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Abstract
Every homogeneous polynomial dynamical system (HPDS) can be uniquely represented by a
tensor. In our recent article (Chen, IEEE Trans AutomControl), we established necessary and
sufficient stability criteria for certain continuous-time HPDSs by exploiting tensor spectral
theory. In this article, we extend these results to discrete-time HPDSs. In particular, if the
state transition tensor of a discrete-time HPDS is orthogonally decomposable (odeco), we
can derive its explicit solution. We refer to such HPDSs as odeco HPDSs. Building upon the
form of the explicit solution, we demonstrate that the Z-eigenvalues of the state transition
tensor offer necessary and sufficient stability conditions, analogous to the continuous-time
case. The region of attraction can also be obtained for the odeco HPDS. Additionally, by
employing the upper bounds of Z-spectral radii, we can efficiently determine the asymptotic
stability of odeco HPDSs. Finally, we leverage tensor singular values to analyze the stability
properties of general discrete-time HPDSs, where the state transition tensors are not odeco.
We illustrate our framework with numerical examples.

Keywords Homogeneous polynomial dynamical systems · Stability · Regions of
attraction · Tensor algebra · Z-eigenvalues · Tensor singular values

Mathematics Subject Classification 15A18 · 15A69 · 37N30 · 39A30 · 65P40 · 93D05 ·
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1 Introduction

Tensor algebra has emerged as a powerful tool for modeling and analyzing both linear and
nonlinear dynamical systems (Chen 2023; Chen et al. 2021a, b; Gelß 2017; Kruppa 2017;
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Kruppa and Lichtenberg 2017; Hoover et al. 2021). It facilitates the development of more
efficient and accurate numerical methods for solving differential equations and enables the
derivation of new theoretical insights into the system-theoretic properties of dynamical sys-
tems. For example, Gelß (2017) employed various tensor decompositions for computing
numerical solutions of master equations associated with Markov processes on extremely
large state spaces, developing tensor-based representations for operators based on nearest-
neighbor interactions, construction of pseudo-inverses for dimensionality reductionmethods,
and approximation of transfer operators of dynamical systems. Additionally, Chen et al.
(2019, 2021b) formulated tensor algebraic conditions for stability, reachability, and observ-
ability for input/output discrete-time multilinear time-invariant systems, and expressed them
in terms of tensor ranks and decompositions to promote efficient representation and compu-
tation.

A novel tensor-based dynamical system representation was recently introduced in (Chen
et al. 2021a) to characterize the multidimensional state dynamics of hypergraphs, a gener-
alization of graphs in which edges can connect more than two nodes (Berge 1984). This
representation differs from those proposed in (Chen et al. 2019, 2021b), which can be
unfolded to linear dynamical systems via tensor unfolding, an operation that transforms
a tensor into a matrix. Instead, the tensor-based dynamical system evolution, inspired by
hypergraphs, is captured by the tensor vector multiplication between a state transition ten-
sor and the state vector. In fact, this representation belongs to the family of homogeneous
polynomial dynamical systems (HPDSs) (Chen et al. 2021a). Significantly, HPDSs or poly-
nomial dynamical systems have a wide range of applications, such as in robotics, ecological
networks, biological processes, and more (Ghosh and Martin 2002; Grilli et al. 2017; Stigler
2007; Motee et al. 2012; Craciun 2019).

However, the stability of HPDSs is one of the most challenging problems in systems
theory due to their nonlinear nature (Ahmadi and El Khadir 2019; Ahmadi and Parrilo
2013; Ji et al. 2013; Samardzija 1983; She et al. 2013). When an HPDS has degree one,
its stability properties can be determined by the locations of the eigenvalues of the state
transition matrix, known as linear stability. It is therefore conceivable that tensor eigenvalues
might be used to determine the stability properties of HPDSs of higher degrees. Various
notions of tensor eigenvalues have been proposed, such as H-eigenvalues, Z-eigenvalues, M-
eigenvalues, and U-eigenvalues (Chen et al. 2021b; Lim 2006; Qi 2005, 2007), all of which
generalize matrix eigenvalues in different ways. This article focuses on Z-eigenvalues and U-
eigenvalues. Notably, the notion of Z-eigenvalues is intimately related to tensor orthogonal
decomposition, which decomposes a tensor into a sumof rank-one tensors in the form of outer
products of vectors that form an orthonormal basis (Anandkumar et al. 2014; Robeva 2016). A
tensor admitting such a decomposition is termed orthogonally decomposable (odeco). Odeco
tensors possess the desirable orthonormal property, which can be leveraged to elucidate the
stability properties of HPDSs (Chen 2023).

