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Significant heterogeneity in network structures reflecting individuals’ dynamic processes can exist
within subgroups of people (e.g., diagnostic category, gender). This makes it difficult to make inferences
regarding these predefined subgroups. For this reason, researchers sometimes wish to identify subsets
of individuals who have similarities in their dynamic processes regardless of any predefined category.
This requires unsupervised classification of individuals based on similarities in their dynamic processes,
or equivalently, in this case, similarities in their network structures of edges. The present paper tests a
recently developed algorithm, S-GIMME, that takes into account heterogeneity across individuals with
the aim of providing subgroup membership and precise information about the specific network structures
that differentiate subgroups. The algorithm has previously provided robust and accurate classification
when evaluated with large-scale simulation studies but has not yet been validated on empirical data. Here,
we investigate S-GIMME’s ability to differentiate, in a purely data-driven manner, between brain states
explicitly induced through different tasks in a new fMRI dataset. The results provide new evidence that the
algorithm was able to resolve, in an unsupervised data-driven manner, the differences between different
active brain states in empirical fMRI data to segregate individuals and arrive at subgroup-specific network
structures of edges. The ability to arrive at subgroups that correspond to empirically designed fMRI task
conditions, with no biasing or priors, suggests this data-driven approach can be a powerful addition to
existing methods for unsupervised classification of individuals based on their dynamic processes.
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1. Introduction

Network-based approaches help researchers understand individual differences in dynamic
processes. Here, the variables (or nodes) are observed numerous times for each individual, and
the edges between the nodes represent the relations among nodes across time. Oftentimes, the
goal is to compare a priori subgroups of individuals or see how the structure of a network
relates to some correlate of interest. As an example, graph theoretic measures have been used to
quantify aspects of functional brain connectivity using summary values to assess between-group
differences and correlates (Rosenberg et al., 2016, Nichols et al., 2014). Network measures have
also been used in ecological momentary assessment research to identify correlates with static
characteristics (Bringmann et al., 2016). The measures often aim to describe the network as a
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whole (i.e., a summary of all relations or edges among the variables or nodes), such as measures
of global efficiency or weight (Rubinov & Sporns, 2010).

These approaches havebeenhelpful in guiding researchers to better understandglobal features
of brain processes that relate to constructs of interest. However, two individuals with the same
global measure can have vastly different network structures. Therefore, examining individual-
level network structures to identify group differences is also critically important. Such studies
have identified specific edges that may be critical or important for a given individual’s dynamic
process (Epskamp et al., 2018, Fisher & Boswell, 2016). Another important element that is often
overlooked inwork that examines differences between predefined groups is that heterogeneitymay
exist within those subgroups. That is, individuals may have more in common with those outside
their predefined subgroup than with those inside the subgroup. For these reasons, researchers turn
towards unsupervised classification based on the entire network structure.

One approach for identifying individual-level network structures with time series data,
GIMME (Group Iterative Multiple Model Estimation; Gates and Molenaar, 2012), complements
the use of global measures by providing information regarding how the individuals differ in their
network structures. This is done by examining the presence and absence of edges in the network
across individuals to find which ones are consistently found for all individuals while also finding
nuances in the individual-level pattern. Much work has demonstrated that meaningful within-
group heterogeneity in the patterns and weights of edges exists in both clinical (Gates et al., 2014;
Yang et al., 2014a; Volkmar et al., 2004) and typically developing control samples (Beltz et al.,
2013; Miller & Van Horn, 2007; Scherf et al., 2007), supporting the need for methods that can
accommodate the heterogeneity in network structures across individuals.

At present, it is clear that some aspects of dynamic human processes can be expected to vary
across individuals (Finn & Constable, 2022, Laumann et al., 2015), while others such as visual
processing in the brain may operate more consistently across individuals (Xu et al., 2014). While
meaningful heterogeneity may exist across individuals in any given population, there may be sub-
sets of individuals that share similarities in network structures. These commonalities may or may
not exist within arbitrary a priori subgroup identifications (such as diagnostic category or gender)
as these themselves may be heterogeneous. Hence, methods are needed for identifying clusters of
individuals who share similar network structures that represent individuals’ dynamic processes.
The recently developed subgrouping-extension within GIMME (S-GIMME) was designed to
enable researchers to identify meaningful clusters of individuals (Gates et al., 2017). Critically,
S-GIMME provides subgroup assignments of individuals based entirely on network structures of
their dynamic process, as opposed to subjective measures (e.g., diagnoses).

S-GIMME differs from other personalized approaches for arriving at sparse network struc-
tures in a number of ways. First, the classification of individuals is unsupervised rather than
supervised. Whereas network structures have been used as input to identify categories of indi-
viduals from known groups (e.g., diagnoses; Dickie et al., 2018), S-GIMME does not predict
or classify individuals into a priori groups. Hence, this is not an approach where a portion of
the individuals are used to train and another portion to test, as we are not conducting supervised
learning. Second, it does not aim to predict scores on other constructs of interest (e.g., Dubois et
al., 2018; Shirer et al., 2012); the purpose of S-GIMME is to identify subsets of individuals who
share similarities in their network structures.

Extensive simulation studies have evaluated the use of S-GIMME (Gates et al., 2017, Lane
et al., 2019). The general findings are that with enough time points (t ≥ 60) and individuals
(k ≥ 25), S-GIMME can identify the subset of individuals whose data were generated from
similar network structures. It also can recover the network structures from the generated time
series data. While S-GIMME has been used on empirical data both in functional MRI (e.g., Price
et al., 2017a; Dajani et al., 2019) as well as ecological momentary assessment data (e.g., Wright
et al., 2019), it has yet to be evaluated using an experimental design to ensure the subgroups relate
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to meaningful constructs outside the system of dynamic variables in the model. Here, we validate
the use of S-GIMME using a tightly controlled experimental design. Functional MRI data were
collected with the purpose of evaluating the ability to correctly separate individuals’ data sets
based solely on differences in their dynamic brain processes while engaged in different tasks.
We first describe some background information on the use of networks with functional brain data
before presenting the details of the study and results.

2. Subgrouping GIMME

S-GIMME analyses were conducted using the gimme R package (Lane et al., 2021, https://
tarheels.live/gimme/). Although the GIMME and S-GIMME algorithms have been explained in
detail elsewhere (see Beltz & Gates, 2017; Gates & Molenaar, 2012; Lane & Gates, 2017), in the
following section we provide a concise technical review of the model and algorithms underlying
S-GIMME, for completeness.

