Admin Manual

|. Introduction to the IRET

Our team, Team H, is very pleased to hand this product off to you. We’re proud of what
we’ve managed to build on top of the already existing application, built by the preexisting Team
L. The previous team set up a React application and made the application responsive using
Bootstrap and CSS Media Queries, and fully implemented the differential drive, bicycle, and
tricycle motion models in JavaScript and visually layed out the paths of the motion models and
the motion models themselves using the Canvas API. The motion models have start, stop, and
reset functionality implemented, as well as functionality to allow the motion models to change
on-demand given user input. They also fully implemented the pathfinding algorithm RRT, or
Rapidly Exploring Random Trees, complete with arbitrary obstacles that could be drawn by the
user and start, stop, reset, and 1-step buttons that implement said functionality. We managed to
add on the BugO0 pathfinding algorithm, which uses a lot of the obstacle drawing from the
previous team. Unlike RRT, it follows a wall of an obstacle in order to get to a goal, which is
functionality we implemented ourselves.

In addition to those things, we also implemented ranges for values given by the user,
implemented unit tests for individual React components, and ensured that drawings using the
Canvas API could not go off-screen. We ensured to make the application as user-friendly as
possible while also being informative as possible, sticking to the plan we initially set at the
beginning of the semester.

To access all these amazing things, here is the link to our GitHub repo. To set up and run
the application on your local machine, a client video was made so you guys can run and modify
the project on your own.

ll. Project Dependencies and Documentation

There are several libraries and dependencies that we installed and used for this
application and we want to inform you of. One of the dependencies that we installed for the
application is something called Snowpack. Snowpack is a modern, lightweight build tool for
faster web development. Since most build tools for React bundle the application even during the
development phase, thus greatly slowing down the process of coding, we decided to use
snowpack to bundle and run our application. In addition to Snowpack, we also used Bootstrap.
Bootstrap is an open source CSS toolkit that makes applications responsive and faster. Finally,
in addition to Bootstrap, we installed Jest and Enzyme. These are testing tools that allow you to

https://github.com/zuntue/robotedu

run unit tests on React Components and even run tests on component props and component
state, something very important with React.

In addition to installable dependencies, we used the Canvas API, which is automatically
built into HTML and JavaScript. We also used JQuery, a JavaScript library to make HTML
documentation traversal and manipulation easier and faster. The entire application is written
using HTML, CSS, JavaScript, and Python. Here is a formal list of the dependencies and their
documentation if you would like to look into them.

Snowpack: https://www.snowpack.dev/tutorials/react

Bootstrap: https://getbootstrap.com/

Jest: https://jestjs.io/docs/tutorial-react

Enzyme: https://enzymejs.qithub.io/enzyme/

Canvas API: https://developer.mozilla.ora/en-US/docs/\Web/API/Canvas API

JQuery: https://jquery.com/

lll. Project Setup

Local Setup

Below are the steps to run the project locally to ensure the proper implementation of the
Interactive Robotics Education Tool. This will also be useful if our client wants to continue
building on top of the code.

1. Prepare the necessary tools such as logging onto your GitHub account and updating
your Visual Studio Code (or any other IDE of your choosing) to the newest version. To
create a GitHub account, follow the steps listed at https://github.com/signup. To
download the newest version of Visual Studio Code, please visit
https://code.visualstudio.com/download and follow the instructions for your chosen
operating system.

2. Navigate to our project repository at https://qgithub.com/zuntue/robotedu on the “main”
branch.

3. Clone the repository into Visual Studio Code. To do so, first navigate to Visual Studio
Code and open a terminal by selecting “Terminal” in the upper left hand of the screen
and then selecting “New Terminal” in the dropdown menu. Then within the new terminal,
run the command "git clone https://github.com/zuntue/robotedu.git’ in the terminal
and hit enter. Follow the steps in order to place the code within a local folder on your
device. You can also find more directions to clone the repository by selecting the green
“Code” dropdown button on our repository within GitHub.

