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Abstract
Researchers across varied fields increasingly are collecting and analyzing intensive longitudinal data
(ILD) to examine processes across time at the individual level. Two types of relations are typically
examined: lagged and contemporaneous. Lagged relations capture how variables at a prior time point
can be used to explain variance in variables at a later time point. These are always modeled using auto-
and cross-regressions by means of vector autoregression (VAR). By contrast, there are two types of rela-
tions commonly used to model the contemporaneous relations, which model how variables relate instan-
taneously. Until now, researchers must opt to either model contemporaneous relations as undirected
relations among residuals (e.g., partial or full correlations) or as directed relations among the variables
(e.g., paths or regressions). The choice for how to model contemporaneous relations has implications
for inferences as well as the potential to introduce bias in the VAR lagged relations if the wrong type of
relation is used. This article introduces a novel data-driven method, hybrid-group iterative multiple
model estimation (GIMME), that provides a solution to the problem of having to choose one or the
other type of contemporaneous relation to model. The modeling framework utilized in hybrid-GIMME
allows for both types of contemporaneous relations in addition to the standard VAR relations. Both
simulated and empirical data were used to test the performance of hybrid-GIMME. Results suggest this
is a robust method for recovering contemporaneous relations in an exploratory manner, particularly with
an ample number of time points per person.

Translational Abstract
This paper describes the development of a new statistical method for examining processes for individu-
als across time. There are two main types of contemporaneous relations: directed and undirected. A
directed relation is typically interpreted as one variable (e.g., sleep quality) explains variability (or
changes) in another variable (e.g., mood next day), while an undirected relation is commonly understood
as two variables’ variability being explained by a third one (e.g., mood the day before). Unlike most
existing statistical methods that only allow for one of these two types of contemporaneous relations to
be estimated, this new algorithm (hybrid-GIMME) allows for them both to be estimated simultaneously.
And it thus allows for new questions to be explored. Both our simulation and empirical examples show
promising results of this new method.

Keywords: structural equation modeling, time series analysis, vector autoregression, exploratory factor
analysis

Increasingly researchers are looking to intensive longitudinal
data (ILD) to answer questions about processes across time at the

individual level. In the social and behavioral sciences ILD typi-
cally takes the form of multivariate time series data, or a time-or-
dered sequence of observations (Wei, 2012). Interest in time series
data has been growing in recent years due to technological advan-
ces in data collection and the increasing appreciation of variability
in the structures of dynamic processes between individuals. Exam-
ples of research studying time series data include daily diary stud-
ies (Sliwinski et al., 2006; Wright & Simms, 2016) and functional
MRI experiments (fMRIrid; Beltz, Gates, et al., 2013), to name a
few.

With ILD, researchers and clinicians can understand and
describe individuals’ temporal processes via their lagged and con-
temporaneous relations. Lagged relations refer to any relation

Lan Luo https://orcid.org/0000-0003-0779-2808
Cara Arizmendi https://orcid.org/0000-0001-5608-7385
Adriene Beltz https://orcid.org/0000-0001-5754-8083
Kathleen M. Gates https://orcid.org/0000-0002-1246-4529
Correspondence concerning this article should be addressed to Lan Luo,

Department of Psychology and Neuroscience, University of North Carolina
at Chapel Hill, 235 East Cameron Avenue, Chapel Hill, NC 27599-3270,
United States. Email: lanl27@live.unc.edu

1

Psychological Methods

© 2022 American Psychological Association
ISSN: 1082-989X https://doi.org/10.1037/met0000485

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://orcid.org/0000-0003-0779-2808
https://orcid.org/0000-0001-5608-7385
https://orcid.org/0000-0001-5754-8083
https://orcid.org/0000-0002-1246-4529
mailto:lanl27@live.unc.edu
https://doi.org/10.1037/met0000485


where variability at a given time point t for a given variable is
explained by prior time points (e.g., t-1, t-2) of itself or other vari-
ables, whereas contemporaneous relations refer to the relationship
of a given variable at t with another variable also at t. Lagged rela-
tions are usually modeled using directed auto- and cross-regres-
sions. However, for contemporaneous relations there are more
options available. The two most commonly encountered models in
practice, unified structural equation modeling (uSEM; Kim et al.,
2007) and graphical vector autoregression (gVAR; Wild et al.,
2010), estimate contemporaneous relations either as directed rela-
tions among the observed variables or as undirected relations
among residuals, respectively. Importantly, neither approach
allows for both types of contemporaneous relations to be modeled
simultaneously. In this article, we define a “directed” relation as
unidirectional, that is, it points from one variable to another, and
an “undirected” relation as nondirectional, that is, it does not have
an arrow pointing from one variable to another but rather just con-
nects two variables. Mathematically, one can think of a series of
directed relations represented by an asymmetric matrix (as in mul-
tivariate regression analyses) and undirected relations represented
by a symmetric matrix (as in correlation matrices). In the uSEM
framework, contemporaneous relations are estimated as directed
relations, as opposed to in the VAR approach where contempora-
neous relations are estimated as undirected among variables
(errors). A uSEM can be transformed to an equivalent VAR repre-
sentation as we will demonstrate later.
Statistical tests of directed contemporaneous relations attend to

different research questions and carry different assumptions than
tests of correlations — much like in cross-sectional research.
Directed contemporaneous relations can imply that one variable
explains variability in another variable after controlling for covari-
ates. As an example, let’s take two commonly used measures: anx-
iety and feeling sad. One research hypothesis might be that feeling
sad relates to higher levels of anxiety after taking into account
other variables. The interpretation is the same whether it is in the
time series context or cross-sectional context: Having some infor-
mation about sadness at time t explains some variability in anxiety
levels (above and beyond other covariates) at the same time point.
The test here is whether sadness explains variability in anxiety af-
ter controlling for other potential variables, and doesn’t test the
reverse direction. Similarly, contemporaneous directed relations in
the time series context indicate that some knowledge about the
value of one variable (say, sadness) explains variability in another
variable at that time point, but perhaps not the reverse. This can
help the research in generating hypotheses to test, such as if
addressing an individual’s sadness influences their anxiety levels.
The interpretation of the undirected relations differs slightly in

the time series context from cross-sectional. Here in the time series
context, the correlations are typically among residuals after al-
ready taking into account the lagged influence of other variables.
So, it is not simply the correlation between two variables. Rather,
it is the correlation between what was not explained by the lagged
portion of the model (and directed contemporaneous portion, if
included) for each of the two variables. One might expect corre-
lated residuals in processes where the two variables have a com-
mon cause, or when the variables explain similar levels of
variability in each other. Take two symptoms of depression: feel-
ings of sadness and emptiness. After regressing out all other influ-
ences on these two variables such as lagged relations, the residuals

for these two variables may correlate because they are both caused
by the unmodeled latent construct of depression.

Oftentimes, it is not clear which type of relation best attends to
the dynamic interplay of the data at hand. The two main options
for modeling contemporaneous relations are the uSEM and gVAR.
The uSEM approach estimates contemporaneous relations as
directed relations among the observed variables, often after taking
into account the variance explained by their autoregressive (or
self-lagged) relation. This time series approach combines vector
autoregressive modeling (VAR; Hamilton, 1994; Lütkepohl,
2005) with traditional structural equation modeling (SEM; Bollen,
1989), the latter of which is typically applied to data where there
is an assumption of independent observations, as seen in cross-sec-
tional data. Observation independence is rarely the case for time
series data due to serial dependencies and lagged relations. In
uSEM, the contemporaneous relations resemble the lagged rela-
tions: all relations are directed. Current implementations of the
uSEM class of models are data-driven with sparsity typically
induced by a sequential search for relations (i.e., within the Group
Iterative Multiple Model Estimation (GIMME) framework; Gates
& Molenaar, 2012). By estimating the model within the SEM
framework, researchers can directly control for contemporaneous
influences on target variables while estimating lagged relations,
thus preventing spurious or false positive lagged relations (Gates
et al., 2010). In addition, researchers can use fit indices to evaluate
model-data correspondence.

Another approach for estimating contemporaneous relations is
to consider the undirected relations of residuals from within a
traditional VAR framework. As noted in the Introduction, we
define an undirected relation here to mean that the residuals of
two variables are correlated or partially correlated, which differs
from a feedback loop where the variables both predict each other
with two directed relations (Carver & Scheier, 1982). Correlating
errors of a traditional VAR is standard practice. Graphical VAR
(Epskamp, van Borkulo, et al., 2018; Wild et al., 2010) is a newer
approach that is popular in psychological sciences, and similarly
models contemporaneous relations as undirected among the resid-
uals. Specifically, gVAR takes the partial correlation of the con-
temporaneous residuals (i.e., the correlation between the residuals
of two contemporaneous variables after conditioning on all other
contemporaneous residuals) following traditional estimation of a
VAR model (Epskamp & Fried, 2018). Both the VAR coefficient
estimates and residual covariance matrices have sparsity induced
via regularization in the graphicalVAR package (Epskamp, Wal-
dorp, et al., 2018). One benefit of correlating the residuals within
the regularized VAR approach is that it can have more potential
parameters than a saturated nonregularized VAR model (Epskamp,
Waldorp, et al., 2018).