2.1. The Structural VAR Model

Formally, GIMME and S-GIMME operate on a multivariate time series composed of d com-
ponent series, {Xt }t∈Z = {(X j,t ) j=1,...,d}t∈Z, where Xt follows a structural vector autoregressive
model of order 1 (SVAR; Lütkepohl, 2005, p. 358),

Xt = AXt + �Xt−1 + Et , t ∈ Z, (1)

where A contains the contemporaneous directed relations among Xt , � contains the auto- and
cross-regressive relations between Xt and Xt−1, and Et are process noise with a strictly diagonal
covariance matrix, � = �E. In the presentation that follows, we only consider weakly stationary
series for a linear SVAR model.

A typical approach for fitting such a model involves first fitting a canonical vector autore-
gressive model (VAR; Lütkepohl, 2005, p. 13) of identical order, and recasting the coefficients
by means of a Cholesky decomposition of the full covariance matrix of the process innovations
(see Molenaar, 2017, p. 252 for details of this transformation). Unfortunately, SVAR coefficients
estimated by means of Cholesky decomposition are not unique; solutions depend on the arbitrary
ordering of the univariate components in Xt . In addition to the explicit goal of identifying gen-
eralizable and person-specific dynamics, the GIMME algorithm provides a data-driven approach
for uniquely identifying the SVAR model above. This will be discussed in greater detail within
the context of S-GIMME below.

2.2. Group, Subgroup and Individual-Level Models

To begin our discussion of the S-GIMME algorithm, consider a zero-mean multivariate time
series Xk

t for a single individual k,

Xk
t = AkXk

t + �kXk
t−1 + Ek

t , t ∈ Z, k = 1, . . . K (2)

for some d×d matrix of contemporaneous directed relations Ak , a d×d matrix of lagged directed
relations �k , and a white noise series {Ek

t }t∈Z ∼ WN(0,�k) characterized by E(Ek
t ) = 0 and

E(Ek
t E

k
s′) = 0 for s �= t . Importantly, in the current presentation, �k is strictly diagonal (though

see Luo et al., 2022, for details on relaxing this assumption).

https://tarheels.live/gimme/
https://tarheels.live/gimme/
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The S-GIMME framework relies on the following decomposition of the weight matrices Ak

and �k into group, subgroup and individual components

Ak = Ak
g + Ak

s + Ak
k (3)

�k = �k
g + �k

s + �k
k (4)

where Ak
g , �k

g , g = G = 1, are the group-level contemporaneous and lagged weight matrices,

Ak
s , �

k
s , s = 1, . . . , S, are the subgroup-level contemporaneous and lagged weight matrices, and

Ak
k , �k

k , k = 1, . . . , K are the individual-level contemporaneous and lagged weight matrices,
respectively.

Broadly, the subscripts g, s and k indicate whether the pattern of relations (location of zero
and nonzero elements) is held constant at the group, subgroup or individual level, respectively. The
superscript k is used to indicate individual-level variability in the weights associated with a given
subscript value. For example, the group-level weight matrices, Ak

g and �k
g , g = 1, will have the

same pattern of zero and nonzero elements across all individuals in the sample, while the weights
associated with the nonzero elements can vary across the k = 1, . . . , K individuals. Similarly, the
subgroup-specific weight matrices, Ak

s and �k
s , s = 1, . . . , S, will have the same pattern of zero

and nonzero elements for all individuals within a given subgroup, while the weights associated
with those nonzero elements can vary across subgroup members. Lastly, the individual-specific
weight matrices, Ak

k and �k
k are allowed to vary both in their pattern of relations and weights,

across all individuals.

2.3. The S-GIMME Algorithm

The group, subgroup and individual-level estimates outlined above are obtained across three
sequential stages of the S-GIMME algorithm: group stage, subgroup stage, and individual stage.

The Group Stage The S-GIMME algorithm begins by estimating a constrained version of (1)
for each individual separately,where only the diagonal elements of�k and�k are freely estimated.
Beginning the model search with autoregressive paths freely estimated (and not constrained to
zero) brings a number of practical and theoretical benefits, which have been discussed in detail
elsewhere (Beltz & Molenaar, 2016; Luo et al., 2022; Weigard et al., 2021). Here, we mention
two important considerations with respect to the analysis of fMRI data. First, the time course of
the BOLD signal typically results in a persistent signal with strong autocorrelations among the
component series (Olszowy et al., 2019). Second, the inclusion of the autoregressive parameters
helps to identify the directionality of off-diagonal elements of Ak . Without this (or some similar
identification constraint), it is not possible to identify the directed contemporaneous paths between
two component series (see Beltz and Molenaar, 2016, for alternative approaches to identification
issues in the SVAR model).

With each individual’s baseline model estimated, modification indices (MI; Sörbom, 1989)
are obtained for each fixed-to-zero element in Ak and �k . These MIs indicate which relation, if
freed, would improve a given individual’s model fit by explaining additional variance in the out-
come node. Modification indices are asymptotically χ2 distributed, enabling significance testing.
Internally, GIMME records the proportion of individuals a given MI is significant following a
strict Bonferroni correction. Edges (or elements in Ak and �k) are then iteratively added to the
group-level structure (i.e., the pattern of edges that will be estimated for all individuals in the
sample) if they are both (1) significant for a predefined proportion of individuals, and (2) have
the highest count (proportion of individuals with a significant MI) relative to other edges. This
continues until no edge is significant for the majority of the sample, where the proportion needed
to make it a group-level path is defined by the researcher.
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By default, 75% of the sample must have an edge for it to be considered a group-level path.
Considering the signal-to-noise ratio and time series length for a given set of data, there may not
be sufficient power to detect relations for the entire sample; therefore, a value lower than 100%
is preferred. By counting the number of significant modification indices rather than summing or
averaging them, thismethod is alsomore robust to outlier cases. In this way, group-level inferences
are more accurate than approaches that first aggregate the data (e.g., concatenating time series
or averaging correlation matrices) as spurious edges are not included in any other individual’s
model. At the conclusion of the group stage, the pattern of edges in Ak

g and �k
g is established

for all individuals in the sample. These edges are freely estimated in all subsequent stages of the
analysis.

