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Abstract

The nonlinear stress-strain behavior of polymer networks, manifested in the
monotonically increasing instantaneous modulus, Is a product of the nonlinear
deformation of individual network strands. This nonlinear network response
to external deformations iIs described In the framework of a network model
relating macroscopic stress-strain response to force-elongation behavior of
Individual network strands with finite bending rigidity and extendable bonds.
The developed approach iIs used to correlate network shear modulus, bond
deformation modulus and extensibility ratio with the strands’ Kuhn length,
bond elastic constant, and their dimensions in undeformed and fully extended
states in both simulated and experimental networks.

Chain Deformation Model

The Helmholtz free energy of a chain with end-to-end distance R, bond
deformation ratio A; and number of bonds N Is approximated by the sum of
the conformational and bond stretching terms:

Fchain(R: /11) — Fconf(R: /11) + NUpona (A1)

The bond deformation can be approximated by a harmonic potential with
spring constant K, and equilibrium bond length I,:

Upona (A1) = 0.5Kp15(A; — 1)?

The force needed to stretch the chain to end-to-end distance R i1s defined as
the derivative of the free energy with respect to R:
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where RY... = Nl,, K is the chain bending constant, and Kuhn length

; _ll+cothK—K‘1~:21K, for K > 1
K "1 —cothK + K1~ [, forK K1

The equilibrium bond deformation ratio A, Is obtained by minimizing the
free energy with respect 4,

dUbond (/11)
dA,

These two equations are solved together to obtain force deformation curve
accounting for bond deformations.

fR:N/h

= NKgpl54, (4 — 1)

Diagram of chain deformation regimes in terms of reduced force f =
fly/kgT and chain bending constant K:
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Network Deformation Model

The free energy of a network in the framework of the affine network model
IS given by the sum of individual chain contributions:

FnetUl» Al) — Z Fchain(Rs» Al)

where the first deformation invariant I; = A5 + 15 + A5. For a network

undergoing uniaxial deformation with deformation ratio A =L/L, at
constant volume V, I; = A% + 2171 and the true stress in the network is

A 0F,ee (I, (1), A1)
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where G Is the structural network modulus, and £ Is the extensibility ratio.
Minimizing the network free energy with respect to A;, one obtains an
expression for the equilibrium bond deformation ratio in terms of the
network stress:

(A% +2471) dUpona (A1)
— = 4LipCE
(A2 — 2171 dA,
Parameter C describes topology of the network with monomer density p.
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Coarse-grained bead-spring model
Phantom chains
NVT ensemble with Langevin
thermostat
Bending potential:

Upeng(0) = kgTK(1 + cos8)

Bond potentials:
1
Uharmonic(l) — EKb (l — lo)z
Upene (D)
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Summary

Single Chain Deformation
Bead-spring chains with different
bending  constants, K, and
deformable bonds.
Force-deformation curves.

Diamond Network Deformation
A diamond network of bead-spring
chains with different bending

constants K.

Step-wise uniaxial deformation at
constant volume.

True stress as a function of
deformation

We have developed a generalized model of the deformation of polymer
chains which accounts for bond extensibility. The model predictions are in
excellent agreement with simulation data of chain deformations. It is used for
analysis of experimental data for deformation of single-strand DNA. This
model has been adapted to describe the mechanical response of polymer
networks with deformable bonds. It was used for analysis of simulation
results of diamond network deformation and experimental data for biological
networks of collagen, fibrin, and neurofilaments.

Acknowledgments

National Science Foundation DMREF-
2049518 and DMREF-1921923

References

Macromolecules 2020, 53, 10874—10881
Macromolecules 2013, 46, 3679—3692




