
React Native

Tech Talk Team B
Mohammed Alnasser 
Reshmasai Malleedi 
Madison McFadden 
Rebecca Rozansky



Table of 
Contents

I. Introduction

II. React Native Fundamentals

III. Getting Started

IV. Walkthrough Example



Introduction



What is React Native?

● A JavaScript framework for building mobile 
applications that can be deployed on both iOS and 
Android platforms

● It is based on React, a popular JavaScript library 
for building user interfaces on the web

● React Native uses a single codebase to build 
mobile apps, which means that developers can 
write code once and deploy it on both iOS and 
Android platforms



Why React Native?

● React Native provides a set of pre-built components that developers can use 
to build user interfaces, and it uses a virtual DOM (Document Object Model) 
to manage the state of the app
○ React Native apps can be developed using a declarative programming approach, which 

allows developers to focus on what the app should do rather than how it should do it
● React Native also allows developers to use native code where needed

○ Developers can leverage the performance and features of native platforms when necessary
● React Native supports hot reloading

○ Developers can see the changes they make to the code in real-time, without having to rebuild 
the app from scratch.



Popular Apps built using React Native

● Facebook
● Discord
● Pinterest
● Airbnb 
● UberEats
● Instagram
● Wix
● Soundcloud
● Skype



React Native 
Fundamentals



React Native Architecture

JavaScript Code
● responsible for managing the user interface, 

application logic, and data flow
Native Code
● responsible for handling platform-specific tasks such 

as rendering UI components, accessing device 
features like camera and GPS, and managing memory.

React Native uses a bridge to communicate between the 
JavaScript code and the native code, which allows them to 
interact with each other. 
● The bridge passes messages between the two parts 

of the app, which enables the JavaScript code to call 
native modules and the native code to call JavaScript 
functions. Also uses a virtual DOM (Document Object 
Model) to manage the state of the app



Features

● React Native uses a component-based architecture, which means that the user 
interface of the app is built using reusable components. 
○ Components are like building blocks that can be combined to create complex UI elements. 

○ Components can also have their own state and lifecycle methods, which allows them to respond to 
user interactions and changes in the state of the app.

● React Native uses a style system that is similar to CSS, which allows developers 
to apply styles to components using a set of style properties. 
○ The style system includes support for flexbox layout, which makes it easy to create responsive 

layouts that work across different screen sizes and orientations.

● To handle user input and application logic, React Native uses a combination of 
event handling and state management. 
○ Events are triggered by user interactions, such as a button press or a swipe gesture, and they can be 

used to update the state of the app. State is a representation of the data that the app needs to 
display, and it can be updated in response to user interactions or other events.



Native Components

● For view development, React Native invokes views using JS and React 
components

● At runtime, React Native creates the corresponding Android and iOS views 
for those components. 
○ Because React Native components are backed by the same views as Android and iOS, React 

Native apps look, feel, and perform like any other apps. We call these platform-backed 
components Native Components.

● React Native comes with a set of essential, ready-to-use Native Components 
you can use to start building your app today called Core Components.



Core Components



Getting Started 
with React Native



Components

● What are they?
○ Components are like building blocks that can be combined to create complex UI elements

● Reusability via props
○ Props is short for “properties”. Props let you customize React components.

● Conditional Rendering
● State

○ state is like a component’s personal data storage. State is useful for handling data that changes 
over time or that comes from user interaction - gives components memory

● Stylesheets
○ In React Native, styling is done using a style sheet system that is similar to CSS but uses a 

JavaScript syntax. The style sheet system is designed to be fast and efficient, with styles being 
preprocessed and then applied directly to native components.

● Navigation
○ Navigating between screens in a React Native app, including Stack Navigation, Tab Navigation, and 

Drawer Navigation.



Running React Native Apps

● Expo App + NPM
● Running simulator via expo start
● iOS:

○ xCode
○ Create a project
○ Run the simulator

● Android: 
○ Android Studio Emulator
○ Create a virtual device
○ Link the location to Expo



Todo List 
Tutorial

https://github.com/rebeccarozansky/react-native-tutorial 
https://github.com/rebeccarozansky/react-native-tutorial 

https://github.com/rebeccarozansky/react-native-tutorial
https://github.com/rebeccarozansky/react-native-tutorial


App.js
The main file where the code 

executes from



Navigation
Allows for navigation between 

screens of the app



Task.js
The task that is displayed in the 

to-do list. 



HomeScreen.js
Uses .map to display all tasks 

that exist



HomeScreen.js
The functionality for adding a 

new task



HomeScreen.js
The states and functions that 
keep the application updated



Testing and Debugging

● Testing and debugging in React Native are similar to testing and debugging 
in other JavaScript-based frameworks

● Common Approaches:
○ Unit testing: involves testing individual components and functions in isolation to ensure they 

work as expected. Jest is a popular testing framework used for unit testing in React Native. 
○ Integration testing: involves testing how different components work together. Enzyme and 

Detox are popular frameworks used for integration testing in React Native.
○ Console logging: You can use console.log statements to output values and see how your 

code is executing - simple yet effective



Questions?


