React Native

Tech Talk Team B

Mohammed Alnasser
Reshmasai Malleedi
Madison McFadden

Rebecca Rozansky

Table of
Contents

II.

III.

IV.

Introduction
React Native Fundamentals
Getting Started

Walkthrough Example

Introduction

What 1s React Native?

e A JavaScript framework for building mobile
applications that can be deployed on both iOS and
Android platforms

e |tis based on React, a popular JavaScript library
for building user interfaces on the web

e React Native uses a single codebase to build
mobile apps, which means that developers can
write code once and deploy it on both iOS and
Android platforms

Why React Native?

e React Native provides a set of pre-built components that developers can use
to build user interfaces, and it uses a virtual DOM (Document Object Model)

to manage the state of the app
o React Native apps can be developed using a declarative programming approach, which
allows developers to focus on what the app should do rather than how it should do it
e React Native also allows developers to use native code where needed
o Developers can leverage the performance and features of native platforms when necessary

e React Native supports hot reloading

o Developers can see the changes they make to the code in real-time, without having to rebuild
the app from scratch.

Popular Apps built using React Native

Facebook
Discord
Pinterest
Airbnb
UberEats
Instagram
Wix
Soundcloud
Skype

React Native
Fundamentals

React Native Architecture

J

JavaScript Code JAVASCRIPT
e responsible for managing the user interface,
application logic, and data flow $
Native Code

e responsible for handling platform-specific tasks such
as rendering Ul components, accessing device
features like camera and GPS, and managing memory.

SHADOW TREE

BRIDGE JSON (ASYNC)

React Native uses a bridge to communicate between the
JavaScript code and the native code, which allows them to
interact with each other.

e The bridge passes messages between the two parts $

of the app, which enables the JavaScript code to call
native modules and the native code to call JavaScript NATIVE(s)
functions. Also uses a virtual DOM (Document Object

Model) to manage the state of the app

NATIVE MODULES

Features

React Native uses a component-based architecture, which means that the user
interface of the app is built using reusable components.

o Components are like building blocks that can be combined to create complex Ul elements.

o Components can also have their own state and lifecycle methods, which allows them to respond to
user interactions and changes in the state of the app.

React Native uses a style system that is similar to CSS, which allows developers

to apply styles to components using a set of style properties.
o The style system includes support for flexbox layout, which makes it easy to create responsive
layouts that work across different screen sizes and orientations.

To handle user input and application logic, React Native uses a combination of
event handling and state management.
o Events are triggered by user interactions, such as a button press or a swipe gesture, and they can be

used to update the state of the app. State is a representation of the data that the app needs to
display, and it can be updated in response to user interactions or other events.

Native Components

e Forview development, React Native invokes views using JS and React

components
e At runtime, React Native creates the corresponding Android and iOS views
for those components.

o Because React Native components are backed by the same views as Android and iOS, React
Native apps look, feel, and perform like any other apps. We call these platform-backed
components Native Components.

e React Native comes with a set of essential, ready-to-use Native Components

you can use to start building your app today called Core Components.

Core Components

REACT NATIVE Ul
COMPONENT

<View>

<Text>

<Image>

<ScrollView>

<TextInput>

ANDROID VIEW

<ViewGroup>

<TextView>

<ImageView>

<ScrollView>

<EditText>

10S VIEW WEB ANALOG

A non-scrolling

<UIView> -
<div>

<UITextView>

<UIImageView>

<UIScrollView>

<input

<UITextField> type="text">

DESCRIPTION

A container that supports
layout with flexbox, style, some
touch handling, and
accessibility controls

Displays, styles, and nests
strings of text and even handles
touch events

Displays different types of
images

A generic scrolling container

that can contain multiple
components and views

Allows the user to enter text

Getting Started
wilth React Native

Sally Ride's Packing List

e Space suit v/

COmpODentS * Helmet with a golden leaf v/

¢ Photo of Tam

e What are they?

o Components are like building blocks that can be combined to create complex Ul elements
e Reusability via props

o Props is short for “properties”. Props let you customize React components.
e Conditional Rendering

e State
o stateis like a component’s personal data storage. State is useful for handling data that changes
over time or that comes from user interaction - gives components memory
e Stylesheets
o In React Native, styling is done using a style sheet system that is similar to CSS but uses a
JavaScript syntax. The style sheet system is designed to be fast and efficient, with styles being
preprocessed and then applied directly to native components.
e Navigation
o Navigating between screens in a React Native app, including Stack Navigation, Tab Navigation, and
Drawer Navigation.