The two approaches carry different assumptions and interpretations.
When contemporaneous relations are modeled as directed relations
among observed variables, they can be interpreted as assessing if
knowledge of a given variable explains the variance of another vari-
able at the same time point while holding the lagged influences con-
stant. It is assumed that the relations among variables occur among the
available variables in the data set, and thus the contemporaneous varia-
bles are endogenous (Nakamura & Nakamura, 1998). When modeled
as undirected relations among errors, the interpretation shifts. To start,
lagged relations are estimated without controlling for contemporaneous
relations and thus will have different coefficient estimates (Gates et al.,
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2010). From an interpretation standpoint, correlated residuals suggest a
shared influence that is outside of the observed variables in the data
(Lütkepohl, 2005). This shared influence could be a latent variable, as
explained by Hallquist et al. (2019), or simply another variable not
included in the model. Note that this interpretation suggests that undir-
ected correlations are not the results of two directed relations between
two variables, which could be captured with directed relations.
Selecting an improper structural form for the contemporaneous rela-

tions can impact inferences. When the true contemporaneous relations
are directed relations among the observed variables and the model
only allows for the search of undirected relations among residuals, the
VAR estimates will be biased due to the exclusion of the contempora-
neous variables as covariates in the model. Furthermore, spurious
lagged effects will likely arise (Gates et al., 2010) which can be errone-
ously interpreted from a causal inference perspective given that it
would appear there is evidence for temporal precedence. When the
true contemporaneous relations are undirected among the residuals and
the model only allows for the search of directed relations among the
observed variables, it could likewise result in incorrect inferences. The
directed relations among variables would suggest that one variable
explains more variability in the other variable than the reverse, which
may not always be the case. This is particularly true if the two varia-
bles are related via a third variable exogenous to the system that might
be a common cause for both variables.
Currently available software for modeling ILD only allows for

one of the above approaches, uSEM or gVAR, to selecting and
estimating contemporaneous relations, as either directed or undir-
ected, respectively. This requires researchers to have strong theo-
retical justifications in order to choose the more appropriate
approach. In reality, however, researchers may not have enough
information regarding the dynamic process being studied to make
such decisions. Moreover, there might exist rationale to expect
some contemporaneous relations to be directed and others to be
undirected. In both cases, allowing only one type of specification
to be estimated has the potential to miss the true relations, intro-
duce some false relations, and lead to misleading model structures.
Molenaar (2019) proposed a hybrid-VAR approach that allows

for both undirected contemporaneous covariances among residuals
and directed contemporaneous relations among variables. This can
be estimated within the SEM framework, with the model then
referred to as hybrid-uSEM (Ye et al., 2021). Inspired by this
recently introduced approach, this article aims first to further
understand the differences and similarities between directed and
undirected contemporaneous relations, as well as the impact in
choosing one versus the other while modeling. Second, this article
introduces the incorporation of hybrid-uSEM into a current data-
driven search method, the group iterative multiple model estima-
tion (GIMME; Gates & Molenaar, 2012). GIMME is a completely
data-driven algorithm that can recover lagged and contemporane-
ous relations simultaneously from within a uSEM framework and
is a well-suited algorithm for hybrid-uSEM to be implemented.
We thus named the implementation of the hybrid-uSEM approach
into the GIMME framework hybrid-GIMME.
For this article, we first discuss the technical details of VAR

and uSEM and their similarities and distinctions. Then we intro-
duce a new method, hybrid-uSEM, which conceptually combines
the two currently most commonly used approaches (uSEM &
gVAR) by allowing for both directed contemporaneous relations
among observed variables and undirected relations among resi-

duals. Working from this foundation, we present the integration of
this modeling approach into the GIMME model search procedure.
We then present results from an extensive data simulation study
suggesting that this is a robust method for recovering the data-gen-
erating contemporaneous relations in an exploratory manner.
Results of an empirical data example probing emotions by using
emoji measurements collected across days are also presented to
demonstrate the practical utility of hybrid-GIMME.

Methods

The hybrid-GIMME method introduced in this paper builds
directly from hybrid-uSEM, a flexible model that allows for both
types of contemporaneous relations (directed relations among vari-
ables and undirected among residuals) as well as lagged relations.
Hybrid-uSEM is an extension of uSEM, which is a type of struc-
tural VAR (SVAR). We thus begin by first explaining SVAR’s
foundation, VAR, and the extensions that make it an SVAR. We
then describe uSEM, an approach for estimating a specific type of
SVAR models within a SEM framework. Next, we introduce
hybrid-uSEM. Finally, we provide details of the hybrid-GIMME
algorithm for arriving at the structure of relations among time se-
ries variables in a data-driven manner.

VAR

The VAR model is a standard model in time series analysis. It
models the changes in variables over time as a linear function of
their past values and the past values of other variables in the sys-
tem. Equation 1 represents a first-order standard VAR discussed in
Hamilton (1994), where only a single lag is considered. It is also
referred to as VAR(1) for simplicity.

gt ¼ c þU1gt�1 þ ft ; ft �Nð0;WÞ (1)

In the above equation, gt ¼ ½g1;t;g2;t; . . . ;gp;t�T represents a p-
variate time series (with p . 1) at time point t, with t = 1, . . . , T.
Time point t is usually used as the “current” time data with var-
iance explained by prior time points. c is a p-vector of constants
(intercepts).U1 has the dimension of p 3 p and is the lagged coef-
ficients matrix; the diagonal contains of the order 1 autoregressive
(AR(1)) regression coefficients indicating the prediction of a given
variable from itself at the prior time point and the off-diagonal rep-
resents the cross-lagged coefficients for how variables at the prior
time point predict each other. Residuals (ft) are assumed to be
uncorrelated across time (but can be correlated with each other at
t) with a mean of zero.

For example, a VAR(1) model with two variables can be written
as:

g1;t
g2;t

� �
¼ c1

c2

� �
þ / 1;1 / 1;2

/ 2;1 / 2;2

� �
g1;t�1
g2;t�1

� �
þ f1;t

f2;t

� �

SVAR

Whereas the standard VAR model focuses on estimating lagged
relations, contemporaneous relations—the other important piece in
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fully understanding and analyzing time series data—are not
being estimated alongside the lagged relations. They are often
modeled by correlating the residuals obtained for contempora-
neous variables (i.e., correlating the residuals at a lag of 0), but
this does not allow for directed relations. Structural VAR is
derived from the standard VAR and incorporates estimation of
directed contemporaneous relations in addition to lagged rela-
tions (Lütkepohl, 2005). Here we present an adaptation of the
model specifications of a lag one SVAR model Type A, which
models the contemporaneous relations as directed relations
among variables:

gt ¼ c þAgt þU1gt�1 þ ft ; ft �Nð0;WÞ (2)

In Equation 2, contemporaneous relations are estimated as the
p 3 p regression coefficients in A, with the residuals treated as
white noise that are mutually independent. The diagonal of A is
set to zero as a variable cannot explain its own variability
contemporaneously.
By moving Agt to the left hand side of the equation, we see

what looks like a standard VAR on the right hand side of the equa-
tion. We can solve for gt and in doing so, transform the SVAR
into an equivalent VAR:

gt �Agt ¼ c þU1gt�1 þ ft ; ft �Nð0;WÞ (2a)

gt ¼ ðI �AÞ�1c þ ðI �AÞ�1U1gt�1

þ ðI �AÞ�1
ft ; ft �Nð0;WÞ (2b)

Defining c� ¼ ðI �AÞ�1c; U*
1 ¼ ðI �AÞ�1U1, and f*t ¼ ðI �AÞ�1

ft ,
the contemporaneous relations will now be found among the resid-
uals and Equation 2 can be rewritten as:

gt ¼ c* þ U*
1gt�1 þ f*t (3)

Based on the above transformation, one can see that these two
equations are equivalent. Specifically, one could take estimates
from the SVAR in Equation 2 and obtain an equivalent VAR rep-
resentation in Equation 3. Note that the estimates for intercept, U
and residuals will differ from those in the SVAR since now the
contemporaneous effects are spread out across these estimates.
The take away here is that one can transform back and forth from
a model that has directed contemporaneous paths to a model that
does not. These will explain an equivalent amount of overall var-
iance in the data.
Having the contemporaneous relations estimated as directed

relations among the observed variables versus having the
undirected relations among the residuals, however, differs
drastically in interpretation as mentioned above. Specifically,
when relations are modeled as directed, the variability among
all variables is thought to relate to other observed variables in
the data set. In contrast, when the contemporaneous relations
are modeled as covariances or correlations among residuals,
the assumption is that shared variability between the two varia-
bles occurs due to mechanisms outside the system of the
observed variables at hand (Lütkepohl, 2005). While the two

representations can be transformed to each other (Gates et al.,
2010), Molenaar (2019) demonstrated that a feed-forward
search procedure was able to recover the data-generating struc-
tures when both types of relations existed. We explain below in
the hybrid-GIMME section Identifying Directionality and
Recovering Undirected Relations section how the true data-
generating directionality can be obtained from within an SEM
framework. This is critical because researchers are often
unsure if they may encounter only one of the two types of con-
temporaneous relations in the data or both types. Hence, an
appropriate approach that allows both types of contemporane-
ous relations to be simultaneously estimated and compared is
needed to better understand the underlying relations in time se-
ries data.