The Subgroup Stage The subgroup stage of S-GIMME begins by constructing a K × K
similarity matrix based on the group-level results obtained in the group stage. This similarity
matrix is constructed in the following manner. For each individual, the sign and significance of
each edge in Ak and �k are determined. If the edge exists in the group-level model, sign and
significance are obtained from the estimated coefficient, associated standard error, andBonferroni-
corrected p-value. If the edge is not freely estimated in the group-level model, the expected
parameter change (EPC; Saris et al., 1987) is used to determine the edge’s sign and Bonferroni-
corrected significance. With the sign and significance of each element in Ak and �kavailable, a
similarity matrix is constructed where each element represents a count of the number of edges
that are similar among two given individuals in terms of being significant and of the same sign.
Finally, sparsity is then induced by subtracting the lowest value in the matrix from all edges.

The community detection algorithm Walktrap (Pons & Latapy, 2005) is then applied to the
similarity matrix with the aim of clustering individuals based on their network structures(Gates et
al., 2017). Walktrap has been found to perform well on networks with a range of characteristics,
including count and correlation matrices as well as small and large networks (Gates et al., 2016;
Golino & Epskamp, 2017). The intuition behind Walktrap rests on the idea that one can estimate
the probability two nodes (or communities) are reachable using random walks of a given length
on a graph (e.g., a similarity matrix). These random walks tend to reveal densely connected areas
representing communities; the distance metric used by Walktrap is based on this idea of random
walks, and the probability two nodes (or communities) are connected. Walktrap proceeds by
performing short random walks, typically three to five steps, and then merges communities using
Ward’s method (Ward Jr & Hook, 1963) and modularity (Newman, 2004) to cut the dendrogram
(determine the optimal number of clusters). Although it is beyond the scope of this paper, Pons
& Latapy (2005) provide formulas and a technical development of the Walktrap algorithm.

Once subgroup labels are obtained, a search for paths that exist for the predefined majority of
individuals within each subgroup is conducted following the procedure described for the group-
level paths.Here, a 51%or75%cut-off forwhat constitutes themajority is typically used to account
for the smaller sample size within subgroups. Importantly, the proportion of individuals chosen
to constitute the majority (e.g., 51% or 75%) does not impact the subgroup assignments. At the
conclusion of the subgroup stage, the pattern of edges in the group-level (Ak

g , �
k
g) and subgroup-

level matrices (Ak
s , �k

s , s = 1, .., S) are established. These edges are then freely estimated for
each individual separately during the final, individual stage.

The Individual Stage Using the estimates obtained from the group- and subgroup-level net-
work structures as a foundation, the algorithm searches for additional lagged and contempo-
raneous edges that are needed to best explain each individual’s dynamic process. Fit indices
are used as stopping criteria, with the search for individual-level paths ending once two out of
four of the following are found to be acceptable using predefined cutoffs: Tucker-Lewis Index
(TLI), Non-normed Fit Index (NNFI), Root Mean Square Error of Approximation (RMSEA),
and Standardized Root Mean-Squared Residual (SRMR). Values greater than 0.95 for the TLI
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and NNFI indicate an acceptable fit and values lower than 0.05 for RMSEA and SRMR are con-
sidered acceptable (Brown, 2006). This approach favors parsimony in the pattern and prevents
the emergence of false positives. In the end, the researcher is provided with labels for which
subgroup each individual belongs to, as well as individual-level estimates of dynamic relations
(both contemporaneous and lagged) and whether they are a group, subgroup or individual-level
edge.

3. Networks in fMRI

Researchers conceptualize mental processes as being the coordinated activity of spatially
disparate brain regions across time (Bullmore & Sporns, 2009; Sporns, 2016). This represents a
paradigm shift from localizing isolated brain regions that independently relate to a given condition.
With this shift came an influx of new types of analyses, with network theory perspectives prevail-
ing. Viewing the brain from a network perspective is relatively new, and researchers often do not
have all the information necessary to build concrete hypotheses regarding how brain processes
differ meaningfully across individuals and conditions. For this reason, data-driven approaches for
arriving at network structures that depict brain processes are especially critical. In this way, the
field of brain sciences is not so dissimilar from the fields encompassing social and psychological
sciences as oftentimes there are not clear hypotheses regarding how individuals may differ in their
dynamic processes in these fields too.

3.1. Subgrouping on Network Dynamics in fMRI

Perhaps unsurprisingly, a number of (overlapping) taxonomies have been used to delineate
subgrouping algorithms in terms of their underlying methodologies and objectives. Broad surveys
of different approaches to time series clustering or subgrouping are available in Liao (2005) and
Aghabozorgi et al., (2015). In the context of fMRI analyses, a number of important distinctions
related to subgrouping procedures can be made. First and foremost, a distinction can be made
between approaches that cluster individuals into meaningful clusters or groups, and the more
common application of clustering voxels or pre-defined regions of interest (ROIs) into functionally
similar groupings. The latter is typically concerned with dimension reduction for the purpose of
identifying discrete functional units (voxels or ROIs) with similar temporal signal characteristics
(Heller et al., 2006) or to identify subnetworks of ROIs that tend to covary across time (e.g., the
default mode network; Power et al., 2011). Although an important use case for clustering methods
in fMRI, these approaches are not directly relevant to the current work.

Additional distinctions can be made within approaches designed to subgroup individuals. For
example, modern clustering methods are commonly separated into two classes: nonprobabilistic
and probabilistic approaches (Ernst et al., 2021). Nonprobabilistic approaches, such as k-means
clustering, typically use heuristic functions to minimize a criterion that produces nonprobabilistic
subgroup assignments. On the other hand, probabilistic approaches typically utilize a statistical
model, such as a Gaussian mixture model, to assign each individual a probability of belonging
to a given subgroup or cluster. Although historically less common, recent interest in disease sub-
typing has led to an uptick in papers using unsupervised classification methods on fMRI data
(Miranda et al., 2021). Common to many of these approach is the use of connectivity weights to
reduce the dimension of the classification problem relative to the raw data, followed by the appli-
cation of probabilistic and nonprobabilistic subgrouping approaches to identify similar patterns
of dependence among individual dynamics (Yang et al., 2014b; Brodersen et al., 2014; Tokuda et
al., 2018).

