
User Manual

I. Introduction to the Interactive Robotics
Education Tool (IRET)

Welcome to the Interactive Robotics Education Tool! This web application is designed
to help visualize some important robotics concepts through hands-on manipulation. What you
will be interacting with was designed by UNC Computer Science students under the guidance of
the UNC Computational Robotics Research Group. The goal users (you!) of the IRET will be
anyone interested in learning robotics concepts. These users can come from many different
backgrounds: students, aspiring roboticists, the curious, and many more! In receiving instruction
and specific algorithms from the UNC Robotics team, we know that this application will enhance
your understanding of robotic motion and pathfinding techniques.

Before we give you an in-depth look into the IRET, we would like to give a brief
introduction to the topics involved with making the simulations. To start, let’s talk about Robotic
Pathfinding Algorithms. A pathfinding algorithm can be defined as a set of instructions that an
entity must follow in order to reach a goal. Many pathfinding methods have been developed in
order to decrease time needed to find the goal and to select the shortest distance between the
entity and the goal. For the IRET, a few specific pathfinding algorithms were implemented for the
users. One algorithm is known as the Rapidly-exploring Random Tree, or RRT for short. Later in
this manual, we will describe the functionality of the RRT algorithm for you to better visualize
what is happening on screen. Another set of algorithms are called the Bug Algorithms. This
application showcases Bug0, which will also be further explained later. You can learn about
other pathfinding algorithms here, with neo4j.

Another topic is Robotic Motion Modeling. As you may know, there are many different
types of robots, and therefore many different ways robots can move around. Motion modeling
can be described as a type of algorithm designed to visualize the movements of a particular
object. In our project, we were given three distinct objects to model: a differential drive (think of
a Roomba), a bicycle, and a tricycle. Later in this manual, we will describe these three forms of
motion in detail for you to better understand what is happening within the application. You can
learn more about motion modeling here, explaining some topics surrounding a bicycle motion
model.

In addition to pathfinding algorithms and motion modeling, the Interactive Robotics
Education Tool also delves into the crucial concept of PID Controllers. PID (Proportional,
Integral, Derivative) controllers are a widely-used feedback control mechanism that enables
precise adjustment of various processes in robotic systems. Through the IRET's interactive

https://neo4j.com/developer/graph-data-science/path-finding-graph-algorithms/
https://thef1clan.com/2020/09/21/vehicle-dynamics-the-kinematic-bicycle-model/


visualization tool, users will be able to explore and understand the inner workings of a PID
controller by adjusting its parameters and observing its effect on a given process value. This
hands-on approach will not only solidify users' comprehension of the PID controller's role in
robotics but also provide an invaluable opportunity to witness the real-world applications and
impact of this essential control mechanism in the ever-evolving field of robotics.

For the next sections of this manual, we will be describing how to navigate our project
and further explaining the elements within.

II. IRET Navigation

In opening the Interactive Robotics Education Tool, you will be met with the home screen
of the application. This home screen gives a brief overview of what the tool is meant to
accomplish. That being a space to experience hands-on manipulation of robotics concepts. The
home screen also features our team and a link to our project website for the complete timeline
and details surrounding the project.

In order to navigate through the project fully, locate the navigation bar on the top left of
the page. This navigation bar should look like so:

Within the left section of the nav bar, we can see the title of the application. At any point
or section of the application, click on the title to return to the home screen. The right half of the
nav bar features two drop down menus to select the visualizations you want to interact with,
separated by topic (PATH ALGORITHMS and MOTION MODELS). When selected,
sub-navigation will appear:



From the sub-navigation menus, please select the exact visualization that you would like
to interact with and explore.

III. IRET Functionality

In this section, we will be describing all four of the visualizations by their design and their
specific functionality. We have two topics that feature visualizations, Pathfinding Algorithms and
Motion Models. Within Pathfinding Algorithms we have one visualization, the Rapidly-exploring
Random Tree algorithm. Within Motion Models, we have three visualizations, the Differential
Drive, the Bicycle, and the Tricycle.

Pathfinding Algorithms
After selecting Pathfinding Algorithms in the nav bar, select the Rapidly-exploring

Random Tree algorithm or the Bug0 algorithm. Here you will find a screen with several
sections, all working to generate a visualization that you create! There are four distinct sections
within the Pathfinding Algorithm template: the Application Canvas, Drawing Control,
Simulation Control, and Informational Header.

Before we begin, observe the top of the screen and find the section labeled HOW TO
GET STARTED. This is the Informational Header and it is present in all visualizations that we
have created. This section is meant to guide the user through initializing and running the
visualization, much like this manual. If you ever seem lost or forget a step in the visualization
process, return to the Informational Header.

You will notice there are three sections in a pathfinding algorithm: the Simulation
Control at the bottom of the screen, the Drawing Control on the right of the screen, and the
Application Canvas that takes up the majority of the screen.



These three sections work in conjunction to create the visualization.

Let’s explain the section functionality through a step-by-step process of initializing and
running the RRT visualization together:

1. Within the Drawing Control, find the “Click to set start” and “Click to set goal” buttons.
Select the “Click to set start” button and then click some point within the Application
Canvas. Do the same with the “Click to set goal” button.