4. After cloning the repo, Visual Studio Code will automatically move to the directory and
feature the files in the left hand section under the “Explore” tab. If this step does not

https://www.snowpack.dev/tutorials/react
https://getbootstrap.com/
https://jestjs.io/docs/tutorial-react
https://enzymejs.github.io/enzyme/
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://jquery.com/
https://github.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F&source=header-home
https://code.visualstudio.com/download
https://github.com/zuntue/robotedu

automatically happen, run the command “cd robotedu’ in the terminal to move to the
directory.

Within the same terminal as before, run the command "'npm install’ to install the
dependencies we used in order to create the project.

To locally display the web app, run the command “npm start™ within the terminal. This
will locally host the app for you to interact with and test.

Deployment

Our client wants to be able to incorporate our web app into their existing robotics website. The
instructions on how to do so are described below. Make sure to have first run the project locally,
following the steps outlined above, to ensure all dependencies are installed.

1.

2.

Navigate to the "add-static-file-build-command’ branch by running "git checkout
add-static-file-build-command" in the Visual Studio Code terminal. This branch is
different from the "main’ branch in that it is used to build our project for deployment.
Add a "homepage’ field to the “package.json’ file. Using our coach Louie Lu’s server, we
have attached a screenshot with the line in question highlighted of what this step should
look like below. Simply replace Louie’s domain page to yours.

{} pac on ¥ ..

"name” :

i3
"homepage
"author
“1i

"transform”:
"~ 4\ (js|jsx)$": "bab

I
"devDependenci [
"@wojtekmaj/enzyme-adapter-react-17": "

3. Run "npx react-scripts build" in the terminal to build a static file.
4. Upload the static file to your server.

https://robotics.cs.unc.edu/index.html

5. Use the <iframe> element in your HTML code to embed the static file into the webpage
of your choosing.

I\V. Project Architecture

This is the structure of our entire application.

v ROBOTEDU

> .wscode

src
.gitignore

<> index.html
LICENSE

package-lock.json

package json
README.md

test.css

As you can see, we have several folders, the most important being src. Outside any
folder are the index.html and test.css files. The test.css file governs the CSS of the application
apart from Bootstrap CSS which is already pre-installed in node_modules and the index.html file
is the “root node” of the application and is where the document itself begins. However, it is
unlikely you will change the index.html file because the app is really located inside the src folder.
You can essentially ignore package.json, package-lock.json, and the .gitignore file. The
README.md file is just a text file that shows up on our GitHub repo’s page.

Now, this is where the magic happens. Inside the src folder, there is a .babelrc file (you
can ignore this, this is only for testing purposes), a folder called Testing, and an index.jsx file.
The index.jsx file contains ALL OF THE RUNNING CODE FOR THE APPLICATION. Every time
you run npm start in a terminal, any change you make in index.jsx will be immediately rendered
on your screen.

v SIC
Motion Models
Path Finding

> PID

> Testing
B babelrc
Js indexs

index.jsx

Inside the Motion Models folder, we have separated files into python_versions and
js_versions which are the names of the two folders. Initially, when we receive a pseudocode, we
translate it into Python. Then, after testing to make sure the code works in Python, we
immediately translate the same code into JavaScript and this JavaScript code is the thing we
import into the app.

» Motion Models

v Js_versions
Js Motion_Model_Bicycle.js
Js Motion_Model_Differential.js
Js Motion_Model_Tricyclejs

v python_versions

Motion_Model_Bicycle.py

Motion_Model_Differential.py

Motion_Model_Tricycle.py

Inside the Path Finding folder, there is a folder called Tree_Struct, which contains a file
converted to JavaScript that constructs a tree, and the pathfinding algorithm files, which are
directly translated from pseudocode to JavaScript. Currently, the previous team set up RRT, and
we managed to build a fully functioning Bug0. There are also files for Bug1 and Bug2 already
set up, and already in the project folder.