Similarities between these methods and S-GIMME exist. Namely, S-GIMME could be con-
sidered a nonprobabilistic approach using connectivity weights during subgrouping. A number of
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important features make S-GIMME unique among other approaches commonly used with fMRI
(and multivariate time series from multiple subjects more generally). In their review of methods
for dynamic clustering, Ernst et al. (2021) note S-GIMME is exceptional among other approaches
in that it estimates relations at the group, subgroup and individual-level, while the majority of
approaches estimate relations entirely at the subgroup-level. In addition to helping characterizing
dynamics at important levels of the analysis, this places fewer assumptions on the homogeneity
of individual dynamics, at the individual or subgroup level.

Although not highlighted in the current work, there are additional capabilities that make
S-GIMME an attractive approach for those interested in subgrouping fMRI data. S-GIMME can
handle missing data using Full-Information Maximum Likelihood (FIML; Enders, 2001). The
modeling of direct and modulatory effects of tasks using person-specific finite impulse response
function (hemodynamic response function; Duffy et al., 2021) and exogenous variables (Ariz-
mendi et al., 2021) is easily accommodated within the subgrouping procedures. When subgroups
or clusters are known a priori and the interest is in better characterizing the heterogeneity in
network dynamics among these groups, confirmatory options are available (Henry et al. 2019a).
Lastly, it is also possible to analyze between-network relations and higher-dimensional fMRI data
using latent variables and principal components options (Gates et al., 2020).

3.2. Empirical Evaluation

Since behavioral and emotional studies under the ecological momentary assessment frame-
work often take a matter of weeks or months with reactions to an experimental manipulation
unknown, it was more realistic to design a controlled experiment for validation that occurs on
functional brain data where the expected differences in brain networks between tasks are already
well-established.

We thus evaluated the ability of the S-GIMME algorithm to provide accurate data-driven
identification of brain networks and to subgroup individuals using empirical task-based fMRI
data. While recent work has shown the ability of S-GIMME to recover subgroup assignments and
network structures in simulated data (Gates et al., 2017; Lane et al., 2019), never before has the
ability to recover expected results been tested in a controlled experimental design. In the current
study, we developed 3 fMRI task designs to evoke distinct network structures. The aim was to
evaluate if the algorithm would differentiate between the conditions, in a completely blind, data-
driven analysis. To increase the difficulty of this classification, each subject participated in each
of the three conditions. This allowed us to ascertain if the analyses could subgroup accurately
based on the task being performed rather than simply clustering individuals with their own other
runs. With no a priori information regarding condition, behavior, or individual characteristics, the
unsupervised approach was tested to examine how well it could separate the data by task using
only the fMRI time courses. These results should be applicable to research across varied domains,
as the methods rely on purely bottom-up clustering of individuals based on time series. This is
also relevant to studies that compare different populations or search for possible subgroups within
a population (e.g., diagnostic status as in Price et al., 2017b).

We used fMRI data from a passive visual processing task versus an auditory-motor task
(with no visual component) versus a task that includes both of these processes plus the addition
of a higher-order visual process (face-perception). During the tasks that require an overt motor
response, the coefficient between the motor regions and the sensory areas should be stronger.
During the task with faces, the edges with the fusiform face area (FFA; Kanwisher et al., 1997)
should be evident. Here, we test whether S-GIMME is sensitive enough to be able to group
data by task, even when the difference between tasks is relatively subtle (e.g., scrambled versus
intact faces during visual tasks, and eyes-open versus eyes-closed during motor tasks) and largely
restricted to edges with just one or two nodes of the network.
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To contextualize the performance of S-GIMME, we also tested whether two alternate time
series clustering approaches could differentiate between the different task conditions. To over-
come the curse of dimensionality ((Bellman, 1966) inherent to clustering multivariate time series
from multiple individuals, individual time series were characterized by their VAR(1) transition
matrices. After reducing the individual time series to the individual-level dynamics, we considered
a probabilistic and nonprobabilistic approach. The probabilistic approach used a Gaussian finite
mixture model (McLachlan & Chang, 2004) to cluster and the Bayesian information criterion
(BIC; Schwarz, 1978) to select the number of subgroups. For the nonprobabilistic approach, we
used the popular k-means algorithm and the Calinski–Harabasz index (Caliński&Harabasz, 1974)
for estimating the number of subgroups. Both the k-means algorithm (Easson et al., 2019; Gumus
et al., 2021) and Gaussian mixture modeling (Brodersen et al., 2014; Gumus et al., 2022) have
been successfully employed in applications designed to subtype individuals using fMRI data.

4. Methods

4.1. Participants

Participants were screened to ensure that they were free of neurological or psychiatric disor-
ders, had normal or corrected-to-normal vision andwere right-handed. Thirty-three healthy young
adults enrolled in the study and completed all runs successfully; each was paid $20/hour. Three
subjects were excluded for excessive motion during the fMRI runs. The data reported here are
from the remaining thirty participants (ages 18–28, mean age 22.8, 18 female). All procedures
were approved by the Institutional Review Board at the University of North Carolina at Chapel
Hill, and all participants provided written informed consent.

4.2. Tasks/fMRI Runs

Participants viewed images on a translucent screen through an angled mirror attached to
the head coil. OpenSesame software (https://osdoc.cogsci.nl; Mathôt et al., 2012) was used to
present stimuli and record button-press responses. Each participant completed three epoch-design
(block-design) runs. Each run was 448s in total duration and is described below. After these runs,
subjects performed three additional runs that are not reported here. Prior to beginning the MRI
session, participants completed a brief (2-min) training outside of the scanner, to ensure subjects
understood the tasks.

