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Abstract
Chronic pain remains a significant health issue that @ o
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often diminishes one’s gquality of life and represents a large (g ..o (o
economic burden. In the dorsal root ganglia (DRG), 4 @@ o X

specialized nociceptive sensory neurons are critical for the
detection and transmission of noxious stimuli. Following
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injury or insult, nociceptors become sensitized, and exhibit e ot — 8 Yoren w alll
iIncreased cellular excitability, which represents a critical : Bj _ ;A J |
hallmark for the transiton from acute to chronic ol ( L
painl. Therefore, understanding the cellular and molecular e G :' g™ —

sensitization

mechanisms that regulate inflammatory sensitization Is
essential towards understanding the pathophysiology of
chronic pain and developing more efficacious analgesics
with limited adverse effects?. Using a recently developed
human pluripotent stem cell-derived sensory neuron
(hPSC-SN) differentiation protocol® and a cellular
iInflammation model comprised of a four-part cocktail of inflammatory mediators (inflammatory soup; hereby
referred to as IS)3, we show that our hPSC-SNs can be sensitized by 24 h treatment of using MEA recordings
and through mass spectrometry (MS), identify specific proteins that were upregulated as a result of inflammation.
Comparison of proteins identified by MS to be upregulated following 24 h IS with recently published pain-related
databases such as the Priority Pain Genes Database, Human Pain Genetics Database, and the Dolorisk Group*
6 we focused on the DCC netrin 1 receptor (DCC), which has been previously shown to facilitate axonal
elongation and sprouting, upregulated during inflammation, and play a role in neuropathic pain in rodent
models’8,

Objective: To characterize the subcellular expression and localization of DCC in hPSC-
SNs in control and 24 h IS-treated groups using western blot and immunocytochemistry.

Materials and Methods
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Fig 1. Schematic Overview of
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E6 medium E6 medium DMEM/F 12 medium monolayer culture (D14-28).

Adapted from Deng et al. (2023). (B)
Flowchart depicting procedure for
Western Dblotting experiments. (C)
Flowchart depicting procedure for
Immunocytochemistry experiments.
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Results

Mass Spectrometry Analysis of Sensitized hPSC-SNs
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Fig 2. Proteomic Analysis Reveals Netrin-1 Receptor DCC is Upregulated after 24 h IS Treatment. (A) Volcano plots depicting
significantly upregulated and down-regulated proteins in cytosolic and membrane subcellular fractionations from Ctrl and 24 h IS hPSC-
SNs. (B) Heatmap of the top 50 upregulated proteins in cytosolic and membrane fractions following 24 h IS. DCC was found to be
significantly upregulated in membrane compartments.
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Fig 3. Western Dblot 1images showing

upregulation of DCC after 24 h IS in WAQ9 and
NCRM Noci. D28 WAQ09 (A) and NCRM5 (B)
hPSC-SNs showing increased DCC expression in
membrane subcellular fractions after 24 h IS
treatment. Difference in DCC MW suggests
different proteolytic cleaving processes or receptor
Isoforms between human embryonic and induced
pluripotent stem-cell derived sensory neurons.

Fig 4. Immunocytochemistry of hPSC-SNs after 24h IS demonstrating
Increased DCC in WAQO9 Noci. (A) Ctrl and 24 h I1S-treated WAQ09 D28 Noci were
co-stained for Hoechst 33342 (blue), DCC (green), and TUBB3. DCC puncta
appears to be more strongly expressed following 24 h IS treatment. TUBB3
staining of axons appears to exhibit stronger expression after 24 h IS treatment
compared to Ctrl.

Summary and Future Directions

Here, we demonstrate that the Netrin-1 receptor, DCC, as previously shown from our mass spectrometry proteomic analysis, appears to be upregulated in
hPSC-SNs following 24 h IS treatment as demonstrated by our western blot and immunocytochemistry experiments. Interestingly, though 24 h IS treatment appears to
increase DCC expression in both WA09 and NCRM5 hPSC-SNs, we observed differences in DCC’s molecular weight, suggesting distinct isoform expression between
human embryonic and induced pluripotent stem-cell derived sensory neurons. In addition, DCC expression appears to be stronger after 24 h IS treatment in both
somal and axonal regions of hPSC-SNs, and 24 h IS treatment also appears to facilitate axonal sprouting, as previously shown”:8. Though our initial findings suggest a
putative role of DCC in regulating inflammatory sensitization, future replicates will be needed to confirm and quantify these findings. Overall, our work demonstrates
DCC as a potential regulator of inflammatory sensitization and chronic pain. Future directions will be aimed at characterizing downstream signaling pathways of DCC,
as well as high-throughput functional and drug screening assays to determine whether altering DCC receptor activity modulates sensory neuron activity and
inflammatory sensitization, and can serve as a potential drug target for mitigating chronic pain.
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