uSEM

SEM is a widely used analytic approach in psychology for
estimating relations between variables. However, it is mostly
applied to estimate contemporaneous relations (as in cross-sec-
tional data) rather than lagged relations, due to most SEM
approaches’ assumption of independent observations. Kim et al.
(2007) first proposed unified SEM (uSEM). The uSEM method
conducts SVAR estimation via SEM. It thus allows the estima-
tion of lagged relations and directed contemporaneous relations
simultaneously. Kim et al. introduced the method for use with
functional MRI (fMRI) data applications. fMRI data is well-
suited for this method because it is known to typically have
very high sequential dependencies in addition to contemporane-
ous relations (Logothetis, 2008). Increasingly it is becoming
apparent that some ecological momentary assessment data may
also share these qualities (Fisher & Boswell, 2016; Lane, Gates,
Pike, et al., 2019). Gates et al. (2010) demonstrated in detail
how to transform a regular VAR model with correlated resid-
uals to an equivalent uSEM model in which the contemporane-
ous relations are modeled as directed relations among observed
variables, and vice versa, much like we showed in the previous
section for standard SVAR.

The uSEM approach for estimating time series models has
emerged as a fruitful way to analyze data as it allows the esti-
mation of lagged and directed contemporaneous relations simul-
taneously (Beltz, Beekman, et al., 2013; Gates & Molenaar,
2012). To continue this line of work, we can estimate hybrid-
VARs using hybrid-uSEM. In doing so, we reap the benefits of
a long line of work using the uSEM framework. Equation 2 can
be rewritten for SEM by having one matrix, B, containing the
coefficients for both lagged and contemporaneous relations.

g ¼ cþ Bgþ f; f�Nð0;WÞ (4)

In this form, we have g ¼ ½gt�1; gt�, where g becomes 2p-variate

time series data, where gt ¼ ½g1;t;g2;t; . . . ;gp;t�T as before and

gt�1 ¼ ½g1;t�1;g2;t�1; . . . ;gp;t�1�T . The observations are now time
embedded by appending each observation at previous time points
to themselves at time point t. In doing so, we now have both
lagged and contemporaneous relations stored in a new
2p 3 2p B matrix. More specifically, the B matrix is:
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aðp�1Þp
/p1 � � � � � � � � � /pp ap1 � � � � � � apðp�1Þ 0

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

2p3 2p

The upper left contains directed relations among the gt�1 var-
iables, which are constrained to zero here and captured as cova-
riances in W (see below). The upper right is also constrained to
zero because directed relations cannot explain variability back-
ward in time; in other words, gt cannot predict gt�1. The U matrix
is now the lower-left block of the B matrix, which contains all the
VAR(1) relations with the autoregressive relations along the diag-
onal. The lower-right block is the previously introduced A matrix
that contains estimates for directed contemporaneous relations.
The diagonal of the lower-right block previously A matrix is con-
strained to zero so a variable cannot predict itself at the same time
point.

W ¼

w 11

w 21
. .
.

..
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. . .

.

..
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. . .

.

w p1 � � � � � � w pðp�1Þ
. .
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.
0 . .

.

..
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. . .
.
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. ..

. ..
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0 � � � � � � � � � 0 0 � � � � � � 0 w ð2pÞð2pÞ

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

2p32p

The W matrix is the variance-covariance matrix of the data with
the variance of observed contemporaneous variables on the diago-
nal. The upper triangle above the diagonal is omitted here because
the matrix is symmetrical. The first p elements on the diagonal rep-
resents the variance of the p variables in gt�1 whereas the remain-
ing p elements (from p þ 1 to 2p) contain the residual variance
estimates after the lagged and contemporaneous relations are esti-
mated. The upper left off-diagonal portion is the covariance matrix
of gt�1 as mentioned earlier. The lower right is the covariance ma-
trix of residuals. They are constrained to zero for traditional uSEM
because they are assumed to be independent after conditioning on
the contemporaneous and lagged relations among the observed
variables. With matrices defined as described here, traditional
SEM estimation can then be carried out once a subset of the rela-
tions in the U and A are selected to ensure identifiability. We dis-
cuss a robust approach for identifying the subset of relations
below in the Hybrid-GIMME section. But first, we describe
hybrid-uSEM.

Hybrid-uSEM

Although uSEM can estimate lagged and contemporaneous rela-
tions simultaneously, it has limitations in that all contemporaneous
relations are required to be directed relations among observed vari-
ables. Molenaar (2019) first introduced to the field of psychology
the hybrid-VAR concept, which incorporates the estimation of
both directed and undirected contemporaneous relations into one
single model, in addition to the estimation of lagged relations for
time series data. This model can be estimated via SEM, which we
denote hybrid-uSEM. The hybrid-uSEM approach is one represen-
tation of how this could be empirically applied. Borrowing from
both the VAR model and the uSEM model, hybrid-uSEM is able
to estimate lagged relations while also allowing both directed and
undirected contemporaneous relations to coexist. This is done by
freeing some constraints imposed on the residual covariance in the
traditional uSEM model.

The B matrix specification is identical to Equation 4. However,
the W matrix is now different because the covariances among con-
temporaneous residuals are allowed to be included during estima-
tion. This would also affect the values in the B matrix if we were
estimating both directed and undirected contemporaneous relations
simultaneously, although the B matrix still has the same structure
as before (the lower right of the B matrix will become all zeros if
we are only allowing undirected relations). More specifically, now
theW matrix is as follows:

W* ¼

w 11

w 21
. .
.

..

. . .
. . .

.

..

. . .
. . .

.

w p1 � � � � � � w pðp�1Þ
. .
.

0 � � � � � � � � � 0 . .
.

..

. . .
. ..

.
w ðpþ1ÞðpÞ

..

. . .
. ..

. ..
. . .

. . .
.

..

. . .
. ..

. ..
. . .

. . .
.

0 � � � � � � � � � 0 w ð2pÞðpÞ � � � � � � w ð2pÞð2p�1Þ w ð2pÞð2pÞ

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

2p3 2p

The difference between W� and W is that the lower-right block
is no longer constrained to zeros in W�. Now, much like in tradi-
tional VAR and gVAR, the relationships among residuals can
potentially model the contemporaneous relations in the data.

Because more coefficients in the residual matrix are freed to be
estimated, the model becomes saturated and underidentified if all
potential coefficients were estimated. In order to avoid model
underidentification, hybrid-uSEM is expected to perform the best
either in a confirmatory manner in which not all possible relations
are being estimated, or in a data-driven algorithm that contains a
fewer number of all possible relations in order to have enough
degrees of freedom to continue model estimation. We next intro-
duce such an algorithm—hybrid-GIMME—and show how hybrid-
uSEM can be incorporated into an existing data-driven method for
time series data and apply it to both simulated and empirical data.

Hybrid-GIMME

GIMME (Gates & Molenaar, 2012) is an algorithm that is freely
available via the R package gimme (Lane, Gates, Fisher, et al.,
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2019) on the Comprehensive R Archive Network (CRAN; R Core
Team, 2019). GIMME is a completely data-driven method that
can recover both the presence and the direction of directed con-
temporaneous and lagged relations. The algorithm has two main
steps:

• Group-level search: Look for relations that consistently
exist across individuals. Add these to the “group-level”
model and obtain person-specific estimates for everyone.

• Individual-level search: Starting with the person-specific
estimation of group-level relations as a foundation, search
for relations to add at the individual level.