4.2.1. Visual-OnlyCondition This conditionwas designed to engage visual processing,without
linking this to higher-order face processing or to the motor or auditory systems. The sequence
of events is illustrated in Fig. 1 (left column). The images were scrambled versions of the face
stimuli used in the face-motor-auditory run described below. The images were scrambled by
dividing the face images into 20× 20 pixel squares and randomly shuffling the positions of those
squares. Each image was presented for 500 msec, followed by 300 msec of a fixation-cross-
only screen. This is repeated (with different scrambled images) 20 times for each 16-s visual-
stimulation block. Following each 16-s visual-stimulation block was a 16-s fixation-only block,
during which participants were asked to keep their eyes fixated on the central cross throughout
the block. Participants were instructed to passively view the stimuli; no button press responses
were required at any time. This block design (visual stimuli for 16 s, followed by fixation-only
for 16 s) was repeated 14 times, resulting in a total duration of 448 s. This was the first fMRI run
for each subject.

https://osdoc.cogsci.nl
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Figure 1.
Trial sequence and stimuli for the 3 task runs. All 3 runs consisted of alternating 16s of Stimulation blocks and 16s of
Fixation/Silence Blocks (in the case of the Motor-Auditory run, this was simply a quiet no-stimulus block that alternated
with the blocks of tones+motor responses). In the Face-Motor-Auditory run, the tone and face onset simultaneously, with
the durations being 100 and 500 msec, respectively. The 16s fixation-only (no-stimulus) block that alternated with that
task blocks is only shown for the Visual-only condition, but it occurred in all task runs.

4.2.2. Motor-AuditoryCondition This conditionwas designed to engage themotor and auditory
systems, without engaging the visual processing systems. In this condition, participants were
instructed to keep their eyes closed for the entire duration of the run, and to press the button on
the MRI-compatible response box (Current Designs Pyka 5-Finger Response Pad) every time
a specified tone was played through the headphones. The tone was presented at the same rate
(once every 800 msec) as the scrambled-face image was presented in the Visual-only bock. This
was done to ensure that the motor system was engaged at the same temporal frequency in this
condition as the visual system was engaged in the Visual-Only condition. Since the trigger to
make the behavioral response was an auditory tone, this could result in a linking of the motor
and auditory systems, even though overall activity in the auditory system could be at a high level
already due to the significant auditory noise of fMRI scanning. The sequence of events is illustrated
in Fig. 1 (top right). The auditory stimulus was a 220 Hz tone, played for 100 msec. There was
700 msec between successive auditory tones, and participants were asked to press the response
button after each tone. This was repeated 20 times for each 16-s response-block. Following each
16-s response-block was a 16-s block with no stimulation or responses. This sequence repeated
14 times, for a total duration of 448 s. This condition was always completed after the Visual-only
run.

4.2.3. Face-Motor-Auditory Condition This condition was designed to engage all of the sys-
tems engaged in the Visual-only and the Motor+Auditory conditions, plus the fusiform face area.
Unlike the Visual-only condition, this condition was expected to show a linkage between visual
and motor regions. The highly similar response requirements between the Motor-Auditory and
Face-Motor-Auditory conditions, with the addition of face processing in the latter, provide a test
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of whether our software is sensitive enough to detect these relatively small differences between
conditions, even if the same subjects are performing all tasks. The visual images were faces taken
from the NimStim database (Tottenham et al., 2009); 20 face images were used (each appeared
once in every 16-s stimulation period, in randomized order), and the auditory stimulus (220 Hz
tone) was the one used in the Motor-Auditory condition. The sequence of events is illustrated in
Fig. 1 (right bottom). On each trial, a face image was presented simultaneously with the tone. The
tone was presented for a duration of 100 msec, and the face image was presented for 500 msec.
Subjects were instructed to press the response button for each presentation of the face/tone. Fol-
lowing the offset of the face, there was 300 msec of a fixation-cross-only screen. This sequence
repeated (with different faces) 20 times for each 16-s stimulation block. Following each 16-s
visual-stimulation block was a 16-s fixation-only block. This block design repeated 14 times, for
a total duration of 448 s.

4.3. MRI Scanning Protocol

Images were collected on a 3T Siemens PRISMA MRI system at the University of North
Carolina Biomedical Research Imaging Center. Functional images included 37 transverse slices
(3×3×3mm3 resolution), collected interleaved inferior to superior. Images were acquired using
a T2-weighted echo-planar imaging (EPI) sequence (TR = 2000 ms, TE = 26 ms, flip angle =
80◦). After discarding the first three scans to allow for magnetic field stabilization, the fMRI
runs reported here each lasted 448 s. A structural scan was also acquired for each participant
(T1-weighted; TR = 2400 ms; TE = 2.22 ms; flip angle = 8, FOV = 256 mm, 208 slices,
0.8 × 0.8 × 0.8 mm3 resolution; 398 s duration).

4.4. fMRI Processing

MRI data were preprocessed using SPM12 (WellcomeDepartment of Imaging Neuroscience,
University College London, UK). Preprocessing included spatial realignment and slice-time cor-
rection. The mean image constructed from realignment was used to determine parameters for
coregistration and spatial normalization into the standard MNI-space using the EPI-template
included in SPM12. The fMRI data were normalized at a 2× 2× 2 mm resolution and were then
smoothed with an 8mm full-width at half-maximum isotropic kernel. For the analysis of task-
dependent activation, covariates of interest specified each trial in terms of stimulus onset (e.g.,
scrambled-face onset; auditory tone onset; face-onset). Six movement parameters obtained during
realignment were included as covariates of no interest for each run, and an additional covariate
for each run incorporated an overall intercept to the model. Each regressor was convolved with
canonical response hemodynamic function and entered into the general linear model (Friston et
al., 1994). Contrast maps for each subject were entered into a second-level analysis.

4.5. Regions of Interest

Brain regions of interest (ROI) were chosen to cover both regions thought to be involved
in the conditions being compared and regions thought to be engaged independently from our
tasks (those in the default mode network, DMN). This allowed us to examine whether S-GIMME
results would be driven primarily by edges corresponding to regions related to the tasks versus
possibly spurious differences across individuals in an independent network. Also, in contrast to
graph network summarymethods that utilize hundreds of ROIs, the GIMME algorithm is intended
to investigate directed edges (as opposed to correlational or undirected relations) across a limited
number of regions. Thus, we chose 2 primary visual regions, 2 primary auditory regions, 2 motor
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Figure 2.
Regions on Interest (ROIs) for all analyses, laid out in positions used in all subsequent analysis plots. Abbreviations
labeled on ROIs are defined as in Table 1. DMN=Default Mode Network.

regions, the face-selective fusiform face area, and 6 regions of theDMN, distributed across anterior
and posterior regions and hemispheres. For the DMN, we chose the 6 regions defined and labeled
in Power et al., (2011) supplemental materials for their meta-analytic analyses. The task-based
regions were defined based on the average location of the peak coordinate from the individual
subjects’ fMRI results (as described below) within each of the general areas described above (e.g.,
primary visual cortex, etc.), using Neurosynth (https://neurosynth.org) to define general regions.
A voxel of peak activation within each region was identified for each participant individually. The
coordinates of the voxels for each region were then averaged across participants, and a 10mm
diameter sphere was built around the average coordinate, which was then used as the ROI for that
region for every participant.

