

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

How to measure the effects of solvents and charged groups on polymer excluded volume and Kuhn length

Presented by Michael Jacobs

Andrey V. Dobrynin

Michael Jacobs

Ryan Sayko

Polyelectrolytes

Sodium Poly(styrene sulfonate) (NaPSS)

DNA

Poly(methacrylic acid)

Church of the Holy Blob

Chains in Semidilute Solutions

N – degree of polymerization l – monomer projection length b – Kuhn length Chain Size:

$$R = \xi (N/g)^{0.5}$$

Correlation Length (Blob):

$$\xi = D_e g/g_e = l g/B_{pe}$$

Electrostatic Blob: $D_e = D_{th} (g_e/g_{th})^{0.588} = l g_e^{0.588}/B_g$

Thermal Blob:

$$D_{th} = (lbg_{th})^{0.5} = l g_{th}^{0.5} / B_{th}$$

Chains of Blobs

Correlation Length

Unentangled (Rouse) Dynamics

Viscosity Data Analysis

Polydispersity effect

$$\eta_{sp,R} = N_w/g$$
 $g = B^{3/(1-3\nu)}(cl^3)^{1/(3\nu-1)}$ $B = C_p^{\frac{1}{3}-\nu}$

Macromolecules 2021, 54, 1859

Salt-free Solutions of PMVP-Cl

Ethylene glycol solutions of P2VP and N-methyl-2-vinyl pyridinium chloride random copolymers with $N_w = 3463$ and l = 0.255nm.

Viscosity data from: Dou & Colby J. Polym. Sci. B 2006, 44, 2001

 $\varphi = cl^3$

Salt Solutions of NaCMC

Aqueous solutions of sodium carboxymethylcellulose with $N_w = 1250$ and l = 0.515 nm.

Viscosity data from: Lopez, C. G. et al. Macromolecules 2016, 50, 332

Effect of Fraction of Charged Groups and Salt

J. Polym. Sci. B 2006, 44, 2001

Macromolecules **2016**, 50, 332

Fraction of charged groups

Solutions of PMMA in Ionic Liquids

Solutions of poly(methyl methacrylate) in ionic liquids [C₄(mim)][TFSI] (blue triangles) and [C₈(mim)₂][TFSI]₂ (orange rhombs), with N_w =889 and l = 0.255nm.

Different packing of solvent molecules around the backbone changes B_{th} , and by extension Kuhn length $b = lB_{th}^{-2}$.

Viscosity data from: He et al., Macromolecules 2020, 53, 7865

Conclusions

We have adapted the scaling theory of polymer solutions to quantify

- The effect of fraction of ionization on chain size
- The effect of added salt on solvent quality for polyelectrolytes
- The effect of solvent packing on Kuhn length

And you can too!

Acknowledgements

Collaborators

Andrey V. Dobrynin

Ryan Sayko

Financial Support

The National Science Foundation DMR 2049518 and 1921923