Running React Native Apps

e EXxpo App + NPM
e Running simulator via expo start
o (OS:

o xCode

o Create a project
o Run the simulator

e Android:

o Android Studio Emulator
o Create a virtual device
o Link the location to Expo

Home

Your Tasks

You have_2 tasks left!

Todo List
Tutorial

COMP523 Presentation

https://github.com/rebeccarozansky/react-native-tutorial
hE’TDs‘:%—’t%_ﬁ%iql ub.com/re eccarozan‘s)&ﬁ_t—t‘_t_t_‘reac -native-tutorial

https://github.com/rebeccarozansky/react-native-tutorial
https://github.com/rebeccarozansky/react-native-tutorial

import { StatusBar } from 'expo-status
import { Platform, StyleSheet, Text, V
import React, {useState} from 'react’;
import Task from './components/Task'

import {NavigationContainer} from ‘@re
import Stacks from './navigation/stack

A.pp -]S export default function App() {

return(

The main file where the code L
executes from <Stacks />

</NavigationContainer>

Navigation

Allows for navigation between
screens of the app

nport { createBottomTabNavigator } from "@react-navigation

"

nport HomeScreen from "../screens/HomeScreen";

nport { createStackNavigator } from '@react-navigation/sta

onst Tab = createBottomTabNavigator();
onst Stack = createStackNavigator();

onst Stacks = () => {

return(
<Stack.Navigator>
<Stack.Screen name="Home" component={HomeScreen}
</Stack.Navigator>

);

xport default Stacks;

import React from ‘react’;
import {View, Text, StyleSheet,TouchableOpacity} from 'react-
import { iOSColors } from 'react-native-typography';

const Task = (props) => {

Task s ¢

<View style={styles.item}>
<View style={styles.itemLeft}>
<View style={styles.square}></View>

The task that is displayed in the (Text style={styles.itenText}> {props.text}
to-do list. /views

</View>

HomeScreen.js

Uses .map to display all tasks
that exist

<View style={styles.container}>

<View style={styles.tasksWrapper}>

<Text style={styles.sectionTitle}>Your Tasks </Text>

<Text style={styles.itemDescription}>You have
<Text style={styles.itemDescriptionStrong}> {taskItems.length} </Text>
tasks left! {"\n\n"}
</Text>
<ScrollView contentContainerStyle={{ flexGrow: 1 }} style={styles.items}>
]
1
taskItems.map((item,index)=>{
return (
<TouchableOpacity key={index} onlLongPress={() => completeTask(index)}>
<Task text={item['task']} />
</TouchableOpacity>

)})

—

<StatusBar style="auto" />

<KeyboardAvoidingView
behavior={Platform.0S==="io0s"?"padding” : "height"}
style={styles.writeTaskWrapper}

I I Ome S Cre en j S <TextInput style={styles.input} placeholder={'Task Name'}
| |

<TouchableOpacity onPress={() => handleAddTask()}>
<View style={styles.addWrapper;>

The functiona“ty for adding a <Text style={styles.addText}>+</Text>

</View>
new taSk </TouchableOpacity>
</KeyboardAvoidingView>
View>

HomeScreen.js

The states and functions that
keep the application updated

const [task, setTask] = useState();
const [taskItems, setTaskItems] = useState([]);

const handleAddTask = () => {
Keyboard.dismiss();
var temp = {'task’':task}
var itemsCopy2 = [...taskItems,temp]
setTaskItems(itemsCopy2)
setTask(null);

}

const completeTask = (index) => {
let itemsCopy = [...taskItems];
itemsCopy.splice(index, 1);
setTaskItems(itemsCopy);

Testing and Debugging

e Testing and debugging in React Native are similar to testing and debugging
in other JavaScript-based frameworks

e Common Approaches:

o Unit testing: involves testing individual components and functions in isolation to ensure they
work as expected. Jest is a popular testing framework used for unit testing in React Native.

o Integration testing: involves testing how different components work together. Enzyme and
Detox are popular frameworks used for integration testing in React Native.

o Console logging: You can use console.log statements to output values and see how your
code is executing - simple yet effective

Questions?