We present the stability results for discrete-time HPDSs in this article, which are comple-
mentary to our recent work (Chen 2023) on continuous-time HPDSs. The key contributions
are listed as follows:

• Wederive an explicit solution formula for discrete-timeHPDSswith odeco state transition
tensors. We refer to such HPDSs as odeco HPDSs.

• By utilizing the form of the explicit solution, we explore the stability properties of odeco
HPDSs. According to the stability conditions, we obtain the regions of attraction for
odeco HPDSs.
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• Weprovide an upper bound for Z-spectral radii, which can be used to efficiently determine
the asymptotic stability of odeco HPDSs.

• We investigate the stability properties of general HPDSs (i.e., those with state transition
tensors that are not odeco) by exploiting tensor singular values.

This article is organized into six sections. In Sect. 2, we review tensor preliminaries includ-
ing tensor products, tensor eigenvalues, and tensor decompositions. In Sect. 3, we introduce
the tensor-based representation of discrete-time HPDSs and establish the stability criteria for
odeco HPDSs. We investigate the stability properties of general HPDSs in Sect. 4. We verify
our results with numerical examples in Sect. 5 and conclude with future research directions
in Sect. 6.

2 Tensor preliminaries

Tensors are multidimensional arrays that generalize vectors and matrices (Chen and
Rajapakse 2020; Chen et al. 2019, 2021b; Gelß 2017; Kolda 2006; Kolda and Bader 2009;
Surana et al. 2022). The order of a tensor is the number of its dimensions, and each dimension
is referred to as a mode. A kth-order tensor is usually denoted by T ∈ R

n1×n2×···×nk . When
all modes share the same size, i.e., n1 = n2 = · · · = nk , T is called cubical.

Definition 1 A kth-order cubical tensor T is called supersymmetric if its entries T j1 j2··· jk are
invariant under any permutation of the indices.

Definition 2 A kth-order cubical tensor T is called almost symmetric if its entries T j1 j2··· jk
are invariant under any permutation of the first k − 1 indices.

2.1 Tensor products

The inner product of two kth-order tensors T, S ∈ R
n1×n2×···×nk is defined as

〈T, S〉 =
n1∑

j1=1

n2∑

j2=1

· · ·
nk∑

jk=1

T j1 j2··· jkS j1 j2··· jk . (1)

The inner product (1) leads to the tensor Frobenius norm ‖T‖2 = 〈T, T〉. The tensor vector
multiplication T ×p v along mode p for a vector v ∈ R

n p is defined as

(T ×p v) j1 j2··· jp−1 jp+1··· jk =
n p∑

jp=1

T j1 j2··· jp ··· jkv jp , (2)

which can be generalized to the Tucker product, i.e.,

T ×1 v1 ×2 v2 ×3 · · · ×k vk = Tv1v2 · · · vk ∈ R (3)

for vp ∈ R
n p . If T is supersymmetric with vp = v for all p, the product (3) is also known

as the homogeneous polynomial associated with T. We write it as Tvk for simplicity. Hence,
the following product:

Tvk−1 = T ×1 v1 ×2 v ×3 · · · ×k−1 v ∈ R
n (4)

belongs to the family of homogeneous polynomial systems. It follows immediately that if T
is almost symmetric, the product (4) spans the entire homogeneous polynomial system space.
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Moreover, the tensor vector multiplication (2) can be extended to tensor matrix multiplica-
tions, which are defined as

(T ×p M) j1 j2··· jp−1i jp+1··· jk =
n p∑

jp=1

T j1 j2··· jp ··· jkMi jp (5)

for a matrix M ∈ R
m×n p .

2.2 Tensor Eigenvalues

Homogeneous polynomials are intrinsically linked to eigenvalue problems. The study of
tensor eigenvalues for real supersymmetric tensors was independently initiated by Qi (2005,
2007) and Lim (2006). Various types of tensor eigenvalues exist, including H-eigenvalues,
Z-eigenvalues, M-eigenvalues, and U-eigenvalues (Chen et al. 2021b; Qi 2005, 2007). This
article particularly focuses on Z-eigenvalues and U-eigenvalues.