Starting with an empty model (typically a model with only
AR(1) relations estimated), GIMME uses modification indices
(MI; Sörbom, 1989), a measure of expected change in the log
likelihood if a relation were added to the model, for feed-for-
ward selection of relations. Starting with a model where no
additional relations are estimated in either the U or A compo-
nents of the B matrix,1 it first arrives at the group-level model
by including only relations that improve the fit (as indicated by
MIs) for the majority of individuals’ models. What constitutes
the majority should be driven by insights into the expected sig-
nal to noise ratio. For fMRI, large scale simulation studies have
suggested that the data-generating relations can be expected to
be recovered in about 75% of individuals under typical noise
and time series lengths (Smith et al., 2011). The current
GIMME default for group-level relation cutoff threshold is
75% indicating that at least this proportion of individuals must
have a relation be significant for it to be included in the group-
level model. This value can be changed by the user.
GIMME then moves on to the individual-level search using

the group-level results as a baseline model for the search of rela-
tions to add, again using MIs to guide relation selection in a
feed-forward manner. The search for individual-level relations
ends once the model is found to be a good fit according to at least
two of the following indices: comparative fit index, non-normed
fit index, root mean square error of approximation, and standar-
dized root-mean squared residual. The model search may stop
even if there still are significant modification indices, favoring
parsimony to prevent overfitting. At each step, GIMME arrives
at individual-level estimates. GIMME has been shown to be
highly reliable in obtaining lagged and contemporaneous rela-
tions across varied contexts (Gates et al., 2019; Gates & Mole-
naar, 2012; Lane, Gates, Pike, et al., 2019) largely because it
uses shared information across individuals to bring each individ-
ual’s model closer to their true data-generating structure of rela-
tions. Note that the group-level information is used solely to cut
down on potential overfitting and spurious relations at the indi-
vidual level. The group-level relations are used to get the indi-
vidual-level search closer to the true final model at the start of
that search, which has been recommended for any model build-
ing procedures using modification indices (MacCallum et al.,
1992). In the end, GIMME produces an individual-level model
for each individual, and all estimates are obtained for individuals
separately—even for the group-level paths. The current GIMME
finds relations from within the uSEM structure; in other words, it

only allows lagged and directed contemporaneous relations to be
estimated. For hybrid-GIMME, we are incorporating the hybrid-
uSEM approach that we just presented, which allows for both
directed and undirected contemporaneous relations to be esti-
mated simultaneously in addition to lagged relations. For more
details on the GIMME algorithm, we refer readers to Gates and
Molenaar (2012).

Specifically, to enable hybrid-GIMME to detect undirected
contemporaneous relations among residuals, we allowed the co-
variance between the residuals of contemporaneous variables
(see the lower-right block of W�) to also be included among the
candidate relations to be considered when running model specifi-
cation using modifications indices. Now hybrid-GIMME simul-
taneously compares the modification index values of three
candidate contemporaneous relations between two variables, say
A and B: the directed relation of A on B, the directed relation of
B on A, and the undirected relation of the residuals for A and B.
One benefit of conducting the analysis within a SEM framework
is that there is no need for a two-step procedure whereby the
VAR model is detected first, followed by investigation of resid-
uals. In the hybrid-uSEM approach used in hybrid-GIMME, all
potential relations are evaluated simultaneously for addition to
the model, and once added they are estimated simultaneously in
one step.

Identifying Directionality and Recovering Undirected
Relations

As demonstrated in hybrid-uSEM, the lower-right block of the
W� matrix will be allowed to potentially be estimated instead of
being constrained to all zeros (as in the traditional uSEM frame-
work, W). Given that SVAR can be transformed to an equivalent
VAR with covaried residuals and the same has been demon-
strated for uSEM and VAR, we investigate the rationale for
whether or not a data-driven approach is able to detect which
candidate relation (e.g., b1,2 vs. w1,2) is selected for a given data
generating model. First we will start by explaining how one can
differentiate the directed relation of h1 on h2 (b1,2) from h2 on
h1 (b2,1).

As most researchers are familiar with regression analyses, we
describe the concept from within that framework. Suppose we
have only h1 and h2 in the model, and the directed relation (slope
as in simple linear regression) using ordinary least square is given
by:

b1;2 ¼ Covðg1;g2Þ
Varðg2Þ

and b2;1 ¼ Covðg2;g1Þ
Varðg1Þ

The above equations show that b12 and b21 are just the covari-
ance scaled according to the variance of the dependent variable
in a simple regression. Furthermore, when the two variables are
standardized (Varðg1Þ ¼ Varðg2Þ ¼ 1;lg1

¼ lg2
¼ 0), it is

known that we have b12 ¼ b21. However, this is not the case
when we have other confounding covariates in the model, which

1While not the default, users can start with some relations freed for
estimation in these matrices for a semiconfirmatory search.
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is almost always the case in time series data due to the inclusion
of AR relations.
By adding AR(1) relations to the simple regression we can

quickly see how directionality can be discovered (cross-lagged
relations and residuals are omitted here to simplify the equations).
The model specification becomes:

g1 ¼ b1;2g2 þ b1;ð1;t�1Þg1;t�1 and

g2 ¼ b2;1g1 þ b2;ð2;t�1Þg2;t�1

Therefore we have the directed relations calculated as:

b1;2 ¼
Varðg1;t�1ÞCovðg2;g1Þ � Covðg2;g1;t�1ÞCovðg1;t�1;g1Þ

Varðg2ÞVarðg1;t�1Þ � Covðg2;g1;t�1Þ2

b2;1 ¼
Varðg2;t�1ÞCovðg1;g2Þ � Covðg1;g2;t�1ÞCovðg2;t�1;g2Þ

Varðg1ÞVarðg2;t�1Þ � Covðg1;g2;t�1Þ2

The equations demonstrate that by having additional covariates
in the model (here, lagged variables), the directed contemporane-
ous relation of one variable being explained by the other is
unlikely to be equal to the reverse. Therefore the direction (i.e.,
which one is considered the target or dependent variable) can be
detected in that one direction might explain more variance in the
data than selecting the opposite direction. What we have demon-
strated here is the premise for Granger Causality (Granger, 1969),
which builds models from within a VAR approach to arrive at
lagged and/or contemporaneous relations by the inclusion of auto-
lagged covariates (Henry & Gates, 2017).
Not only do the directions of relations matter, but also whether

the relation is better quantified as a directed relation or undirected
relation matters. In the previous sections we introduced the theo-
retical difference of the two types of relations; in the Appendix we
detail how the selection of a directed relation among two observed
variables provides a different model-implied covariance matrix
than the selection of an undirected relation among residuals for
SEM. To summarize, we show that one will arrive at different
model-implied covariance matrices depending on whether one is
including a directed relation in B (as b43 in the example) matrix or
an undirected relation (w34) in the W matrix. The model implied
covariance matrices differ because of the presence of autoregres-
sive relations, which serve as covariates. It follows that fit values
will also differ. In this way the MIs, which are related to the
expected change in overall model log likelihood, will differ
between the directed relation among observed variables and the
covariance among residuals when autoregressive effects are
included as a baseline or “null”model. One advantage of GIMME
(and also of hybrid-GIMME) is that it uses MIs to determine the
addition and deletion of candidate relations. Here we have shown
that the model-implied covariance matrix—and thus the fit indices
and MI based on this—will differ depending on the directionality
(whether the relation is directed or undirected, and which direc-
tion if it is directed) of the relation selection. Hence, we expect
hybrid-GIMME to be able to detect the correct direction and type
of a relation using MIs.

Simulations

Data Generation

Simulations were conducted to evaluate the performance of
hybrid-GIMME. Data for a single individual was generated
according to

gt ¼ Agt þUgt�1 þ ft : (5)

where we have p = 10 variables. Time series lengths of T = 60,
100, 120, 150, 200, and 1,000 were considered, with 100 replica-
tions in total for each time series length representing different sam-
ples of individuals. For each replication, there are N = 100
individual time series. The time series lengths of simulated data
were chosen as they are commonly encountered in daily diary and
fMRI data.

All replications had the same diagonal U matrix structure (with
specific values of the relations differ), where only AR relations
were included at the group level. All AR relations were randomly
generated with a mean of .4 and standard deviation of .1 with a
normal distribution. Having parameters deviate across individuals
better matches what is expected to be seen across individuals in
empirical studies due to sampling fluctuations. Each individual
also had two off-diagonal relations in the U matrix (cross-lagged
relations) randomly generated, with a mean of .3 and standard
deviation of .05. For each replication of each length of simulated
data, all individuals share the same randomly generated group-
level contemporaneous relation structure: five directed relations
(in the A matrix) and three undirected relations (in the W matrix).
Each individual also had four directed relations and two undirected
contemporaneous relations randomly generated at the individual
level. This proportion of sparsity in the final individual-level pat-
terns are consistent with prior simulations aiming to assess the per-
formance of methods in terms of recovering true network relations
(e.g., Nestler & Humberg, 2021; Ramsey et al., 2011; Smith et al.,
2011) as well as empirical results on data gathered on humans
(e.g., Epskamp, van Borkulo, et al., 2018). All relations in the A
andW matrices (directed and undirected relations at both the group
level and the individual level) were again generated with a mean
of .4 and standard deviation of .1. The randomness in group-level
relations (in magnitude) and individual level relations (in both
location and magnitude) was included to break up the homogene-
ous nature of simulated data and to better resemble empirical data
which has more interindividual variability even when some simi-
larities exist. The code for generating and analyzing the simulated
data can be found online at OSF: https://osf.io/6c3g5/?view_only=
55a679495c9f4bd5abf6e1059d00ee77.

