, Ludwig-Maximilians University, 82152 Munich, Germany

*To whom correspondence should be addressed. ZIP
Associate Editor: Ivo Hofacker - Poisson

Received on March 15, 2017; revised on June 29, 2017; editorial decision on July 2, 2017; accepted on July 4, 2017

ZINB
> ZIP
Abstract
Summary: Power analysis is essential to optimize the design of RNA-seq experiments and to as- 0% 25% 50% 75% 100%
sess and compare the power to detect differentially expressed genes in RNA-seq data. PowsimR is Percentage

a flexible tool to simulate and evaluate differential expression from bulk and especially single-cell
RNA-seq data making it suitable for a priori and posterior power analyses.

Likelihood ratio tests say NB is good in most cases.
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Literature 2: The zero inflation seems to reflect the
biological variation.

M3Drop: dropout-based feature selection for
scRNASeq

Tallulah S. Andrews & and Martin Hemberg @ *
Department of Cellular Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridgshire, UK

*To whom correspondence should be addressed.
Associate Editor: Inanc Birol
Received on October 8, 2018; revised on November 29, 2018; editorial decision on D ber 18, 2018; pted on D ber 19, 2018

Abstract

Motivation: Most genomes contain thousands of genes, but for most functional responses, only a
subset of those genes are relevant. To facilitate many single-cell RNASeq (scRNASeq) analyses the
set of genes is often reduced through feature selection, i.e. by removing genes only subject to tech-
nical noise.

Results: We present M3Drop, an R package that implements popular existing feature selection
methods and two novel methods which take advantage of the prevalence of zeros (dropouts) in
scRNASeq data to identify features. We show these new methods outperform existing methods on
simulated and real datasets.

“These novel methods exploit :the observatibn that dropout-rates per gene
are strongly correlated with gene expression level (Pierson & Yau, 2015;
Kharchenko et al, 2015)”



Literature 2B: The zero inflation seems to reflect the

biological variation. -..
ZIFA: Dimensionality reduction for o

zero-inflated single-cell gene expression
analysis

Emma Pierson' and Christopher Yau'~<"

Abstract

Single-cell RNA-seq data allows insight into normal cellular function and various disease states through molecular
characterization of gene expression on the single cell level. Dimensionality reduction of such high-dimensional data
sets is essential for visualization and analysis, but single-cell RNA-seq data are challenging for classical dimensionality-
reduction methods because of the prevalence of dropout events, which lead to zero-inflated data. Here, we develop a
dimensionality-reduction method, (Z)ero ()nflated (F)actor (A)nalysis (ZIFA), which explicitly models the dropout
characteristics, and show that it improves modeling accuracy on simulated and biological data sets.

“The fundamental empirical observation ... is that the dropout rate for a

gene depends on the expected expression level of that gene in the
population ”



Literature 2B: The zero inflation seems to reflect the
biological variation.

ZIFA: Dimensionality reduction for
zero-inflated single-cell gene expression
analysis

erson’' and Christopher Yau'?"

®— po = exp(—iu?),

z; ~ Normal(0, 1),

X;lz; ~ Normal(Az, + u, W),

bstra: .
e hijlxi; ~ Bernoulli(py),
) xy, ifthy =0,
=10, ifh, =1,

1. ‘dropout rate (p,)" here is simply the zero-fraction - not really a
dropout nor zero-inflation.

2. As p,contains the true zeros, it of course is related with the
non-zero mean (uy) even under the presence of zero-inflation.



Literature 2C: The zero inflation seems to reflect the

biological variation.
Bayesian approach to i O P Tr—
single-cell differential , . loutlier
expression analysis

— Overdispersion

Peter V Kharchenko!~3, Lev Silberstein® > &
David T Scadden3-3

—1 Dropout events

Log,o(RPM)in cell 1

Single-cell data provide a means to dissect the composition
of complex tissues and specialized cellular environments. 0
However, the analysis of such measurements is complicated

by high levels of technical noise and intrinsic biological 0 1 2 3 4
variability. We describe a probabilistic model of expression-

magnitude distortions typical of single-cell RNA-sequencing Log, O(RPM) in cell 2
measurements, which enables detection of differential

expression signatures and identification of subpopulations of Aga | n ’ d ro pout |S defl ned by Zeros.

cells in a way that is more tolerant of noise.

“the dropout rate for a given cell depends on the average expression magnitude
of a gene in a population with dropouts being more frequent for genes with lower .
expression magnitude”



Literature 2: The zero inflation seems to reflect the
biological variation.

Svenson 2020  One group proposed that genes with higher
fractions of zero values than suggested by
the negative binomial distribution might be
good candidates for further analysis because
this seems to reflect biological variation™.

“higher fractions of zero values than suggested by the NB distribution” = zero-inflation

# dropout
# zero proportion

18



Literature 3: zero-inflation appears to be an effect of
log transformation

Feature selection and dimension ;@
reduction for single-cell RNA-Seq based on a
multinomial model

F. William Townes'? @, Stephanie C. Hicks®, Martin J. Aryee'#>€ and Rafael A. Irizarry'”"

Abstract

Single-cell RNA-Seq (scRNA-Seq) profiles gene expression of individual cells. Recent scRNA-Seq datasets have
incorporated unigue molecular identifiers (UMIs). Using negative controls, we show UMI counts follow multinomial
sampling with no zero inflation. Curent normalization procedures such as log of counts per million and feature
selection by highly variable genes produce false variability in dimension reduction. We propose simple multinomial
methods, including generalized principal component analysis (GLM-PCA) for non-normal distributions, and feature
selection using deviance. These methods outperform the cumrent practice in a downstream clustering assessment
using ground truth datasets.