Definition 3 For a given kth-order n-dimensional supersymmetric tensor T ∈ R
n×n× k···×n ,

the E-eigenvalues λ ∈ C and E-eigenvectors v ∈ C
n of T satisfy the following equation:

{
Tvk−1 = λv

v�v = 1
. (6)

If the E-eigenvalue λ is real, it is referred to as Z-eigenvalue with the corresponding Z-
eigenvector v.

Qi (2007) proved that a supersymmetric tensor always possesses Z-eigenvalues. The
largest Z-eigenvalue of T can be determined by solving from the following optimization:

λmax = max
v∈Rn

{Tvk : ‖v‖2 = 1}. (7)

Due to the facts that the objective function is continuous and the feasible set is compact, the
existence of a global maximizer is guaranteed (Qi 2005). The smallest Z-eigenvalue can be
found similarly. Computing the E-eigenvalues or Z-eigenvalues of a tensor is NP-hard (Hillar
and Lim 2013). In 2016, Chen et al. (2016) introduced numerical methods for computing E-
eigenvalues and Z-eigenvalues using the homotopy continuation approach, but thesemethods
are only effective for small-sized tensors. On the other hand, U-eigenvalues are only defined
for even-order tensors.

Definition 4 For a given 2kth-order n-dimensional tensor T ∈ R
n×n×2k···×n×n , the U-

eigenvalues μ ∈ C and U-eigentensors V ∈ C
n×n× k···×n of T satisfy the following equation:

T ∗ V = μV, (8)

where “∗” denotes the Einstein product defined as

(T ∗ V)i1i2···ik =
n∑

j1=1

n∑

j2=1

· · ·
n∑

jk=1

T j1i1··· jk ikV j1 j2··· jk . (9)

Similar to Z-eigenvalues, the largest U-eigenvalue of an even-order supersymmetric tensor
T can be determined by solving the following optimization problem:

μmax = max
V∈Rn×n× k···×n

{V� ∗ T ∗ V : ‖V‖ = 1}, (10)
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where “�” denotes the transpose operation defined in (Chen et al. 2021b) for even-order
tensors. The smallest U-eigenvalue can be found similarly. Significantly, U-eigenvalues can
be computed from the eigenvalues of its unfolded matrix defined as

A = ψ(A) such that A j1i1··· jk ik
ψ−→ A j i , (11)

where j = j1 + ∑k
p=2( jp − 1)n p−1 and i = i1 + ∑k

p=2(i p − 1)n p−1. Consequently, an
even-order cubical tensor always possesses U-eigenvalues.

2.3 Tensor decompositions

Tensor decompositions are powerful tools for tensor computation and application. There are
various kinds of tensor decompositions, including higher-order singular value decomposition
(HOSVD), CANDECOMP/PARAFAC decomposition (CPD), Tucker decomposition, and
tensor train decomposition (De Lathauwer et al. 2000; Kolda 2006; Kolda and Bader 2009;
Oseledets and Tyrtyshnikov 2009; Oseledets 2011).

Definition 5 The HOSVD of a kth-order tensor T ∈ R
n1×n2×···×nk is defined as

T = S ×1 U1 ×2 U2 ×3 · · · ×k Uk, (12)

where Up ∈ R
n p×n p are orthogonal matrices, and S ∈ R

n1×n2×···×nk is the core tensor. The
sub-tensors S jp=α , obtained by fixing the pth index to α, exhibit the following “diagonal”
properties: (i) all-orthogonality: two subtensors S jp=α and S jp=β are orthogonal for all pos-
sible values of p, α and β subject to α 	= β; (ii) ordering: ‖S jp=1‖ ≥ · · · ≥ ‖S jp=n p‖ ≥ 0

for all possible values of p. The Frobenius norms ‖S jp= j‖, denoted by γ
(p)
j , are the p-mode

singular values of T.

The number of non-vanished p-mode singular values is equal to the p-rank of T (De Lath-
auwer et al. 2000). Additionally, the low-rank approximation of HOSVD is quasi-optimal,
with an error bound reported in (De Lathauwer et al. 2000).