v Path Finding
v Tree_Struct
Js treeAlljs

J5 bugOclass.js
Js bugiclass.js
Js bug2class.js
Js RRT s

Inside the PID folder, you will find three essential files that comprise the PID controller
visualization tool: PID_testing.html, PID_testing.js, and PID_testing_docs.md. The
PID_testing.html file serves as the user interface, presenting an interactive layout for users to
input parameters and view the controller's output. PID _testing.js contains the JavaScript
implementation of the PID controller algorithm, directly translating the underlying principles into
a functional and interactive experience for users. Finally, the PID_testing_docs.md file contains
the PID Controller Testing Guide which provides comprehensive documentation, including a
detailed explanation of the PID controller's input and output fields, as well as step-by-step
instructions and tips for using the visualization tool effectively. Together, these files form the
foundation of the PID controller module, enabling users to explore and understand this vital
control mechanism in a hands-on manner.

Currently, this aspect is not fully implemented into the IRET. The navbar will take you to a

different page where you will be able to access the PID controller. In the future, this should be
completely implemented into the official tool.

v PID
PID_testing_docs.md

<> PID_testing.html
Js PID_testing,js

Inside the Testing folder, we have each React Component separated into its own folder.
Within each component folder, there is another folder called __test which contains the test.js
file that tests each component and the component itself in the component folder. This is the
entire structure of our application.

v Testing

v App
v test
JS App.test,s
s Appjs
» Canvas
> footer
> HomePage
> Navbar
> RightDrawingUl
> RightParameterUl

V. Adding to the Project

Here are instructions on how to add to the project in the future in order to create new
visualizations. First of all, we don’t really recommend changing anything in the index.html file as
that could break the application because there are complex dependencies and libraries
(previously mentioned) that are imported into these files. We also don’t really recommend
changing anything in the Testing folder unless you would like to add more unit tests on your
own. To start, if you have the pseudocode for a motion model or a pathfinding algorithm, this
must first be translated into a programming language. The first step is translating pseudocode
into a programming language like Python since Python is very good with mathematics.

The next step is to translate the Python program into a JavaScript program. You can achieve
this with the use of the class keyword and by making a class you're going to use in the
application.

st differential = new diff(leftWheelRadius, rightWheelRadius, distBetweenWheels, leftAngularVelocity, rightAngularVelocity,

Finally, it's time to use the JavaScript program inside the index.jsx file. First, import the
JavaScript program from either the Motion Model or the Path Finding folder.

' »

import cycles from './Motion Models/js_versions/Motion_Model_Bicycle';

i
import tricycle from './Motion Models/js versions/Motion_ Model Tricycle';
— — s 3

n

import diff from './Motion Models/js_versio
import RRT from './Path Finding/RRT';

import Bug@ from './Path Finding/bug@class’
import Bugl from './Path Finding/buglclass'
import Bug2 from './Path Finding/bug2class’

s/Motion_Model Differential’;

L

Then, for motion model additions, you need to edit the following areas in the index.jsx file.

e In the App component, you need to add each parameter for the motion model inside
this.state.

(props) {
(props);
.state = {

page:)
steeringAngle: 0,
angularVelocity: @,
distBetweenWheels: @,
leftAngularVelocity: @,
rightAngularVelocity: e,

e Then, after the App component’s constructor, you need to add data binders for each new
parameter since React does not accomplish two-way data binding on its own. Just follow
the pattern in the code.