For example, for T = 60, Individual 1 and Individual 2 of Repli-
cation 1 would share the same five directed and three undirected
contemporaneous group-level relations, while their specific values
differ. They would also have additional four directed and two
undirected contemporaneous relations, both differing from the
other individuals in location and magnitude. In addition, for T =
60, Individual 1 of Replication 1 would have different group-level
and individual-level contemporaneous relations from Individual 1
of Replication 2. The A and W matrices for Individual 1 of Repli-
cation 1 for T = 60 are as following to assist in demonstrating the
data generating models:
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Aind1;rep1 ¼

0 0 0 0 0 0 0 0 0 0
0:49 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0:35 0 0 0 0 0 0 0 0

0:44 0:41 0 0 0 0 0 0 0 0
0 0 0 0:41 0 0:49 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0:58 0 0:35 0:58 0 0 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

Wind1;rep1 ¼

1 0 0 0 0 0 0:36 0 0 0
0 1 0:41 0 0 0 0 0 0 0
0 0:41 1 0 0 0 0 0 0 0:18
0 0 0 1 0:44 0 0 0 0 0
0 0 0 0:44 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

0:36 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0:18
0 0 0:18 0 0 0 0 0 0:18 1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

Performance Criteria

We will examine the results by first looking at recovery of the
group-level relations that are present in all individuals and then
examining overall performance for all types of relations. Because
each replication has different group level relations even for the
same number of time points, there will not be relation-specific re-
covery, and the numbers are averaged across all 100 replications
within each number of time points. Performance will largely be
assessed based on two criteria, “sensitivity” and “specificity,” with
the focus mostly on sensitivity. Sensitivity measures the propor-
tion of actual data-generating relations that are correctly recov-
ered, and is also known as the true positive rate. Specificity
measures the proportion of actual negatives that are correctly
recovered as negative. In all machine learning approaches balanc-
ing the rate of true positives and true negatives is required because
increasing sensitivity (i.e., recovering relations that existed in the
data generating model) sometimes comes at the cost of increasing
the rate of false positives. The GIMME algorithm errs on the side
of missing true relations so that false positives are not introduced
into the model.

Examining Recovery of Data-Generating Relations Found
at the Group Level

We first will examine the group-level relations in depth by pro-
viding figures depicting how frequently they were correctly recov-
ered in the appropriate matrix as well as false positives in the
wrong matrix. For example, if a2,1 was correctly recovered for one
individual, it would contribute to the count of recovery for that
data-generating relation. We will also count how often this relation
erroneously occurred in the W matrix, or recovered reversely as
a1,2. Similarly, we will provide a count of how often the group-
level relation that was simulated to be in the W matrix erroneously
surfaced in the A matrix, and also provide results for how fre-
quently it was correctly identified in theW matrix.
We will also explore two types of relation-specific sensitivity

measures: “presence sensitivity” and “direction sensitivity.”
Presence sensitivity measures the proportion of data-generating

contemporaneous relations being recovered as any direction or
type of relation. That is, if it surfaces in either the A matrix or
the W matrix, it would be counted as detection of the presence of
a contemporaneous relations (regardless of the direction). Direc-
tion sensitivity captures the percent of times a given relation is
recovered across individuals for those relations for which the
presence is correctly recovered.

Note that presence sensitivity does not measure if the relation’s
direction is correctly identified. For instance, if there were truly
100 individuals in one repetition who share the a2,1 directed rela-
tion, and hybrid-GIMME detected a2,1 for 90 individuals, a1,2 for
five individuals (without overlapping with the previous 90 individ-
uals), and for three individuals the relation was captured as w2,1 in
the undirected W matrix, then the presence sensitivity rate would
be 90þ5þ3

100 ¼ 98%. Although presence sensitivity doesn’t take into
account the direction, it is still important to assess if any relation
was detected among variables that do in fact have a relation.
Researchers may make inferences regardless of directionality. For
instance, to quantify the degree or number of relations for a given
variable, one might not differentiate directionality but simply add
the number of other variables it has relations with.

Direction sensitivity is a bit more conservative and a stricter cri-
terion. It will always be equal to or less than presence sensitivity
as it requires that the contemporaneous relation between two varia-
bles be detected and in the right direction to be counted as cor-
rectly recovered. Continuing with the example above, direction
sensitivity for the specific a2,1 relation would be 90

100 ¼ 90%. Note
that although undirected contemporaneous relations technically do
not have a “direction” per se, as they do not point from one vari-
able to another, direction sensitivity still applies. With direction
sensitivity, we can assess if hybrid-GIMME correctly recovered
these relations as undirected as opposed to as directed.

Overall Metrics of Recovery

Besides relation-specific probing and sensitivity measures,
mean sensitivity and specificity will also be measured for each
simulation condition. This will help to obtain an overall picture of
how well the algorithm works by summarizing recovery across all
types of matrices as well as including group- and individual-level
relations. The mean sensitivity and mean specificity are calculated
as

Mean sensitivity ¼ 1
N

XN
n¼1

Rjðĥn;j 6¼ 0 and hn;j 6¼ 0Þ
Rjðhn;j 6¼ 0Þ

 !
; (6)

Mean specificity ¼ 1
N

XN
n¼1

1� Rjðĥn;j 6¼ 0 and hn;j ¼ 0Þ
Rjðhn;j ¼ 0Þ

 !

(7)

where hn,j and ĥn;j are the true and estimated elements of U, A and
W, respectively, for individual n in a given design condition.
Again we note the composition of hn,j is different depending on
whether one is considering presence or direction measures. Direc-

tion sensitivity and specificity are straightforward in that ĥn;j and
hn,j correspond directly to the fitted and data generating model pa-
rameters, respectively. Presence sensitivity and specificity at the
condition level requires some additional explanation.
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To understand average presence sensitivity consider a single
element of hj for individual n from Equation 6. For example con-
sider hj ¼ w 2;10 is in the data generation model (DGM), (i.e., a
covariance between the errors of the h2 and h10 equations).
Because this relation exists in the data generating model hj will be
nonzero. Now, the corresponding element for the recovered parame-

ter ĥj will be nonzero if any of the following three conditions are

satisfied: ŵ 2;10 6¼ 0; â2;10 6¼ 0;
â10;2 6¼ 0. Any of these relations indicate accurate recovery of
the presence of a contemporaneous relation between h2 and h10.
Equivalently, if we consider the situation where hj ¼ w 1;10,
which does not exist in the data generating model, satisfying any

of the following conditions (ŵ 1;10 6¼ 0; Â1;10 6¼ 0; Â10;1 6¼ 0)
would be considered a false-positive, as any would indicate the
presence of a contemporaneous relation that does not exist in
the data generating model. This information is used when arriv-
ing at presence specificity and would decrease the percentage of
DGM negatives (i.e., no relation) found to be negative in the
estimated model.

Simulation Results

All repetitions for each of the number of time points were run
using the gimme R package (Lane, Gates, Fisher, et al., 2019) with
the newly added hybrid option invoked (“hybrid = TRUE”), and
with the threshold of group level relation set at .75, which means a
relation has to be identified in no less than 75% of the sample to
be labeled as a group level relation. Out of 60,000 individuals
(100 individuals for each of 100 replications for all six numbers of

time points), only eight individuals failed to converge, resulting in
a total of 59,992 individual level models estimated by hybrid-
GIMME. These eight individuals’ data were thus not included in
our analyses.

We include two box plots here to represent the overall sensitiv-
ity for both group and individual level contemporaneous relations.
The red and green boxes in Figure 1 depict the overall average
presence and direction sensitivity for group-level directed contem-
poraneous relations. These are the relations present in the A matri-
ces in the DGM. Relation-specific sensitivity rates are omitted
here because each replication had different group level relations.
For example, in Replication 1 there could be a directed contempo-
raneous relation from x2 to x4, while such a relation might not
necessarily be present in Replication 2. Therefore, only averaged
sensitivity rates are compared. In Figure 1, we see that both pres-
ence and direction sensitivity rates increased as the number of
time points increased. The difference between the presence and
directed contemporaneous sensitivity rates decreased as the num-
ber of time points increased. This indicates that when we have
more time points in the data, directed contemporaneous relations
are not only more likely to be detected, but also are more likely to
be correctly recovered regarding their directions. In fact, the me-
dian presence sensitivity exceeded 75% when the number of time
points was 100, and median direction sensitivity exceeded 75%
when the number of time points was 120. When T = 1,000; aver-
age presence sensitivity reached 99.82%. The almost-disappearing
box plots at T = 1,000 is because most replications consistently
had a sensitivity rate of 1. We list averages in Table 1.