Definition 6 The CPD of a kth-order tensor T ∈ R
n1×n2×···×nk is defined as

T =
r∑

j=1

λ jv
(1)
j ◦ v(2)

j ◦ · · · ◦ v(k)
j , (13)

where “◦” denotes the outer product operation (defined as (x ◦ y ◦ z) j ik = x j yi zk for vectors

x, y, z), v(p)
j ∈ R

n p have unit length with corresponding weights λ j , and r is called the CP
rank of T if it is the minimum integer that realizes (13).

Every tensor has a CP decomposition, and it is unique up to scaling and permutation under a
weak condition (Kolda and Bader 2009). While the best CP rank approximation is ill-posed,
carefully truncating the CP rank will produce a good approximation of the original tensor
(Chen et al. 2021b). Furthermore, tensor orthogonal decomposition is a special case of CPD.

Definition 7 A kth-order n-dimensional supersymmetric tensor T ∈ R
n×n× k···×n is called

orthogonally decomposable (odeco) if it can be written as

T =
n∑

j=1

λ jv j ◦ v j◦ k· · · ◦v j , (14)
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where λ j ∈ R in the descending order, and v j ∈ R
n are orthonormal

Robeva (2016) proved that λ j are the Z-eigenvalues of T with the corresponding Z-
eigenvectors v j . However, λ j do not include all the Z-eigenvalues of T. Additionally, odeco
tensors are conjectured to satisfy a set of polynomial equations that vanish on the odeco
variety, which is the Zariski closure of the set of odeco tensors inside the space of kth-order
n-dimensional complex supersymmetric tensors (Robeva 2016). This conjecture has been
proven for the case n = 2, and strong evidence has been provided for its validity for all
values of n. While the exact characterization of odeco tensors is intricate, we can numeri-
cally compute the “nearest” orthogonal decomposition for any supersymmetric tensors, i.e.,
T = Todeco + E where Todeco is odeco and E is the error tensor.

3 Stability of odeco HPDSs

In this article, we consider a discrete-time HPDS represented by

xt+1 = A ×1 xt ×2 xt ×3 · · · ×k−1 xt = Axk−1
t , (15)

where A ∈ R
n×n× k···×n is an almost symmetric state transition tensor, and xt ∈ R

n is the state
variable. Every HPDS can be represented in the form of (15) (Chen 2023).

Assumption 1 We assume throughout this section that the state transition tensor A in (15) is
odeco with the following orthogonal decomposition:

A =
n∑

j=1

λ jv j ◦ v j◦ k· · · ◦v j , (16)

where λ j are the Z-eigenvalues of A with the corresponding Z-eigenvectors v j .

While the class of odeco HPDSs is not exhaustive, it still can capture a certain amount
of structured population dynamics with higher-order interactions, such as those arising in
neuronal networks, chemical reaction networks, and ecological networks (Chen 2023). For
example, in the context of higher-order ecological networks, the Z-eigenvectors v j can rep-
resent interaction types (e.g., promotion and inhibition) between species, the Z-eigenvalues
λ j can represent interaction magnitudes, and the order k can represent interaction orders. Our
approach therefore holds promise for investigating the stability properties of such higher-
order networks.

3.1 Explicit solutions

Finding an explicit solution of an HPDS is usually challenging due to its nonlinear nature.
However, if the state transition tensor A is odeco, we can write down the solution of (15)
explicitly in a simple fashion.

Proposition 1 Suppose that Assumption 1 holds with k ≥ 3. Let the initial condition x0 =∑n
j=1 c jv j . The explicit solution of the discrete-time odeco HPDS (15) at time q, given the

initial condition x0, can be computed as

xq =
n∑

j=1

λα
j c

β
j v j , (17)
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where α = ∑q−1
j=0(k − 1) j = (k−1)q−1

k−2 and β = (k − 1)q . Here, λ j are the Z-eigenvalues
from the orthogonal decomposition of A with the corresponding Z-eigenvectors v j .

Proof Based on the property of tensor vector multiplications and tensor orthogonal decom-
position, we can write down the explicit solution x1 as follows:

x1 = A ×1

( n∑

j=1

c jv j

)
×2 · · · ×k−1

( n∑

j=1

c jv j

)

=
( n∑

j=1

λ jv j ◦ v j ◦ · · · ◦ v j

)
×1

( n∑

j=1

c jv j

)
×2 · · · ×k−1

( n∑

j=1

civ j

)

=
n∑

j=1

λ j

〈
v j ,

n∑

i=1

civi
〉k−1

v j =
n∑

j=1

λ jc
k−1
j v j .

