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We have developed a generalized model of the deformation of polymer

chains which accounts for bond extensibility. The model predictions are in

excellent agreement with simulation data of chain deformations. It is used for

analysis of experimental data for deformation of single-strand DNA. This

model has been adapted to describe the mechanical response of polymer

networks with deformable bonds. It was used for analysis of simulation

results of diamond network deformation and experimental data for biological

networks of collagen, fibrin, and neurofilaments.

Network Deformation Results

The nonlinear stress-strain behavior of polymer networks, manifested in the

monotonically increasing instantaneous modulus, is a product of the nonlinear

deformation of individual network strands. This nonlinear network response

to external deformations is described in the framework of a network model

relating macroscopic stress-strain response to force-elongation behavior of

individual network strands with finite bending rigidity and extendable bonds.

The developed approach is used to correlate network shear modulus, bond

deformation modulus and extensibility ratio with the strands’ Kuhn length,

bond elastic constant, and their dimensions in undeformed and fully extended

states in both simulated and experimental networks.

The Helmholtz free energy of a chain with end-to-end distance R, bond

deformation ratio 𝜆𝑙 and number of bonds N is approximated by the sum of

the conformational and bond stretching terms:

𝐹𝑐ℎ𝑎𝑖𝑛 𝑅, 𝜆𝑙 = 𝐹𝑐𝑜𝑛𝑓 𝑅, 𝜆𝑙 +𝑁𝑈𝑏𝑜𝑛𝑑(𝜆𝑙)
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The force needed to stretch the chain to end-to-end distance R is defined as

the derivative of the free energy with respect to R:

The equilibrium bond deformation ratio ll is obtained by minimizing the

free energy with respect ll

The bond deformation can be approximated by a harmonic potential with

spring constant 𝐾𝑏 and equilibrium bond length l0:

𝑈𝑏𝑜𝑛𝑑 𝜆𝑙 = 0.5𝐾𝑏𝑙0
2 𝜆𝑙 − 1 2

where 𝑅max
0 = 𝑁𝑙0, K is the chain bending constant, and Kuhn length
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1 − coth𝐾 + 𝐾−1
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These two equations are solved together to obtain force deformation curve

accounting for bond deformations.

Diagram of chain deformation regimes in terms of reduced force ሚ𝑓 =
𝑓𝑙0/𝑘𝐵𝑇 and chain bending constant K:
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The free energy of a network in the framework of the affine network model

is given by the sum of individual chain contributions:

where the first deformation invariant 𝐼1 = 𝜆𝑥
2 + 𝜆𝑦

2 + 𝜆𝑧
2 . For a network

undergoing uniaxial deformation with deformation ratio 𝜆 = 𝐿/𝐿0 at

constant volume V, 𝐼1 = 𝜆2 + 2𝜆−1 and the true stress in the network is

where 𝐺 is the structural network modulus, and 𝛽 is the extensibility ratio.

Minimizing the network free energy with respect to 𝜆𝑙 , one obtains an

expression for the equilibrium bond deformation ratio in terms of the

network stress:

Parameter CE describes topology of the network with monomer density r.
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• Coarse-grained bead-spring model

• Phantom chains

• NVT ensemble with Langevin 

thermostat

• Bending potential:

Single Chain Deformation

• Bead-spring chains with different

bending constants, K, and

deformable bonds.

• Force-deformation curves.

Diamond Network Deformation

• A diamond network of bead-spring

chains with different bending

constants K.

• Step-wise uniaxial deformation at

constant volume.

• True stress as a function of

deformation
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Crossover force ሚ𝑓𝑠𝑡𝑟 to bond

stretching regimes:

𝑈𝑏𝑒𝑛𝑑 𝜃 = 𝑘𝐵𝑇𝐾 1 + cos 𝜃

• Bond potentials:


