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A motivation of retargeting
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Counterfactual means and inverse probability weighting

subject 1 subject 2 subject 3 subject 4

Treatment 1 0 ° ° °

Treatment 0 ’? @ '7 @

T=f1—fe=10—3. 7= fi; — fig = 9.5 — 2.5.
Each observed value represents two to cover the complete data.
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Counterfactual means

Treatment 1

Treatment 0
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¢ Weights for X = 3 are 10/1 for Tx 1 and 10/9 for Tx 0.

* (X = 3) = 10 relies on a single observation.

© Sheds light on the problem of non-overlap.
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Treatment 1

Treatment 0

¢ Since Group X = 3 is less reliable, we want to give it less weights.

E.g.. o(X){1 - o(X)}
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© Does this retargeting affect optimization?
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* For unrestricted II, 7(z) = 1(u'(z) > pu°(z)) optimizes the
retargeted value regardless of the weight.

® Let the restricted Il be a set of monotone classifiers
{1(z = b),1(z < b) : b=1,2,3,4},
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Retargeted value

R(m;w,p) = E[w(X) 3 {r(alX)~p(alX) fua(X)]
ac{0,1}
Or,  R(mw,p):=V(mw)—V(pw)
¢ Nice theories are obtained almost for free with fixed w and p.

¢ The influence function of R(m;w, p) is given as
¢(x7aay;¢7ﬂ) - R(ﬂ-;wap)v Lemma 2.3

where ¥ (z, a, y; do, po) =
wlo)( (sl st utale)+ - L)

a’ | S —
7
R Doubly robust component
main component
(The arguments of , p, ¢, p are omitted.)

N

* If the value (R) is estimated so that R,, = Pt + op(n~1/2),
efficiency (y/n-rate) and normality are obtained. (Section 2.2
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Finding the optimal weight and rule
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A well-specified policy class Il

R(m;w, p) ::E[w(X) Z {7r(a|X)—p(a|X)},ua(X)} Population
ae{0,1}

Ro(m3w,p) i= P [w(X) > {m(alX)-plalX) fua(X)|  Sample
ae{0,1}

¢ Does the optimal solution exist?

¢ Lemmas 2.1 and 2.2:
If the true optimal rule is a restricted rule (or more generally,
IT* NIy # 0) before weighting and centering, it is true after
weighting and centering. (Section 2.1)

*

Notation: ™ = optimal, o = restricted. E.g., 1'[8 = set of optimal restricted regimes.

Lemma 2.1. Suppose IT*NI1y # @. Then IT§(w, p) = IT* NI,
for every w € Rf 1P € RA%¥In particular, if 7 is a solution
to Equation (3) then V() = V*.
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Variance decomposition

Recall P,9)(= R,) is an efficient estimator.

var(R,) = var(R,) + var(R, — Ry,)

_ %Var@ S pm) g [w2 > “;—;’)202] |

a a
J/ N J

=equation (5) =equation (6)

(* The argument X or (a|X) in w, 7, p, 1a, and o is omitted for presentation.)

© Recall IF () is composed of the “main” and the “DR" components.

© (5) is the variance of value due to X-variation in the population
(Notice the presence of 1,).

© (6) quantifies any lack of overlap (Notice the presence of ¢).

¢ Therefore, we want to find w and p that minimize (6).
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Optimal retargeting—A minimax approach

The uniform (over-policies) objective

Minimize Q(w, p) = 7srlelrpIIE [wQ(X) Z (W(a|);2a_|)/()§2a|X)) 02(a|X)]

a

© Once we find the optimal (wp, pp), we find the optimal policy
T = arg max, Ry, (7, wo, po)-

© Q(w, p) controls “the uniform deviation between the estimated
objective (V},) and the ideal finite-sample objective (V)"

Lemma 3.1. Suppose that ¢ (A | X) is bounded away from zero
and Y is bounded. Let w € Rf+ with [[w|le < oo be given.
Then there exists a universal constant C such that, for any § €
0,1/2) and p € RA*X, with probability at least 1 — 8,

sup
7' €l

< C (ko) +1+ Viog(1/5)) ‘/W to (log%S)) .

(k(-) = entropy integral)

(Vlars w) = Va'sw) = (Vs w) = Valo's w)|

Hunyong Cho Journal club—Kallus (2021) Retargeting September 2021 9/14



Optimal retargeting—The solution for binary actions

The binary-action cases
Lemma 3.3. (po, wp) minimizes Q(w, p), where

o*(+z) | o*(=lv) )‘1,

o) = 1/2, wolw) o« ({77505 + 1= 5o

and ¢(z) is effect-coded.

® po =1/2 is a coin-flip rule, not depending on w.

© Assuming o(-|x) = 1, wo(x) < 1 — ¢?(x), giving zero-weights to the
no-overlaps.
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Optimal retargeting—The solution for multi-arms

The multiple-action cases
Lemma 3.4. (po, wp) minimizes Q(w, p), where

mlale) = 5 (1~ HAe(w))

0'2 a|x -
o) (3 o vewr)

-1
where £(z) = (1] = 2)( e S22
* Now, po depends on the choice of w when |A| > 2.
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Empirical evidences
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Simulation study—Binary-action cases

Simulation (|A| = 2, n = 10,000)

Well-specified, Stationary Well-specified, Shitt inward Misspecified, Shiftinward

[ controls the degree of overlap from good to bad.

© Works well under misspecification Il

¢ Works well under the train-test shift, fx train 7 X test-
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Job counseling—Multi-action cases

Personalized job counseling (Multi-Action)

Table 1. Average policy values of different policy learning methods applied to the
job counseling dataset, with standard errors over replications.

Average policy value (in 1000's)

Method Conventional Retargeted Improvement
DC —3.44 £ 0.005 - -

DM —3.42 4+ 0.005 —3.42 4+ 0.005 0%

DR 1.14 £ 0.006 1.93 £ 0.006 70%

IPW 2.09 + 0.006 2.65 + 0.005 27%
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Take-home message
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Take-home message

¢ Lack of overlap = efficiency loss (high variability)
¢ Frequently seen in observational data.

o If well specified, retargeting still finds the optimal rule (Lemmas 2.1,
2.2)

¢ Optimal weights can be found using a minimax approach

m(a|X) — p(a|X))?
Minimize Q(w, p) = iggE [wQ(X) Z (m( |)<2a|)?)(2 X)) o?(alX)

a
Lemmas 3.3 and 3.4 provide the solutions.
¢ Retargeting provides robust solutions against misspecification and

train-test shift
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