The blue and purple box plots in Figure 1 present the average
presence and direction sensitivity for group-level undirected

Figure 1
Sensitivity for Group Level Contemporaneous Relations by the Number of Time
Points

Note. See the online article for the color version of this figure.
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contemporaneous relations. These are the relations present in the
W matrices in the DGM. Note that although undirected relations
no dot have a “direction,” we say their direction is recovered when
these relations were recovered correctly as undirected, as opposed
to being falsely recovered as directed relation. Overall, there is a
very similar pattern to what was seen for the directed contempora-
neous paths. Both presence and direction sensitivity increased as
the number of time points increased, and the difference between
them decreased as well. It is worth noticing that while presence
sensitivity did not differ very much for directed and undirected
contemporaneous relations, direction sensitivity appeared to be
consistently lower for undirected relations. This suggests that
undirected relations are erroneously considered directed at a high
rate, particularly when T , 120. Considering the results all to-
gether, compared with directed contemporaneous relations, undir-
ected contemporaneous relations appeared to be more difficult to
be recovered correctly as undirected, while their presence is gener-
ally as well detected as were directed contemporaneous relations
by hybrid-GIMME. In addition, Figure 1 offers some insight on
the minimum number of time points needed for a reliable estima-
tion of contemporaneous relations at the group level. More than
75% of contemporaneous relations, both directed and undirected,
were already successfully detected by hybrid-GIMME at T = 100.
Additionally, more than 75% of the relations’ directions were cor-
rectly recovered at T = 150. Hybrid-GIMME has demonstrated
extremely robust performance on recovering the true data-generat-
ing model.
Individual-level contemporaneous relations show a slightly dif-

ferent recovery pattern compared with group-level contemporane-
ous relations. Figure 2 presents the overall presence and direction
sensitivity for individual-level directed and undirected contempo-
raneous relations for all 100 replications at each number of time
points in one plot. In general, individual-level contemporaneous
relations had lower sensitivity rates compared with their group-
level counterparts. It’s worth noting that when there were not

many time points in the data (i.e., T = 60), sensitivity rates did not
differ much between group- and individual-level contemporaneous
relations. Similar to group-level contemporaneous relations, undir-
ected relations were recovered slightly better than directed rela-
tions in terms of their presence, but not as well for their true
direction. This implies that although undirected relations were
more often detected by hybrid-GIMME, they were also more
likely to be falsely recovered as directed. Still, they were recov-
ered as the true direction (i.e., undirected) greater than what would
be expected by chance for T . 60.

The main difference of the recovery pattern between group- and
individual-level contemporaneous relations is that sensitivity rates
did not increase as much for individual-level relations as the num-
ber of time points increased; in fact, sensitivity even decreased
when the number of time points increased to 1,000. The reason
likely is that the GIMME has a conservative stopping point for
adding paths to avoid false positives. Specifically, the algorithm
stops adding paths—even if they would be significant—if the fit
indices indicate a good enough fit. As stated above when introduc-
ing the GIMME framework, hybrid-GIMME utilizes group-level
information as a starting point for the individual-level models in
order to pick signal out of noise. Therefore, in favoring parsimony
and reducing the risk of false positives, hybrid-GIMME misses
some individual-level relations that exist in the data-generating
model. This finding is in line with prior studies evaluating the
main algorithm’s performance (e.g., Beltz & Molenaar, 2016;
Lane, Gates, Pike, et al., 2019; Nestler & Humberg, 2021). This
explanation also aligns with what Figure 1 represents—both pres-
ence and direction sensitivity increased greatly at the group level
as the number of time points increased. In Figure 2, we see a
decrease in both presence and direction sensitivity when T = 1,000
which likely reflects the fit indices overcorrecting for the number
of time points and stopping the search procedure too soon.

The above graphs which compare the recovery of group- as
well as individual-level contemporaneous directed and undirected

Table 1
Mean Sensitivity and M Specificity Summary

Measures T = 60 T = 100 T = 120 T = 150 T = 200 T = 1,000

Group-level directed
Presence sensitivity 67.63% 75.86% 83.28% 93.05% 95.93% 99.82%

Group-level directed
Direction sensitivity 46.39% 59.61% 71.02% 87.03% 90.13% 96.85%

Group-level undirected
Presence sensitivity 71.88% 79.18% 80.67% 93.25% 96.67% 99.40%

Group-level undirected
Direction sensitivity 36.72% 49.87% 56.04% 79.17% 85.52% 92.69%

Individual-level directed
Presence sensitivity 66.26% 72.68% 74.32% 73.98% 71.81% 66.23%

Individual-level directed
Direction sensitivity 44.57% 54.17% 57.47% 61.87% 62.76% 61.68%

Individual-level undirected
Presence sensitivity 71.38% 76.30% 77.81% 77.06% 76.97% 68.34%

Individual-level undirected
Direction sensitivity 36.61% 45.15% 49.69% 53.56% 56.95% 55.91%

Mean direction
Sensitivity 42.40% 53.90% 60.89% 73.37% 76.58% 80.01%

Mean presence
Sensitivity 68.69% 75.73% 79.37% 85.36% 86.49% 85.57%
Mean specificity 94.59% 96.69% 97.44% 98.49% 98.77% 98.34%
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relations are intuitive in representing the simulation results
directly, but they do not summarize the full picture of accurate
model recovery. In addition to the overall sensitivity measures that
the graphs above represent, Table 1 also includes the specific val-
ues of mean sensitivity and specificity at each time point. As we
have seen in prior work (e.g., Gates & Molenaar, 2012; Lane,
Gates, Pike, et al., 2019; Nestler & Humberg, 2021), presence sen-
sitivity rates increase as the number of time points increases. In
general, T = 100 appears to be a large enough number of time
points in order to reliably recover the presence of relations in
hybrid-GIMME, and T = 150 is large enough to recover the direc-
tions of contemporaneous relations correctly (more than 75%).
Importantly, specificity rates stayed extremely high, almost always
larger than 95%, regardless of the number of time points. This indi-
cates that hybrid-GIMME, even for the number of time points as
low as 60, performed extraordinarily well in terms of not capturing
false positives. Overall, hybrid-GIMME demonstrated acceptable
performance and significant potential on the implementation of
hybrid-uSEM in the current GIMME framework.

Empirical Example

An empirical data set was also used in this article to demon-
strate hybrid-GIMME’s potential for providing novel insights into
current research questions about emotion and depression. Collec-
tion of this empirical data was supported by National Institutes of
Health grant UL1TR002240 and a Rachel Upjohn Clinical Schol-
ars award from the University of Michigan Comprehensive
Depression Center to A. Beltz, who was also supported by the
Jacobs Foundation. This data is a 100-day recently completed

daily diary study on the relations of emotions and depressive
symptomology in individuals’ day-to-day lives. Participants com-
pleted a newly developed, emoji-based emotion measure (Emoji
Positive and Negative Affect Schedule; E-PANAS) in addition to
standard daily experience and depression measures. A community-
based sample of adults varying in mental health was recruited and
contains an equal number of men and women. A total number of
75 emoji scales are included in the study and a subset of 15 emojis
was used for this article. Participants were asked to rate all 75
emojis on a scale from 0 to 100 every time they received the sur-
vey—the higher the rate, the more accurately the emojis repre-
sented how the participants felt at the time they took the survey.

Figure 3 shows the specific 15 emojis used for this article (all
emojis shown in tables and figures with emojis were designed by
OpenMoji, the open-source emoji and icon project.). It includes a
wide range of emotions, from some more common emojis (i.e.,
“smiling face,” “sleeping face”) to emojis that could be interpreted
very differently (i.e., “upside-down face,” “smirking face”). The
selection of emojis was motivated by the hypothesis that emojis of
similar emotions (such as the two smiling emojis) may relate to
each other in an undirected way as they may relate to an unmeas-
ured construct and emojis of different emotions (such as one tired
face emoji and one happy emoji) may relate in a directed way. The
subset includes measurements from a total of N = 50 participants
(female = 21) who have completed at least 80% of their daily self-
reports (mean T = 100 days). The age of participants ranged from
18 to 45 (M = 26.54, SD = 7.41).

Given the exploratory nature of the hybrid-GIMME procedure
we also tested the validity of the results. To do so, we used only
the initial 95 observations from each individual’s data to train the

Figure 2
Sensitivity for Individual Level Contemporaneous Relations by the Number of
Time Points

Note. See the online article for the color version of this figure.
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hybrid-GIMME model. Consequently, we retained the final five
time points from each series as a test set on which we could evalu-
ate the final model obtained for each individual. By using the final
model results obtained by hybrid-GIMME to develop five-step-
ahead forecasts we can compare the model-predicted values to the
true values for each series. Furthermore, we can compare the
results from GIMME to standard approaches, such as the canoni-
cal VAR, as another tool for model validation. As future time
points are being forecasted, in both cases only lagged relations are
used.

Empirical Data Results

Again, all analyses were run using hybrid-GIMME. AR rela-
tions were estimated as a start of the model search for all individu-
als in following the recommended default of GIMME. In this
empirical example, no undirected contemporaneous relations were
detected at the group level, and six directed contemporaneous rela-
tions were recovered at the group level. There were many individ-
ual-level contemporaneous paths that were both directed and
undirected, suggesting a high degree of heterogeneity in emotional
processes, a finding seen elsewhere (e.g., Fisher & Boswell, 2016;
Wright & Simms, 2016). Figures 4 and Figure 5 show the two
plots of the emoji data, with the first being the directed contempo-
raneous relations found in the A matrix and the latter being the
undirected ones found in the W matrix. The solid gray lines indi-
cate individual level contemporaneous relations and black lines
indicate group level relations (the arrows on each node indicate
the AR relations). Line width corresponds with the proportion of
people who had that path—the wider the line was, the larger the
proportion was of people who were recovered to have that path.