The regions, networks, and center coordinates of all of the ROIs are listed in Table 1 and
showngraphically in Fig. 2.MarsBaR software (Brett et al., 2002; https://sourceforge.net/projects/
marsbar/) was used to generate the ROIs and extract the BOLD time-series for each ROI, which
was defined as the average of time courses for all voxels within each 10 mm ROI sphere. We
also extracted regions of white matter (WM) and cerebral spinal fluid (CSF), defined for each
participant based on the tissue probability maps from SPM segmentation, to regress out the
contributions from physiological artifacts. Time series data from the WM and CSF ROIs were
used as nuisance regressors when extracting time series data from the ROIs for the main analyses.

https://neurosynth.org
https://sourceforge.net/projects/marsbar/
https://sourceforge.net/projects/marsbar/
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Table 1.
ROI coordinates in MNI (montreal neurological institute) space. Left and Right refer to brain hemisphere.

Network Region x y z

Visual Left Occipital (primary visual) −12 −96 4
Visual Right Occipital (primary visual) 16 −96 10
Motor Left Motor (primary; M1) −44 −12 48
Motor Supplementary Motor Area (SMA) −4 −2 56
Auditory Left Auditory (primary) −58 −20 14
Auditory Right auditory (primary) 60 −12 12
Face processing Fusiform Face Area (FFA) 36 −62 −18
Default mode network Posterior Cingulate Cortex (PCC) 1 −51 29
Default mode network Medial Prefrontal Cortex (mPFC) −1 61 22
Default mode network Left Angular Gyrus (AG) −48 −66 34
Default mode network Right Angular Gyrus (AG) 53 −61 35
Default mode network Left Lateral Temporal (lat temp) −65 −23 −9
Default mode network Right lateral temporal (lat temp) 61 −21 −12

5. Results

5.1. Standard fMRI Results

For each task, we conducted epoch-based random effects analyses, comparing task blocks to
fixation blocks, to ensure our tasks were evoking signal in the expected regions. Visual regions
were highly active in the Visual-only condition, the Motor+Auditory condition revealed robust
activity in motor and auditory regions, and the Face-Motor-Auditory contained all those regions,
plus additional activity in the region of the FFA (Fig. 3).

5.2. Network Results

5.2.1. Each Condition Alone We first analyzed each of the 3 task conditions separately, to see
if GIMME would find network structures that aligned with the expectations of what each task
alone should generate, without finding spurious edges. As shown in Fig. 4, the algorithm was
effective in doing this. The Visual-only condition was found to have persistent edges between
the primary visual areas, and these were not robustly linked to the auditory, motor, or face areas.
In addition, while the DMN areas were robustly connected with each other, none of these were
linked to the visual processing regions. The Motor-Auditory condition was similar to the Visual-
only condition, with the critical addition of a consistent link between the motor and auditory
regions, and another consistent link between the 2 motor regions. These additions align with
the requirement that subjects produce button presses in response to the auditory tone. Finally,
the Face-Motor-Auditory condition result was highly similar, with the addition of a consistent
edge between the visual areas and the FFA, in line with this being the only condition with face
stimuli. These analyses provide evidence that the original GIMME algorithm is able to capture, in
a purely bottom-up and data-driven manner, the network structures, within and across networks,
expected to be seen within each of these conditions. Importantly, each condition was analyzed the
same, with no biasing and no priors based on expected results; yet the algorithm found network
structures that differed across tasks, specifically in the edges expected to be different.

To better understand the homogeneity within each task condition, we also ran S-GIMME
on each task condition alone. For all tasks S-GIMME identified two subgroups. For the Visual-
only condition, one subgroup resembled the group model, while the other subgroup included
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Figure 3.
Random effects analysis results for all 3 tasks, analyzed separately, comparing task blocks to fixation blocks (all maps
shown at p < .05 FWE-corrected). Dashed white circles indicate approximate location of ROIs, with Primary Visual
ROIs drawn on Visual-only task, Primary Auditory and Motor ROIs drawn on Motor-Auditory task, and FFA drawn on
Face-Motor-Auditory task.

Figure 4.
GIMME results from when each task was analyzed separately. Thick black lines represent edges that were consistent
across all subjects (significant for at least 75%), separately for each condition. Regions labeled and defined as in Table 1
and Fig. 2.
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three additional edges: one additional edge between the DMN regions, one between the motor
regions, and one between the motor and auditory areas. Importantly, the main conclusion from
the visual-only condition held in that the connection between visual areas was persistent in each
subgroup, as expected. For theMotor-Auditory condition, two subgroupswere identified; however,
no additional subgroup edges were recovered. This can occur when two subgroups are identified,
but no additional paths improve fit for the predefined majority of individuals within a subgroup.
Finally, the Face-Motor-Auditory condition also identified three additional subgroup edges in one
subgroup, and no additional paths in the other subgroup. In addition, both groups showed the
persistent connection between visual areas and the face-specific FFA, and none of the additional
connections were with the FFA.

5.2.2. All Conditions Together; All Subjects in All Conditions We investigated whether the
S-GIMME algorithm could subgroup data when all tasks and all subjects were combined. In the
S-GIMME analysis in which all runs from all subjects were included (all 30 subjects contributed
1 run in each of the 3 conditions for a total of 90 datasets), the results produced 2 subgroups, as
shown in Fig. 5. Besides one additional subgroup path within the DMN areas, the major difference
between these subgroups is that only one subgroup has edges between FFA and visual regions,
while the other subgroup has an edge between the auditory and motor regions. The subgrouping
corresponds well to two of the conditions, as 28 of the 30 Motor-Auditory runs were placed in the
group without a edge between FFA and primary visual regions, whereas 20 out of the 30 Face-
Motor-Auditory runs were placed in the subgroup with an edges to the FFA. While S-GIMME
separated these two conditions well, the Visual-only condition was split between the 2 subgroups.
This split result will be discussedmore below, but thismay highlight an important point to consider
in future studies that aim to use data-driven approaches; specifically, that there may be greater
variability during fMRI runs that do not entail a cognitively demanding task (such as the passive
viewing of the visual-only condition here).