Similarly, the solution x2 can be computed as

x2 = A ×1

( n∑

j=1

λ j c
k−1
j v j

)
×2 · · · ×k−1

( n∑

j=1

λ j c
k−1
j v j

)

=
n∑

j=1

λ j

〈
v j ,

n∑

i=1

λi c
k−1
i vi

〉k−1
v j =

n∑

j=1

λkj c
(k−1)2

j v j .

Consequently, we can continue to compute x3, x4, . . . , xq similarly, and the result follows
immediately. �


The coefficient c j can be determined by taking the inner product between x0 and v j . When
k = 2, Proposition 1 reduces to the classical solution formula for linear dynamical systems,
i.e.,

lim
k→2

λ
(k−1)q−1

k−2
j c(k−1)q

j = lim
k→2

λ
q(k−1)q−1

j c(k−1)q

j = c jλ
q
j .

Furthermore, by exploiting the form of the explicit solution, we are able to establish the
stability criteria for discrete-time odeco HPDSs.

3.2 Stability

In linear systems theory, it is common to investigate so-called (internal) stability. The equi-
librium point xe = 0 of an odeco HPDS is called stable if ‖xt‖ ≤ γ ‖x0‖ for the initial
condition x0 and γ > 0, asymptotically stable if xt → 0 as t → ∞, and unstable otherwise.
Note that if λ j = 0 for some j = 1, 2, . . . , n, the odeco HPDS will exhibit infinitely many
equilibrium points. Yet, those non-zero equilibrium points behave in the exactly samemanner
as the equilibrium point at the origin (Chen 2023). We demonstrate that the stability proper-
ties of discrete-time odeco HPDSs depend on both Z-eigenvalues and initial conditions, and
resemble those of discrete-time linear dynamical systems.

Proposition 2 Suppose that Assumption 1 holds with k ≥ 3. Let the initial condition x0 =∑n
j=1 c jv j . The equilibrium point xe = 0 of the discrete-time odeco HPDS (15) is ( “| · |”

denotes the absolute value operation):
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• stable if and only if |c jλ
1

k−2
j | ≤ 1 for all j = 1, 2, . . . , n;

• asymptotically stable if and only if |c jλ
1

k−2
j | < 1 for all j = 1, 2, . . . , n;

• unstable if and only if |c jλ
1

k−2
j | > 1 for some j = 1, 2, . . . , n,

where λ j are the Z-eigenvalues from the orthogonal decomposition of Awith the correspond-
ing Z-eigenvectors v j .

Proof According to Proposition 1, the solution at time q , given the initial condition x0, is
computed as xq = ∑n

j=1 λα
j c

β
j v j , where α = ∑q−1

j=0(k − 1) j = (k−1)q−1
k−2 and β = (k − 1)q .

Consequently, it can be shown that

λα
j c

β
j = λ

(k−1)q−1
k−2

j c(k−1)q

j = λ
− 1

k−2
j (λ

1
k−2
j c j )

(k−1)q .

If |c jλ
1

k−2
j | ≤ 1 for all j , by triangular inequality, it can be shown that

‖xq‖ = ‖
n∑

j=1

λ
− 1

k−2
j (λ

1
k−2
j c j )

(k−1)q v j‖

≤
n∑

j=1

‖λ− 1
k−2

j (λ
1

k−2
j c j )

(k−1)qv j‖ ≤
n∑

j=1

|λ j | 1
k−2 .

Therefore, the equilibrium point xe = 0 is stable. On the other hand, the fact that ‖xq‖ is

bounded implies that the quantity (λ
1

k−2
j c j )(k−1)q must also be bounded for any q . Thus, we

have |c jλ
1

k−2
j | ≤ 1 for all j . The other two cases can be shown similarly. �


Clearly, we can write |c jλ
1

k−2
j | as |〈x0, λ

1
k−2
j v j 〉|. In addition, the inequalities obtained

from the asymptotic stability condition can provide us with the exact region of attraction for
the odeco HPDS (15), i.e.,

R =
{
x : |c j | < |λ j |− 1

k−2 where x =
n∑

j=1

c jv j

}
. (18)

Furthermore, if the product between max j |c j | and max j |λ j | 1
k−2 is less than one, the odeco

HPDS (15) will be asymptotically stable.

Definition 8 TheZ-spectral radius of a supersymmetric tensor is themaximumof the absolute
values of all its Z-eigenvalues.