The two plots depict that despite the existence of many individual
contemporaneous relations, there are not many relations shared by
at least 75% of the individuals in the sample, a threshold set for
group-level relations in this article. Gates et al. (2019) showed that
by lowering the group-level threshold to 51%, the true positive
rate increased without a corresponding increase in the false posi-
tive rate. Users have the option to alter this hyperparameter if they
wish to change what percentage dictates the majority in their data.
However, to keep the empirical results consistent with our simula-
tion (which follows the bulk of simulation work in this area),
which used a 75% group-level threshold, we kept the threshold at
75%.

The results offered some useful information in interpreting the
novel emoji data, and reflected the complexity of emotional data
measured by emojis. For instance, one of the most shared directed
contemporaneous relations is “tired face” to “sleepy face” (94%
significant). However, there are also other directed relations recov-
ered at the group level that do not seem to be very intuitive, that is,
“smirking face” to “downcast face with sweat.” There was also a
significant amount of detected positive cross-category directed
contemporaneous relations (e.g., “downcast face with sweat” to
“drooling face”) at the individual level. For instance, there were
seven participants who shared the relation from “thinking face” to
“smiling face with halo.” Another example is the relation shared
by 16 participants from “smiling face” to “lying face.” The pres-
ence of these positive cross-category directed contemporaneous
relations indicates the complexity of this new data using emojis to
rate emotions.

The most shared undirected contemporaneous relation is
between “downcast face with sweat” and “smirking face” which
was seen in seven participants. This is represented as the thickest

Figure 3
Emojis From Empirical Data

Note. All emojis shown in this figure were designed by OpenMoji, the open-source emoji
and icon project. See the online article for the color version of this figure.
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gray line shown in Figure 5. Note that a directed contemporaneous
relation was also identified for some participants for the same two
variables. The two second most shared undirected contemporane-
ous relations are between “grinning squinting face” and “rolling
on the floor laughing” in six individuals out of 50. These are two
more extreme emojis that are usually associated with happiness
and joy among the 15 emojis in the data. It could be a sign sug-
gesting a potential latent factor for these positive construct emojis.
One possible explanation of why there were not more individuals
sharing this undirected relation could be because “rolling on the
floor laughing” can be interpreted very differently by different
people, ranging from being genuinely happy or just being sarcas-
tic, thus not necessarily related to the “grinning squinting face”
emoji.
On average, each individual in our empirical example data set

was recovered to have around 17 directed contemporaneous rela-
tions (M = 17.36, SD = 4.70) and three undirected contemporane-
ous relations (M = 2.81, SD = 2.82). This large variation in the
number of recovered contemporaneous relations contributes to the
small number of shared group level contemporaneous relations.
Based on our simulation results which showed a relatively low
sensitivity for individual level undirected contemporaneous rela-
tions (around 55% for T = 100), hybrid-GIMME could be missing
some undirected contemporaneous relations that are potentially
present in the data. We also randomly selected two out of the 50
individuals (individual 15 and 34) in our empirical example data
to demonstrate what a typical recovered model looks like for this
novel emoji data set. Individual 15 had 19 directed contemporane-
ous relations and six undirected contemporaneous relations, while

Individual 34 only had 10 directed and one undirected contempo-
raneous relations. Figure 6 and Figure 7 show their directed rela-
tions, both lagged and contemporaneous, respectively. A solid line
represents a contemporaneous relation and a dashed line represents
a lagged relation; a red line represents a positive relation and a
blue line represents a negative relation.

Model Validation

Given the exploratory nature of our procedure we chose to vali-
date the hybrid-GIMME results by comparing the five-step-ahead
forecasts to a hold-out-sample of the final five time points from
each individual’s component time series. Forecast accuracy was
assessed using the root mean square forecast error (RMSFE). To
communicate the results we aggregated RMSFE across individual
time series as follows,

MeanRMSFE ¼ 1
K

XK
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Xd
j¼1

ðĝðkÞj;t�5þh � g
ðkÞ
j;t�5þhÞ2

vuut (8)

where ðĝðkÞj;t�5þh � g
ðkÞ
j;t�5þhÞ is the h step ahead forecast error for

individual k on variable j and h [ {1, 2, 3, 4, 5}.
Furthermore, we compare the performance of the hybrid-GIMME

approach to that of the canonical VAR(1) model fit to each individu-
al’s multivariate time series. Table 2 contains the results for both
approaches. For the data considered here, the forecasts obtained from
hybrid-GIMME are more accurate than those obtained from the indi-
vidual-level canonical VAR(1) models, at each step of the forecast

Figure 4
Hybrid-GIMME Plot of Directed Relations of Emoji Data

Note. All emojis shown in this figure were designed by OpenMoji, the
open-source emoji and icon project. GIMME = group iterative multiple
model estimation. See the online article for the color version of this figure.

Figure 5
Hybrid-GIMME Plot of Undirected Contemporaneous Relations
of Emoji Data

Note. All emojis shown in this figure were designed by OpenMoji, the
open-source emoji and icon project. GIMME = group iterative multiple
model estimation. See the online article for the color version of this figure.
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horizon. This provides some preliminary evidence in support of the
utility of hybrid-GIMME results.

Discussion and Limitations

We introduce here a novel method, hybrid-GIMME for captur-
ing two types of contemporaneous relations in time series models:
directed and undirected. The simulation results demonstrate that
hybrid-GIMME can appropriately detect directed and undirected
contemporaneous relations simultaneously in a data-driven man-
ner. When the number of time points reached 100, presence sensi-
tivity for group-level relations became larger than 75%; and when
the number of time points reached 150, direction sensitivity as
well exceeded 75%. The rates of recovery for group-level paths
neared 100% as time points increased even higher. As for individ-
ual-level relations, we saw less optimal recovery of paths which is
due to the algorithm favoring parsimony by stopping the model
search once fit indices are acceptable (Gates & Molenaar, 2012).
As fit indices are influenced by the number of observations, sensi-
tivity of the individual-level paths actually is larger when T is
smaller, and decreasing as T grows larger.
Taken together, this is strong evidence that hybrid-GIMME can

successfully capture undirected contemporaneous relations nearly
as well as it detects directed contemporaneous relations in types of
data increasingly encountered by and of interest to researchers.
However, for hybrid-GIMME the number of time points suggested
is 150, which is higher than seen for the regular GIMME con-
ducted with the uSEM. This may be an unrealistic number of time
points in some research settings. When the number of time points

is smaller than this, caution must be made when interpreting the
directed contemporaneous relations as some of them might truly
be undirected relations. Additionally, that group-level paths are
more reliably found than individual-level paths warrants further
exploration, as some individual-level paths may be missed. Similar
to prior implementations of the GIMME algorithm, specificity
rates were also almost always greater than 95% for all conditions,
suggesting a very low number of false positives.

While the simulation results show high sensitivity rates of the
contemporaneous relations using hybrid-GIMME, the empirical
results also provided a proof of concept on the interpretation of the
results. The findings highlight expected heterogeneity in emotional
experiences. The fact that not many group-level contemporaneous
undirected relations were detected may be due to the nature of the
data. It is unknown if one can expect generalizable relations among
this new form of measurement. The empirical data is a daily diary
data that utilizes emojis as the items, which is a very innovative
approach that adds another layer of complexity to the data because
individuals could easily be interpreting and using the same emojis
very differently. Therefore, individuals in the sample could com-
pletely reasonably share zero contemporaneous relations, especially
when the threshold for a group-level relation was set at .75 (a rela-
tion needs to be shared by at least 75% of the sample to be catego-
rized as a group-level relation), which could be too high considering
the high interindividual variability in most empirical data in conjunc-
tion with this nonstandard measurement approach.

Another likely reason for the lack of group-level undirected
relations is that they may have been detected, but erroneously

Figure 6
Hybrid-GIMME Plot of Directed Relations of Emoji Data for
Individual 15

Note. All emojis shown in this figure were designed by OpenMoji, the
open-source emoji and icon project. GIMME = group iterative multiple
model estimation. See the online article for the color version of this figure.