5.2.3. PairedConditions In order to provide a direct test ofwhether the algorithm can separate 2
conditions, we performed 3 sets of analyses with S-GIMME, in which each comparison contained
only 2 tasks. It is important to point out that the S-GIMME algorithm is not forced to produce any
certain number of subgroups; results can vary from one extreme of producing no subgroups at all
to the other extreme of identifying a different subgroup for each subject. Therefore, it is important
to point out that although the following analyses each include only 2 conditions, the algorithm
had no input that there were 2 conditions; all analyses were conducted in a purely data-driven
manner, on the basis of 60 fMRI time-series (i.e., two from each person).

When the 2 tasks were the Motor-Auditory and the Face-Motor-Auditory, the S-GIMME
analyses produced 2 subgroups that were very similar in terms of their network structures, with
the key differences being that in only 1 of the subgroups there was a strong edges between the FFA
and primary visual cortex, and in the other subgroup a strong connection between the auditory and
motor areas (Fig. 6). These subgroups corresponded well with the tasks. Specifically, of the 30
Face-Motor-Auditory runs, 27/30 were sorted into the group that contained a strong edge between
FFA and primary visual cortex, whereas for the 30 Motor-Auditory runs, 27/30 were sorted into
the group without an edge between FFA and visual cortex. This is a 90% classification accuracy
in clustering individuals with others who are performing the same task.

The comparison of Motor-Auditory and Visual-only also produced exactly 2 subgroups, as
shown in Fig. 7. In this analysis, there was some consistency for the Motor-Auditory condition,
as 20/30 runs of this condition were grouped together, with a network that included a persistent
edge between Motor and Auditory regions. The Visual-only group also showed some consistency
with 24/30 runs being assigned to subgroup 1; however, no subgroup paths emerged for this set of
individuals, making the distinction less clear. This is a 73% classification accuracy in clustering
individuals with others who are performing the same task.
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Figure 5.
S-GIMME results when all 3 conditions analyzed together, with each subject contributing data to each condition. Thick
black lines represent edges that were consistent across all subjects (significant for at least 75%, across all groups). Green
lines represent subgroup-level edges (edges that were present in a majority of subjects within a subgroup). Regions labeled
and defined as in Table 1 and Fig. 2. The inset table indicates howmany runs (out of 30) from each condition were included
in that subgroup.

The comparison of Face-Motor-Auditory and Visual-only also produced exactly 2 subgroups
(Fig. 8). There was not a strong separation between these two conditions, consistent with all of
our previous analyses that included the Visual-only condition. One of the 2 subgroups showed
an edge between the motor and auditory areas, and this subgroup was populated more with the
condition that required a motor response (of the 34 runs sorted into this subgroup, 21 came from
the Face-Motor-Auditory condition). However, the Visual-only condition was again split between
subgroups. This will be discussed below and highlights the potential dangers of using passive tasks
to differentiate groups. This is a 63% classification accuracy in clustering individuals with others
who are performing the same task. Lastly, although previous Monte Carlo simulations suggest
S-GIMME’s performance is not dependent on the number of subgroups (Gates et al., 2017), we
note in these data S-GIMME identified the incorrect number of subgroups whenever the expected
number of subgroups was not two. Future work should continue to investigate the effect of the
number of subgroups on S-GIMME performance.

For comparison purposes, we considered two popular clustering methods: Gaussian finite
mixture modeling (McLachlan & Chang, 2004) and the k-means algorithm (MacQueen, 1967).
For each of the comparison approaches, individual-levelmultivariate time serieswere standardized
and then summarized by their (vectorized) first-order VAR transition matrices. This dimension
reduction provided a 60 × 169 matrix of estimated coefficients to be used as input for the sub-
grouping procedures. Across both approaches we also considered up to 10 potential subgroups
and the best solution was selected according to an established external criterion.

In the first approach, we used the vectorized individual-level VAR(1) estimates as input
for Gaussian finite mixture modeling (McLachlan & Chang, 2004) to identify subgroups from
the time series dynamics. To accomplish this, we used the mclust R package (McLachlan
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Figure 6.
S-GIMME results for 2 tasks: Face-Motor-Auditory and Motor-Auditory. Thick black lines represent edges that were
consistent across all subjects (significant for at least 75%). Green lines represent subgroup-level edges (edges that were
significant for at least 75% of subjects within a subgroup). Regions labeled and defined as in Table 1 and Fig. 2.

Figure 7.
S-GIMME results for 2 tasks: Motor-Auditory vs. Visual-only. Thick black lines represent edges that were consistent
across all subjects (significant for at least 75%). Green lines represent subgroup-level edges (edges that were significant
for at least 75% of subjects within a subgroup). Regions labeled and defined as in Table 1 and Fig. 2.
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Figure 8.
S-GIMME results for 2 tasks: Face-Motor-Auditory vs Visual-only. Thick black lines represent edges that were consistent
across all subjects (significant for at least 75%). Green lines represent subgroup-level edges (edges that were significant
for at least 75% of subjects within a subgroup). Regions labeled and defined as in Table 1 and Fig. 2.

& Chang, 2004). The best fitting subgroup solution, both in terms of the number of subgroups
and the optimal covariance parameterization (the volume, shape, and orientation of the covariance
constraints across groups),was chosenbasedon theBayesian information criterion (BIC;Schwarz,
1978). Across all comparisons, a single subgroup was identified as optimal based on the BIC.
Here, we report metrics for the two-group solution, as it was considered the second-most optimal
solution, also across all comparison conditions. For the two-group solution, the mixture model
approach classified tasks accurately 50% in the Face-Motor-Auditory vs Visual-only task, 55%
in the Motor-Auditory vs Visual-only comparison, and 52% of the time in the Motor-Auditory vs
Face-Motor-Auditory comparison.