Corollary 1 Suppose that Assumption 1 holds with k ≥ 3. Let x0 be some initial conditions.

For the odecoHPDS (15), the equilibriumpoint xe = 0 is asymptotically stable ifλ
1

k−2 ‖x0‖ <

1 where λ = max {|λ1|, |λn |} is the Z-spectral radius of A.
Proof By the Cauchy-Schwarz inequality, |c j | ≤ ‖x0‖ for all j = 1, 2, . . . , n. In addition,
max j |λ j | ≤ λ. Moreover, it has been proved that the Z-spectral radius λ = max {|λ1|, |λn |}
where λ1 and λn are the largest and the smallest Z-eigenvalues from the orthogonal decom-
position of A, respectively (Chen et al. 2022). Therefore, the result follows immediately from
Proposition 2. �
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3.3 Upper bounds for Z-spectral radii

Computing the orthogonal decomposition or Z-eigenvalues of a supersymmetric tensor is
known to be NP-hard (Hillar and Lim 2013; Robeva 2016). Therefore, establishing upper
bounds for the Z-spectral radii of the state transition tensor can provide a computationally
efficient approach for analyzing the stability properties of odeco HPDSs.

Lemma 1 Suppose that A ∈ R
n×n×2k···×n×n is a 2kth-order n-dimensional supersymmetric

tensor. The Z-spectral radius of A is upper bounded by itsU-spectral radius, i.e., themaximum
of the absolute values of all its U-eigenvalues.

Proof Based on (7), the largest Z-eigenvalue of A can be solved from an equivalent opti-
mization, which can be computed as

max
V∈Rn×n× k···×n

{V� ∗ A ∗ V : ‖V‖ = 1 and V = v ◦ v ◦ · · · ◦ v}.

Therefore, the largestZ-eigenvalue of A is always less thanor equal to its largestU-eigenvalue.
Similarly, we can show that the smallest Z-eigenvalue of A is always greater than or equal
to its smallest U-eigenvalue. Hence, the result follows immediately. �


The U-spectral radius of an even-order supersymmetric tensor can be efficiently obtained
by computing the spectral radius of its unfolded matrix (11), which requires O(n3k) oper-
ations. While the complexity grows exponentially with the order k, it remains significantly
more efficient than computing Z-spectral radii. Once an upper bound for the Z-spectral radius
of the state transition tensor is obtained,we can determine the asymptotic stability of the odeco
HPDS (15) without the need for computing the orthogonal decomposition or Z-eigenvalues.

Corollary 2 Suppose that Assumption 1 holds with even k ≥ 4. Let x0 be some initial con-
ditions. For the odeco HPDS (15), the equilibrium point xe = 0 is asymptotically stable if

μ
1

k−2 ‖x0‖ < 1 where μ is the U-spectral radius of A.

Proof The result follows immediately from Lemma 1 and Corollary 1. �

The condition offers a conservative region of attraction for the odeco HPDS (15) without

requiring knowledge of the orthogonal decomposition of A, i.e.,

R = {x : ‖x‖ < μ− 1
k−2 }.

Several other upper bounds for Z-spectral radii of supersymmetric tensors exist (Chang et al.
2013; He and Huang 2014; Ma and Song 2019; Wu et al. 2018). For instance, He and Huang
(2014) proposed that for a given positive kth-order supersymmetric tensor A, its Z-spectral
radius is upper bounded by

λ ≤ g − l
(
1 − ( r

g

) 1
k
)
, (19)

where l is the minimum entry of A,

r = min
j

( n∑

j2=1

n∑

j3=1

· · ·
n∑

jk=1

A j j2... jk

)
,

g = max
j

( n∑

j2=1

n∑

j3=1

· · ·
n∑

jk=1

A j j2... jk

)
.

123



75 Page 10 of 15 C. Chen

Hence, we can also use this upper bound to determine the stability of an odeco HPDS if the
state transition tensor contains all positive entries. Note that a tighter upper bound on the
Z-spectral radius yields stronger stability conditions.

4 Stability of general HPDSs

As noted in (Robeva 2016), not all supersymmetric tensors are odeco. In this section, we
extend the stability results to general HPDSs (i.e., the state transition tensor A is almost
symmetric) by utilizing tensor singular values. To begin, we adapt a lemma from (Jiang et al.
2017) that provides an upper bound on the Frobenius norm of tensor vector multiplications.
This result is analogous to that for matrix vector multiplications.