Actually, it is not from the “log-transformation,” but is from the
“normalization” e.g. RPK



Literature 3: zero-inflation appears to be an effect of
log transformation

Ab
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counts CPM log2(1+CPM)

(a) UMI counts (b) counts per million (CPM) (c) log of CPM

Fig. 2 Example of how current approaches to normalization and transformation artificially distort differences between zero and nonzero counts
a UMl c

distribution for the exact same count datz

0000114391 in the monocytes biological replicates negative control dataset. b Counts per million {CPM

MNictribu i ~f s 1 g -} - ~ ha o Y CRITS "t .-
Dstribution of bag: (1 + (PM) values for the exact same count data

By counts — CPM tranformation,

Zeros are mapped to zeros keeping its probability mass,

while ones (or larger values) are mapped to multiple values.
Log-transformation is not the key here. 20



4 ] M O re a bo ut th e expe ri m e nt Droplets with homogeneous single cells

The biological data: Each droplet is made from a cell %%

(Droplets are heterogeneous.)

The negative control data: All droplets are made from the same RNA solution.

(Every droplet iS homogeneOUS) Droplets with RNA solution

The negative control data were used to
remove the biological variability.

Their hypothesis:
“If zero-inflation can be explained by the biological variation,
then the zero-inflation, if any, is not technical zeros but are real zeros.”

21
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More discussion on
‘the experiment”



1. Confusion between dropouts and zero-inflation

2. Is the gap between two data sets
purely due to biological variation?

3. Why common ¢?

24



1. Confusion between dropouts and zero-inflation

- Distinction between dropouts (technical zeros) and zero-inflation

- They define both “zero-inflation” and “dropouts”
“to observe more ‘technical zeros’ than expected”

- This can be a definition of zero-inflation, but cannot be of dropouts.

- zero-inflation should be understand in terms of model fit,
while dropouts are purely mechanical results.

25



(Relevant paper 1)

“Separating measurement and expression models clarifies confusion in
scRNA-seq analysis” - Sarkar & Stephens 2020 bioRxiv

dropouts = missing data = zeros? No! Not all zeros are dropouts.
Imputation = filling in values for zeros? No! Not all zeros are fake.

Zero-inflation = extra zeros that cannot be explained by simpler models

Separating measurement and expression models clarifies confusion in single cell N B
RNA-seq analysis ( sSa y’ )

Abbhishek Sarkar, = Matthew Stephens
doi: https://doi.org/10.1101/2020.04.07.030007

This article is a preprint and has not been certified by peer review [what does this mean?]
Abstract Full Text Info/History Metrics [3 Preview PDF
AssTRACT

How to model and analyze scRNA-seq data has been the subject of considerable

26



(Relevant paper 2)

(b)

Bayesian model selection reveals biological origins of zero inflation in
single-cell transcriptomics

Kwangbom Choi', Yang Chen’, Daniel A. Skelly', Gary A. Churchill”
'"The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, 04609
*University of Michigan, 500 South State Street, Ann Arbor, Michigan, 48109

Abstract. Single-cell RNA sequencing is a powerful tool for characterizing cellular heterogeneity in gene expression.

However, high variability and a large number of zero counts present challenges for analysis and interpretation. There is

“... the primary causes of zero inflation are not technical but rather biological
in nature.”

“the parameter estimates of the ZINB distribution are an unreliable indicator of
zero-inflation”

27



Hypothesis:

“If zero-inflation is primarily due to dropouts,
we would expect to see zeros evenly distributed across
cell-types”

The heatmap (genes x cell types)
dark = excess zeros
light = fewer zeros than expected

1) Droptout = zero-inflation?
2) May dropout rates not vary by cell types?

28
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2. Is the gap between two data sets
purely due to biological variation”?

1. Negative control data: an RNA solution -> scCRNAseq
2. Biological data: Homogeneous “cells” -> scRNAseq

The difference between (1) & (2) can be decomposed into

A. heterogeneity between cells. (phi can be different by genes in (2), and we
should look at the gene-wise dispersion. See the next discussion point.)
B. Possibly higher dropouts for (2).

The difference from A is considered biological, while B is technical.

30



Draoplets with homogeneous single celis
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3. Why common ¢? - a thought experiment

Consider only two genes: Genes A and B with about-equal means.

It can be that gene A count is more variable than Gene B in biological data:
Cell 17 2 3 4 5

Gene A 3 1 0 1 7

Gene B 3 3 2 3 2

Genes could have different dispersion across cells.

But this is hardly true for the negative control data.

32



3. Why common ¢?

Look at the right panels!

The right panels rather imply that in biological
data, genes may have different overdispersion.

There are less-than-expected zero fractions!

So their claim that extra zeros are from biological
variability is questionable.

This figure can only show that negative binomial
distribution is good enough.
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2. Is the gap between two data sets
purely due to biological variation”?

Alternative approach for detecting dropouts.

To compare the zero proportion
between the biological data and the negative control data
after controlling for the nonzero-means.

34



Conclusion



1.

Lots of confusion between zero-inflation and

dropouts
Modeling dropouts with zero-inflation models is

another thing!

Although ZINB may not be needed in many data,
that does not imply there is no dropout.

Biological variability can be well explained by
varying overdispersion.

36
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