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MODEL OF HYBRID NETWORKS

We represent the system as a phantom network of 

nonlinear springs with spring constants 𝑘1 and 𝑘2.
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ANALYTICAL 
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Lennard-Jones Pairwise Interaction Potential 

Networks are made of bead-spring

chains of beads with diameter 𝜎. Chains

with degree of polymerization DP=512

are randomly crosslinked by chains

with 𝑁2 = 20. The resulting DP of type

1 strands is 𝑁1 ≈ 32 . Non-bonded

interactions were turned off to simulate

phantom networks.
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Bond Potential: FENE + LJ
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MOTIVATION

Polymer networks can be made of strands which differ by (a)

degree of polymerization (DP), (b) rigidity, and (c) chemical

structure. Such solvent-free elastomers have been shown to

replicate the softness, strength, and toughness of biological

tissues1.

SUMMARY
Using a combination of analytical calculations and coarse-grained molecular

dynamics simulations, we developed a model which describes the elasticity of

hybrid networks in the linear and nonlinear deformation regimes. The model

predictions are in a good agreement with simulation results. In particular, we show

that individual network strands deform in such a way to maintain a force balance at

each junction point resulting in nonaffine deformation of the individual network

strands.
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ABSTRACT
Hybrid networks - networks consisting of different types of strands

which could differ by their degree of polymerization (DP), chemical

structure, or rigidity (Kuhn length). Here we report on a theoretical

model and coarse-grained molecular dynamics simulations of hybrid

networks made of two types of strands. The developed approach self-

consistently accounts for entropic elasticity, bond deformation, and

continuous redistribution of stress between different network strands as

they undergo nonlinear deformations. The model predictions are tested

by molecular dynamics simulations of hybrid network deformations,

which confirm a breakdown of the simple mixture rule.

The values of 𝑘𝑖, 𝜙𝑖(𝑣), 𝑅𝑖
2 , and 𝜆𝑙,𝑖 are

calculated as functions of the deformation

ratio 𝜆, using a harmonic bond potential
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with spring constant 𝐾𝑏 = 532 𝑘𝐵𝑇/𝜎
2.

Networks are uniaxially deformed at constant

volume. For constant values of 𝐾1 at large

network deformations, all stress-deformation

curves collapse indicating the dominant

contribution of bond deformation to the

network stress.

NETWORK SHEAR MODULUS
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Linear Deformation Regime

(a) In a network of long chains and short

crosslinkers 𝑁1 ≫ 𝑁2, 𝐺0 ≈ 𝑘𝐵𝑇
𝜌

2𝑁1
, indicating

that such networks behave as networks with

tetra-functional crosslinks in the linear

deformation regime. (b) In the opposite limiting

case, 𝑁1 ≪ 𝑁2 , the network shear modulus is

equal to 𝜌/𝑁2. Thus, in the linear deformation

regime, the hybrid network shear modulus is

controlled by the longest chains.
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Nonlinear Deformation Regime2,3
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Network Structural Modulus
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General Consideration 1-3
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The total free energy of the s-th network strand of

type i with the end-to-end vector 𝑹𝑖,𝑠, degree of

polymerization 𝑁𝑖 and bond deformation ratio

𝜆𝑙,𝑖 is a sum of the configurational and bond

deformation contributions
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provides an expression for the nonlinear spring

constant of the network strand
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where ⟨𝑅𝑖
2⟩ is the mean-square average end-to-end

distance of strands of type i and the function

𝑔 𝑥 = 1 + 2 1 − 𝑥 −2.

Minimization of 𝐹 𝑹𝑖,𝑠, 𝜆𝑙,𝑖 with respect to 𝜆𝑙,𝑖
and averaging over all strands of type i in a

network results in

In the framework of the phantom network model,

each network strand is connected to a non-

fluctuating background such that the mean-square

end-to-end distance of strands of type i is
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where 𝐼1 = 𝜆2 + 2𝜆−1 is the first deformation

invariant for uniaxial network deformation.
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