2. Within the Drawing Control, click the button labeled “Click to set obstacle points.” Then,
use your mouse to draw shapes within the Application Canvas. These act as obstacles
that the pathfinding algorithm has to navigate around to find its goal. As seen,
completing a shape fills in its center.



The start indicates the beginning point of the pathfinding algorithm, where the goal is the
desired ending point. Using a robot for an example, the start would be the beginning
position for the robot and the goal would be the ending position. Here, the start is
denoted in blue and the goal is denoted in green. At any time, select the “Clear all
obstacles” button to clear both the obstacles and the start and goal points.

Once the desired obstacles and start and goal points are positioned, navigate to the
section titled SIMULATION CONTROL. The Simulation Control has four buttons in
RRT:



The leftmost button is the play button. This begins the execution of the RRT algorithm.
The next button to the right is the pause button. This momentarily halts the execution of
the RRT algorithm. The button labeled “1 Step” progresses the RRT algorithm by one
step. The button labeled “Reset” halts and clears the RRT algorithm completely from the
screen. Let’s begin the visualization by selecting the play button:



Here, we can see the RRT algorithm at work. The algorithm creates lines of a particular
length starting from the start point. This length is known as the “step” length. As one step
is made, another step begins from its end, creating a tree-like structure. Each step has
its own direction as well, as seen by the tree “branches” pointing in different directions.
This branch direction is controlled by a system called goal biasing. This determines what
direction the branch will face; if it points toward or away from the goal. When a branch
makes contact with the goal, the branches connecting the start and goal points turn a
different color to signify that the RRT algorithm has completed its job. At any point after
selecting the play button, pause the algorithm by selecting the pause button. Instead of
the play button, use the “1 step” button to show each step individually. Use the reset
button to clear the algorithm tree.

Bug0
Similarly to RRT, you will navigate to Pathfinding Algorithms in the navigation bar, and

select the Bug0 algorithm. Here you will find a similar screen as before with several sections.
The first two steps in Bug0 are identical to those in RRT. Follow steps 1 and 2 in RRT,

then continue reading the directions here.



Now, let’s navigate to the Simulation Control section of the application. Bug0 only has three
buttons, as opposed to the 4 in RRT. Clicking the play button will start the algorithm, clicking the
pause button will pause the algorithm, and clicking “reset” will stop the algorithm and clear the
path. Let’s click play, and see what happens.

The algorithm draws a path going towards the goal, and turns to follow an obstacle if it
encounters one. Once the algorithm finds a complete path, it will turn pale green, to show it
completed. Now, let’s pause the algorithm before it completes:

As you can see, the path is a darker blue until it completes. This is useful in cases where Bug0
will break. Let’s do an example of a scenario in which Bug0 will not find a complete path:



The path remains dark blue and never finishes, because Bug0 will naively go towards the goal
whenever it can. This works in many cases, but there are certain cases (like the obstacle above)
that will not allow the algorithm to complete.

There are many different scenarios to create and explore using combinations of
obstacles types and counts, in addition to the placements of the start and goal points. Take this
time to explore on your own! What happens when you enclose the start point in an obstacle?
How long does it take to find a path when the points are spread farther apart?

Motion Models

After selecting the Motion Models drop down menu, you will see three visualization
choices to choose from. These choices being DIFFERENTIAL DRIVE, BICYCLE, and
TRICYCLE. After selecting a model of choice, you will be presented with a screen featuring
multiple sections. There are four distinct sections within the Motion Models template: the
Application Canvas, Parameter Control, Simulation Control, and Informational Footer.

Before we begin, navigate to the bottom of the screen and find the section labeled HOW
TO GET STARTED. This is the Informational Footer and it is present in all visualizations that
we have created. This section is meant to guide the user through initializing and running the
visualization, much like this manual. If you ever seem lost or forget a step in the visualization
process, return to the Informational Footer.

To begin setting up the visualization, navigate to the top of the application window. The
Application Canvas is denoted by a yellow arrow, the Parameter Control is denoted by a
purple arrow, and Simulation Control is denoted by a green arrow:



These three sections work in conjunction to create the visualization. All sections have the same
elements across all three models, except for the Parameter Control. Each model has a
particular set of parameters, ranging from four to five inputs. For this model, the bicycle, we see
that it includes four parameters.

Let’s explain the section functionality through a step-by-step process of initializing and
running the bicycle motion model visualization together:

1. To begin, navigate to the Parameter Control on the right side of the screen. Most of the
visualization control rests here. We can see within the bicycle model that there are four
parameters within two categories:



From top to bottom, the parameters are FRONT WHEEL RADIUS, DISTANCE FRONT
TO BACK, STEERING ANGLE, and ANGULAR VELOCITY. Each parameter features a
minimum and maximum range of inputs to specify, surrounded by parentheses. The
topmost parameter (FRONT WHEEL RADIUS) specifies the size of the front bicycle
wheel. Under this, the next parameter (DISTANCE FRONT TO BACK) controls the
length between the front wheel and the back wheel. This changes the length of the
bicycle body itself. These two parameters create the Robot Properties. The next
parameter (STEERING ANGLE) handles the direction that the bicycle travels in. This
input takes in a number specifying the angle that the bike turns in. Lastly, the final
parameter (ANGULAR VELOCITY) controls the speed in which the bike travels. These
two parameters control the motion of the robot, making up the Control Inputs.