Figure 7
Hybrid-GIMME Plot of Directed Relations of Emoji Data for
Individual 34

Note. All emojis shown in this figure were designed by OpenMoji, the
open-source emoji and icon project. GIMME = group iterative multiple
model estimation. See the online article for the color version of this figure.
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given a directed relation. The simulation study revealed that data
generating undirected contemporaneous relations were sometimes
erroneously recovered as directed relations, especially when the
number of time points is low. Hence, the lack of group-level undir-
ected relations may be because some of them were captured as
directed. More work is needed to improve upon recovery of these
paths. Nonetheless, the present work is a critical and important
contribution as it is the only method available that simultaneously
searches for both types of contemporaneous relations without giv-
ing preference to one type or another.
A word of caution must be provided when interpreting directed

relations. Causality cannot be ascertained using these statistical
tests alone. To start, the approach is data-driven, and thus best
used for hypothesis-generating. Those wishing to make causal
inferences should refer to the large body of work focused on the
topic. A nice overview is provided by Pearl (2009). In ideal cases,
an experimental design, confirmatory analyses, and clear research
questions (as well as hypotheses) are needed. Directed contempo-
raneous relations can be interpreted similarly to cross-sectional
studies. That is, one variable explains variability in the other vari-
able, after accounting for other covariates. In the time series con-
text, the covariates include prior time points of the same variables
for AR effect estimation. This differs from the interpretation of the
undirected relations, wherein the variables are interpreted as co-
occurring after taking covariates into account. The possibility to
discover both types of relations at the same time, as demonstrated
here, removes the requirement that the researcher have strong
hypotheses or assumptions regarding which type of directionality
is present in their data.
There also exist several decision points in the simulation study

to note. First, the simulation data were generated to share the same
number of group- and individual-level directed and undirected
contemporaneous relations. The locations and specific values of
all contemporaneous relations were randomly generated for each
replication, intending to add as much heterogeneity to the simula-
tion as possible so results were not skewed by an arbitrary choice
in model structure. It is unknown if this is realistic or to be
expected in empirical data as studies that have both types of con-
temporaneous relations are lacking. Second, although the results
were able to show that the number of time points in time series
data highly influences the recoverability of the correct relations in
the data, they do not provide information on the influence of the
magnitude of those relations and recoverability. However, prior
work has shown that GIMME can recover relations along a range
of absolute values for the relations, doing more poorly with low

values (Lane, Gates, Pike, et al., 2019; Nestler & Humberg, 2021),
suggesting that inquiry into this specific question here was outside
the necessary scope of the paper and would have been potentially
redundant. Some possible next steps to further test the stability
and recoverability of hybrid-GIMME in different conditions
include changing the values of contemporaneous relations and var-
ied ratios of directed to undirected paths.

Third, by allowing the search procedure to include undirected con-
temporaneous relations, there is a greater chance of overfitting the
data. Overfitting happens when the model is more complicated than
necessary and explains variability in noise rather than recover true
relations. For example, in the simulation when T = 1,000, there were
replications where the true directed contemporaneous relations were
identified at the group level both as directed and undirected. While
such patterns could be true in some empirical data, this was not the
case in the DGM used here as we know the ground-truth in simula-
tion studies. Although the method attempts to limit overfitting by, for
instance, including a pruning stage and favoring parsimony in its
stopping criteria (Gates &Molenaar, 2012), it is unlikely that overfit-
ting can be completely prevented, which is a common problem
shared in many data-driven methods in general (Mumford & Ram-
sey, 2014). One possible fix specific to this approach would be to
restrict the simultaneous presence of both directed and undirected
relations between the same two variables. Another potential imple-
mentation would be to introduce other criteria besides MIs and fit
indices in the model search procedure.

Fourth, having only one data set restricted the performance test-
ing of hybrid-GIMME on empirical data. The empirical data used
in this paper most closely resembles the condition where T = 100,
which did not have an excellent sensitivity rate for recovering the
direction of either directed or undirected contemporaneous rela-
tions. The need for a large number of time points (T = 150) to
improve recovery of directionality is a limiting factor for many
studies, and future work is needed to accommodate shorter time
series lengths. This could be one reason there were no group level
undirected relations detected in the emoji empirical data. How-
ever, for empirical data with possible large interindividual vari-
ability like this, it might not be possible to arrive at a tentative
general model that fits the majority of the sample. Another aspect
of this is that the homogeneous simulation has very different,
almost opposite, nature as the heterogeneous empirical data. It is
worth noting that hybrid-GIMME not only performed very well on
the simulated data in recovering both types of contemporaneous
relations, but also provided results on the empirical data that
aligned with expectations.

Fifth, we used the conservative and default group cutoff of 75%
in our simulation study as well as empirical data example. This
means that for a path to be added to the group-level model, and
thus estimated for everyone, it had to have a significant MI for at
least 75% of individuals. Recent work on integrating latent varia-
bles into GIMME (Gates et al., 2019) found that decreasing the
group cutoff to 51%, the technical majority, improved sensitivity
rates without introducing false positives. The sensitivity rates here
may have increased with a more lenient group cutoff. As there are
many things to consider when adjusting the hyperparameter of
group cutoff, such as whether or not subgroups are present, we did
not explore this complex topic here. More work is needed to
address the optimal group cutoff value given the qualities of the
data.

Table 2
Root Mean Square Forecast Error for Five-Step Ahead Forecast
Horizon

Method

Horizon Gimme Var(1)

1 0.67 0.77
2 0.66 0.69
3 0.66 0.74
4 0.67 0.73
5 0.67 0.76
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Finally, we saw that recovery of individual-level paths decreased
as the number of time points increased. This likely is due to the
stopping criteria, which rests on fit indices that adjust for the num-
ber of parameters and number of observations, being too strict. That
is, the model searches were stopped in some cases before finding
the data generating paths. This approach has the benefit of introduc-
ing very few false positives into the results. However, better recall
—particularly at smaller numbers of time series—may occur if the
stopping criteria values were shifted given the qualities of the data.
This topic is outside the scope of the present paper but warrants
more explorations.

Conclusion

This article showed the successful implementation of hybrid-
uSEM in one existing data-driven method, GIMME. Simulation
results suggested that hybrid-GIMME performed well in recover-
ing the presence and direction of contemporaneous relations in
time series data, especially when the number of time points is large
(ideally at least larger than 60). The empirical example showed the
need to differentiate directed and undirected contemporaneous
relations and also demonstrated practical potentials of hybrid-
GIMME in doing so. One main future next step is to better address
false negatives rates in the algorithm, and to apply and test hybrid-
GIMME on more simulations and empirical data. In summary,
hybrid-GIMME was a successful implementation of hybrid-uSEM
(Molenaar, 2019), and provides a new method for understanding
and analyzing of contemporaneous relations in time series data.
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Appendix

Variance-Covariance Matrix Demonstration

For simplicity, here we use p = 2 (number of variables at time point t) for as an example, which results in the B and W matrices
to be 43 4 because the previous time point measurements are embedded, as demonstrated in the main text. We have two models to
consider: (1) B1 and W1 which represent the matrices for when the contemporaneous relation are measured as directed relations
among the observed variables, and (2) B2 and W2 which contain an undirected relation among the residuals and no contemporane-
ous directed relations among observed variables. Note that b31 and b42 are estimates for autoregressive relations and exist in both
exemplar models.

More specifically, the matrices as following:

B1 ¼
0 0 0 0
0 0 0 0
b31 0 0 0
0 b42 b43 0

0
BB@

1
CCA W1 ¼

w 11 w 21 0 0
w 21 w 22 0 0
0 0 w 33 0
0 0 0 w 44

0
BB@

1
CCA

B2 ¼
0 0 0 0
0 0 0 0
b31 0 0 0
0 b42 0 0

0
BB@

1
CCA W2 ¼

w 11 w 21 0 0
w 21 w 22 0 0Þ
0 0 w 33 w 34
0 0 w 34 w 44

0
BB@

1
CCA

The model implied variance-covariance matrix is given by:

R ¼ ðI � BÞ�1WðI � BTÞ�1

Therefore, we have the two Rmatrices as following:

R1 ¼
w 11; w 21; b31 � w 11; b42 � w 21 þ b31 � b43 � w 11
w 21; w 22; b31 � w 21; b42 � w 22 þ b31 � b43 � w 21

b31 � w 11; b31 � w 21; w 11 � b231 þ w 33; r34

b42 � w 21 þ b31 � b43 � w 11; r42; r43; r44

0
BB@

1
CCA

(Appendix continues)
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Where:

r34 ¼ b43 � w 11 � b231 þ b42 � w 21 � b31 þ b43 � w 33
r42 ¼ b42 � w 22 þ b31 � b43 � w 21
r43 ¼ b43 � w 33 þ b31 � ðb42 � w 21 þ b31 � b43 � w 11Þ
r44 ¼ w 44 þ b243 � w 33 þ b42 � ðb42 � w 22 þ b31 � b43 � w 21Þ þ b31 � b43 � ðb42 � w 21 þ b31 � b43 � w 11Þ

R2 ¼
w 11; w 21; b31 � w 11; b42 � w 21
w 21; w 22; b31 � w 21; b42 � w 22

b31 � w 11; b31 � w 21; w 11 � b231 þ w 33; w 34 þ b31 � b42 � w 21
b42 � w 21; b42 � w 22; w 34 þ b31 � b42 � w 21; w 22 � b242 þ w 44

0
BB@

1
CCA

The equations show that the two model implied variance-covariance matrices are not identical and we should expect to see differ-
ent results depending on whether the contemporaneous relation are measured as directed relations among the observed variables or
as undirected relations among the residuals.
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