.handleSteeringAngleChange = .handleSteeringAngleChange. bind()H
.handleDistFrontToBackChange .handleDistFrontToBackChange.bind();

.handleAngularVelocityChange .handleAngularVelocityChange.bind();
.handleFrontWheelRadiusChange = .handleFrontWheelRadiusChange.bind();
.handleDistBackTwoWheelsChange = .handleDistBackTwolWheelsChange.bind();

e |n the toggleResetParameters() and togglePage() functions in the app component, you
will have to do the same thing in the first bullet point where you set the state of each new
parameter to 0.

e Then, for each data binder for each parameter, you need to define the data binder
function, which also goes in the App component.

handleDistBetweenWheelsChange = (num) {
.setState({ distBetweenWheels: num }, ()
console.log('"');

})s

}

handleLeftAngularVelocityChange = (num) {
.setState({ leftAngularVelocity: num }, ()
console.log('");
})s
}

e Scroll down to the switch statement in the render() method at the end of the App
component. Copy a case like ‘Diff. Drive’ all the way including its break statement and
add a new case to the switch statement like ‘MOTION-MODEL-NAME’. Then, follow the
patterns in the code to add new attributes for each parameter in the motion model. ONLY
EDIT THE PARAMETER NAMES, DON'T EDIT THE JQUERY ATTRIBUTES OR THE
TOGGLERESETPARAMETERS ATTRIBUTE FOR THE LOWERCONTROLUI
COMPONENT. For instance, if | had a new parameter like leftDoubleVelocity, | would
delete the steeringAngle, angularVelocity, distFrontToBack, and frontWheelRadius
attributes for the Canvas component and add leftDoubleVelocity =
{this.state.leftDoubleVelocity}. | would do the same thing and add
onLeftDoubleVelocityChange = {this.handleLeftDoubleVelocityChange} for the
RightParameterUl component.

case 'Bicycle':
return (Navbar togglePage= .togglePage Canvas jQuery= .state.page

steeringAngle= .state.steeringAngle

angularVelocity= .state.angularVelocity

distFrontToBack= .state.distFrontToBack

frontWheelRadius= .state.frontWheelRadius

RightParameterul
onAngularVelocityChange= -handleAngularVelocityChange
onSteeringAngleChange= -handleSteeringAngleChange
onFrontWheelRadiusChange= .handleFrontWheelRadiusChange
onDistFrontToBackChange= .handleDistFrontToBackChange
jQuery= .state.page LowerControlUI jQuery= .state.page} toggleResetParameters= .toggleResetParameters

e |n the Navbar Component, add the new component. The name attribute in the HTML
element is very important so make sure it matches the text.

class="dropdown-menu™
href="#Model_1" onClick= .togglePage} name="Diff. Drive">Differential Drive

href="#Model_2" onClick= .togglePage} name="Bicycle">Bicycle
href="#Model_3" onClick= .togglePage} name="Tricycle">Tricycle

e Then in the Canvas Component, add another JQueryCode method like
JQueryCodeMOTION-MODEL-NAME and copy the code within either
JQueryCodeBicycle or JQueryCodeTricycle and paste in the new JQueryCode method.
Then, you can edit the variables to match those in the JQuery code. In the JQueryCode
method, this is where you are actually drawing on the canvas.

leftWheelRadius =
rightWheelRadius =
distBetweenWheels =

.props.leftWheelRadius

.props.rightWheelRadius

.props.distBetweenWheels
leftAngularVelocity =
rightAngularVelocity =

.props.leftAngularVelocity
.props.rightAngularVelocity

e Then in the ComponentDidMount() and componentDidUpdate() lifecycle methods, follow

the pattern like so.

componentDidMount() {
switch .props.JjQuery

case "RET":
-jQueryCodeRET();
break;
case "Bug@":
.JQueryCodeBug®é();
break;
case "Bugl":
.jQueryCodeBugl();
break;
case "Bug2":
.jQueryCodeBug2();
break;
case "Diff. Drive":
.JQueryCodeDiffDrive();
break;

case "Bicycle":

.JQueryCodeBicycle();
break;

case "Tricycle":
.jQueryCodeTricycle();
break;

componentDidUpdate() {

switch .props.JjQuery
case "RET":
.jQueryCodeRET();
break;
case "Diff. Drive":
.jQueryCodeDiffDrive();
break;
case "Bug@":
.jQueryCodeBuge();
break;
case "Bugl":
-jQueryCodeBugl();
break;
case "Bug2":
.jQueryCodeBug2();
break;
case "Bicycle":
-jQueryCodeBicycle();
break;
case "Tricycle™:
.jQueryCodeTricycle();
break;

e Scroll down to the RightParameterUl component and follow the pattern to define the
data binders in the child component. THIS IS WHERE YOU SET THE BOUNDS FOR
EACH PARAMETER.