All of these parameter inputs work in unison to control the movement of the model using
a specific algorithm given to us. There are three such algorithms that take in sizing of
model elements, speed of the model, and various other inputs in order to present the
visualization.

2. For this step, input a number into every input parameter except for the angular velocity.
Be sure to adhere to the parameter ranges. This automatically places the bicycle, seen
here:

When you are ready to put the bicycle in motion, specify the angular velocity:



Here, we see the bicycle in motion. The travel path is denoted by a green set of dots that
track the last position of the bicycle. At any point within the visualization, you can utilize
the bottom three buttons within the Simulation Control. The middle button is the pause
button. Since the visualization begins automatically, you can pause the process by
selecting this button. To resume the visualization, select the leftmost button, the play
button. To reset all visuals and inputs, select the “reset” button

3. The other two model visualizations, the differential drive and the tricycle, feature the
exact same functionality as the bicycle demo, but feature different parameters. Here, we
will explain these additions to the Parameter Control.

The differential drive has the following parameters:

These parameters are LEFT WHEEL RADIUS, RIGHT WHEEL RADIUS, DISTANCE
BETWEEN WHEELS, LEFT ANGULAR VELOCITY, and RIGHT ANGULAR



VELOCITY. The topmost parameter (LEFT WHEEL RADIUS) controls the size of the left
wheel within the differential drive. The next parameter (RIGHT WHEEL RADIUS) does
the same, but for the right wheel. Under this, the next parameter (DISTANCE BETWEEN
WHEELS) specifies the length between the right and left wheels, which determines the
length of the differential drive body. These parameters make up the Robot Properties.
The first parameter after the Robot Properties (LEFT ANGULAR VELOCITY) controls
the speed of the left wheel. The next parameter (RIGHT ANGULAR VELOCITY) does
the same functionality, but for the right wheel. These parameters make up the Control
Inputs.

The last model, the tricycle, features the following parameters:

These parameters are FRONT WHEEL RADIUS, DISTANCE FRONT TO BACK,
DISTANCE BETWEEN BACK WHEELS, ANGULAR VELOCITY, and STEERING
ANGLE. The topmost parameter (FRONT WHEEL RADIUS) specifies the size of the
front wheel. The next parameter (DISTANCE FRONT TO BACK) specifies the distance
between the front wheel and the back axle of the tricycle. This determines the length of
the tricycle body. The next parameter (DISTANCE BETWEEN BACK WHEELS)
specifies the length of the back tricycle axle. These parameters make up the Robot
Properties. The next parameter after the properties (ANGULAR VELOCITY) determines
the speed of the tricycle. The last parameter (STEERING ANGLE) determines the angle
of the front wheel, specifying the direction of the model. These parameters make up the
Control Inputs.

Use these parameters to visualize how each model would function. What happens when
the inputs are outside of the specified ranges? What happens when you change
distances between wheels?



PID Simulator

Our final topic is the PID Controller. In this section, we will introduce the PID (Proportional,
Integral, Derivative) controller and its application within the Interactive Robotics Education Tool.
The PID controller is a widely used feedback control mechanism that adjusts a process based
on the difference between the desired setpoint and the current process value. The IRET
features a PID controller visualization tool that simulates and displays the controller's output and
its effect on a given process value. Users can interactively adjust the setpoint and PID
parameters (Kp, Ki, Kd) in real-time while observing the controller's behavior through an
interactive chart.

To use the PID controller visualization tool, follow these steps:
1. Enter the desired setpoint value in the "Setpoint" input field.
2. Adjust the PID parameters (Kp, Ki, Kd) as needed. Start with small values and increase

them gradually to achieve the desired controller behavior.
3. Observe the chart as the PID controller attempts to adjust the process value to match

the setpoint. Pay attention to overshoot, oscillation, and steady-state error.
4. Continue adjusting the PID parameters to optimize the controller's performance for your

specific application.

When tuning the PID parameters, start by adjusting Kp to achieve a balance between response
speed and overshoot. Then, fine-tune Ki to minimize steady-state error, and finally, adjust Kd to
improve stability. If the system becomes unstable or oscillates, try reducing the Kp, Ki, or Kd
values. Experiment with different combinations of PID parameters to find the best performance
for your specific application.

For more information on the input and output fields and their meanings, please refer to the PID
Controller Testing Guide included in the documentation. It can be found here:
src/PID/PID_testing_docs.md.

By understanding and utilizing the PID controller within the Interactive Robotics Education Tool,
you will gain valuable insights into how feedback control systems are used to improve the
performance and stability of robotic systems.

Important Note: After clicking this tool in the navbar, you will be navigated to a different page as
the IRET. Currently, the easiest way to return to the official tool is by pressing the back button on
your browser.

***Disclaimer: Because we worked on legacy code, we thought it best to add information
regarding our updates in the already existing user manual.