In the second approach, we used the k-means algorithm on the same 60 × 169 matrix of
estimated coefficients for clustering on the time series dynamics. Again we considered up to 10
potential subgroups and identified the optimal number of subgroups using the Calinski-Harabasz
index (Cal’inski & Harabasz, 1974) and the Duda-Hart test (Duda et al., 1973). The Duda-Hart
test (Duda et al., 1973) was used to determine if there should be more than 1 cluster, and the
Harabasz index was used to rank the different cluster solutions. For these analyses, we used
the fpc package (Hennig, 2020). Unlike the mixture approach, the k-means approach identified
two subgroups as optimal across all three comparison. The k-means approach classified tasks
accurately 53% of the time in the Face-Motor-Auditory vs Visual-only comparison; 67% of the
time in the Motor-Auditory vs Visual-only comparisons; and 57% of the time in the Motor-
Auditory vs Face-Motor-Auditory comparison.

The goal of this paper is to document attempts to validate the S-GIMME algorithm based on
brain states explicitly induced through different tasks in a new fMRI dataset. For this reason, any
comparison with alternative approaches should not be treated as exhaustive. There are many deci-
sion points required for conducting unsupervised classification of multivariate time series arising
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from multiple subjects. For example, some form of dimension reduction is often required. Here,
we chose to use the VAR(1) model for summarizing the individual-level dynamics to be used as
input for the cluster analyses. Although this approach is common in the literature, it may be sub-
optimal for a number of reasons. First, it may not provide enough dimension reduction, resulting
in an input matrix with insufficient signal given the sample size. On the other hand, it may also
not provide enough information to obtain accurate classifications. S-GIMME, for example, uses
both the lagged and contemporaneous dynamics to identify subgroups. We mention these details
to highlight these comparison results should not be used as evidence of S-GIMME’s superiority
over alternative methods. Instead, these results are intended to provide some preliminary context
on the subgroup classification aspects of this example.

6. Discussion

This study aimed to test the effectiveness of S-GIMME in identifying and segregating dis-
tinct subgroups using relatively small fMRI datasets (runs of under 8min; 1 run per subject per
condition). We used 3 different task runs to induce slightly different network connectivity and
employed the S-GIMME algorithm for analysis. The algorithm was able to differentiate network
structures across conditions for one of the three tasks and partly for another, even though each
individual contributed a run to each condition in the comparisons. Specifically, a subject’s runs
were not grouped with their own other runs but rather were grouped with other individuals doing
the same task. This speaks to the sensitivity of this unsupervised classification approach.

The results across conditions followed expectations. Across all conditions, edgeswere consis-
tently found among brain regions that are known to have high correlations across time. Subgroup-
specific edges were also consistent with the expected differences between tasks, especially with
regard to the Motor-Auditory condition and the Face-Motor-Auditory condition. In the analysis
including these two conditions, the primary differences in the two subgroups that S-GIMME iden-
tified were: (1) the edge between the FFA and the primary visual areas and (2) the edge between
the auditory and motor areas. The FFA and the primary visual edge was consistently found only
in the subgroup into which the Face-Motor-Auditory runs were most often sorted. In contrast,
the subgroup lacking those edges, but still having persistent edges between primary auditory and
motor regions contained most of the runs from the Motor-Auditory runs. These results suggest
that S-GIMME can resolve, in a data-driven and unsupervised manner, the subtle differences, as
well as similarities, between different mental states. Thus, this algorithm holds promise for use
in investigating possible differences between clinical populations, as well as identifying potential
subgroups within a population.

One of the three conditions here stood out in not eliciting a consistent network structure when
compared to the other conditions. The Visual-only task did not cleanly and consistently subgroup
together when analyzed along with the other two conditions. For this reason, S-GIMME separated
FaceMotor from Motor-Only tasks well above chance, whereas the same separation was not seen
in the other two comparisons which included the Visual-Only Task. This could potentially be due
to the fact that the Visual-only condition is the least-constrained task condition we employed;
this task provided subjects with the most leeway to set their own mental state. Variability in what
participants did during this passive run could relate to the other tasks, which included motor-
responses and face stimuli. The mental state for some subjects, during this passive condition, may
have been to think about the face stimuli or motor-response requirements of the other conditions
they knew were upcoming—and this may be why some subjects’ visual-only runs showed fewer
than expected differences with those other tasks.

The finding of no clear subgroup for the Visual-only condition, combined with consistent
subgrouping for the other two more highly constrained tasks, may have potential ramifications
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for the use of resting-state scans to characterize different populations. As shown here, data-driven
algorithms are sensitive enough to pick out differences in the cognitive state of the individual,
so using resting state scans to investigate differences between groups could be confounded by
differences in cognitive state. Forcing subjects into a more constrained mental state by use of
demanding tasks may thus increase the ability to ascertain differences in network structures
across groups, as opposed to those results being skewed by higher variability in what subjects are
choosing to do during passive, unconstrained scans.

On the other hand, the variability in the mental state of subjects during an unconstrained run
could be viewed as an advantage if it is better able to identify static trait characteristics because
network structures will not be overly influenced by a demanding task. Current understanding of
resting state conditions is that the internal phenomena varies across participants and as such might
elicit baseline brain processes that reveal idiosyncratic patterns (Hurlburt et al., 2015). Prior work
has been able to subset individuals based on diagnostic status using only the resting state data
as input to S-GIMME (Price et al., 2017b), with another study finding diagnoses-specific edges
based on resting state data collected across four diagnostic categories and applied to a confirmatory
subgrouping GIMME approach (Henry et al., 2019b). Future research should address the issue
of whether task-based networks or resting-state networks or possibly the comparison of the two,
are most powerful in being able to detect the type of brain processes that may be most useful in
identifying distinct subgroups.

7. Conclusion

The current findings, obtained from a strictly controlled experiment design, provide evidence
that the S-GIMME algorithm can arrive at meaningful subgroups that correspond with externally
driven classifications. If the dynamic processes differ consistently and markedly between latent
subgroups, then the unsupervised classification approach can find both the underlying subgroups
as well as the network structures. It must be stressed that the ability to recover subgroups was
related to how well-differentiated the individuals were. In one case, no clear subgroup was found,
likely because the task did not create expected differences in dynamic processes. This is critical for
researchers to consider as they design their studies and run any sort of unsupervised classification:
distinct and meaningful subgroups may not exist in all data sets. The differences between the
data-driven subgroups can be tasks, as seen here, symptomology, as seen previously (Price et al.,
2017a), or any correlate. Thus, subgrouping algorithms hold great promise for helping to classify
individuals based on their dynamic processes, in a data-driven, unsupervised manner that can be
an important complement to existing methods of evaluation.
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