RightParameterUI React.Component {
(props) {
(props);

.handleSteeringAngleChange = .handleSteeringAngleChange.bind(bk
.handleAngularVelocityChange = .handleAngularVelocityChange.bind(Dl
.handleFrontWheelRadiusChange = -handleFrontWheelRadiusChange.bind(g
.handleDistFrontToBackChange = .handleDistFrontToBackChange.bind(A
.handleDistBackTwoWheelsChange .handleDistBackTwoWheelsChange.bind(N5
.handleDistBetweenWheelsChange .handleDistBetweenWheelsChange.bind(DE
.handlelLeftWheelRadiusChange = .handleLeftWheelRadiusChange.bind(N8
.handleRightWheelRadiusChange = .handleRightWheelRadiusChange.bind(DB
.handleLeftAngularVelocityChange = .handleLeftAngularVelocityChange.bind(
.handleRightAngularVelocityChange = .handleRightAngularVelocityChange.bind(
}

handleDistBackTwolWheelsChange(e) {
if (e.target.value <= 30 || e.target.value > 200) {
} else {
.props.onDistBackTwoWheelsChange(e.target.value);
}
s

handleDistFrontToBackChange(e) {
if (e.target.value <= 1@ || e.target.value > 10@) {
} else {
.props.onDistFrontToBackChange(e.target.value);

e In the RightParameterUI's render method, add another case in the break statement
where you add the new parameters for the motion model.

case 'Diff. Drive':
return (id="rightParameterul"

Parameters
Robot Properties
for="leftWheelRadius">Left Wheel Radius (@ 10)

type="number" id="leftWheelRadius" placeholder='@' onChange= .handleLeftWheelRadiusChange

for="rightWheelRadius">Right Wheel Radius (@ 10)

type="number" id="rightWheelRadius" placeholder='@' onChange= .handleRightWheelRadiusChange

e Finally, scroll up to toggleResetParameters() in the LowerControlUl component. For
each input id you made in RightParameterUl, clear the input.

toggleResetParameters() {
.props.toggleResetParameters()
switch (.props.jQuery) {
case 'Diff. Drive':
document.getElementById('leftWheelRadius').value =

document.getElementById('rightWheelRadius').value = '
document.getElementById('distBetweenlWlheels').value =
document.getElementById('leftAngularVelocity').value
document.getElementById(' rightAngularVelocity').value
break;

If a future team is looking to fully finish Bug1 or Bug2, or another Pathfinding Algorithm, | would
recommend looking through the implementation of Bug0. Both of them will follow BugQ’s
implementation as they are, and seeing how we accomplished Bug0 will assist in figuring out

how to implement wall-following in Bug1 and Bug2. Looking through the RRT file and its jQuery
code in index.jsx and understanding how they interact would help as well.

VI. Thank you.

We as a group give you our biggest thanks for remaining open and communicative with
us throughout the semester and giving us your actual feedback through our meetings with you
on how our project looked and felt. We genuinely appreciate being open with us about not only
the expectations about the requirements but the implementation of those requirements and how
we could do the project whichever way we felt. As a group, it felt amazing to not have many
restrictions in implementing the requirements. We really hope that you can add to this project
and host this project online in the future and we hope you as our clients are satisfied with our
work.

Thank you, Janine Hoelscher and Ron Alterovitz.

***Disclaimer: Because we worked on legacy code, we thought it best to add information
regarding our updates in the already existing admin manual.