Lemma 2 (Jiang et al. 2017) Suppose that A ∈ R
n×n× k···×n is a kth-order n-dimensional

tensor and v ∈ R
n . The following inequality holds:

‖A ×p v‖ ≤ ‖A‖‖v‖. (20)

According to Lemma 2, we can obtain a relative weaker but more general stability condi-
tion for all HPDSs.

Proposition 3 Suppose that k ≥ 3. Let x0 be some initial conditions. The equilibrium point
xe = 0 of the HPDS (15) is asymptotically stable if

‖A‖ 1
k−2 ‖x0‖ < 1. (21)

Equivalently, the equilibrium point xe = 0 of the HPDS (15) is asymptotically stable if

( n∑

j=1

(γ
(p)
j )2

) 1
k−2 ‖x0‖ < 1, (22)

where γ
(p)
j are the p-mode singular values of A, for any p.

Proof Based on Lemma 2, we have

‖xt+1‖ ≤ ‖A‖‖xt‖k−1.

Thus, it can be shown similarly as Proposition 1 that at the qth step, we have

‖xq‖ ≤ ‖A‖α‖x0‖β,

where α and β are the same quantities as defined in Proposition 1. Moreover, the Frobenius
normof a tensor is equal to the sumof its p-mode singular values’ square for any p. Therefore,
the result follows immediately. �


Similarly, Proposition 3 can be used to obtain a conservative region of attraction, which
is computed as

R =
{
x : ‖x‖ <

( n∑

j=1

(γ
(p)
j )2

)− 1
k−2

}
. (23)
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Table 1 Stability results for the
HPDS with different initial
conditions

IC max {|crλr |} ∑n
j=1(γ

(p)
j )2‖x0‖ Stability

a 0.9735 28.7712 Asym. stable

b 0.6032 0.9413 Asym. stable

c 1 53.9410 Stable

d 1.0053 1.5688 Unstable

Fig. 1 Stability results for the
different initial conditions,
corresponding to Table 1. When
the norm of xt is less than 10−5,
we omitted the point

5 Numerical examples

All numerical examples presentedwere performed on aMacintoshmachinewith 16GBRAM
and a 2 GHz Quad-Core Intel Core i5 processor in MATLAB R2020b using the MATLAB
tensor toolbox (Bader and Kolda 2006).

5.1 Stability of odeco HPDSs

In this example, we verified the stability results presented in Proposition 2. For a discrete-time
odeco HPDS of the form (15), the orthogonal decomposition of the state transition tensor
A ∈ R

3×3×3 is given by (columns of V are v j in (16))

V =
⎡

⎣
−0.8482 −0.5212 0.0947
−0.4840 0.6899 −0.5382
0.2152 −0.5024 −0.8374

⎤

⎦ and λ =
⎡

⎣
0.9
0.1
0.02

⎤

⎦ .

We computed the trajectories xt for the following four initial conditions:

xa =
⎡

⎣
3
10
30

⎤

⎦ , xb =
⎡

⎣
0.6
0.6
0.6

⎤

⎦ , xc =
⎡

⎣
−2.2720
−15.1148
−38.3064

⎤

⎦ , xd =
⎡

⎣
1
1
1

⎤

⎦ .

The results are shown in Table 1 and Fig. 1. For each initial condition, we calculated
the quantities max {|crλr |} and ∑n

j=1(γ
(p)
j )2‖x0‖, and compared them to one. Clearly, the

locations of crλr determine the stability of the HPDS. The region of attraction R of the HPDS
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can be obtained by

R =
⎧
⎨

⎩x :
|−0.8482x1 − 0.4840x2 + 0.2152x3| < 10

9|−0.5212x1 + 0.6899x2 − 0.5024x3| < 10
|0.0947x1 − 0.5382x2 − 0.8374x3| < 50

⎫
⎬

⎭ ,

where x = [
x1 x2 x3

]�
. In addition, the stability condition stated in Proposition 3 is weaker

than that in Proposition 2, see Fig. 1 IC a and b.

5.2 Stability using upper bounds of Z-spectral radii

In this example, we applied the upper bound of Z-spectral radii defined in Corollary 2 to
obtain a conservative region of attraction for a discrete-time odeco HPDS of the form (15).
Suppose that the state transition tensor A ∈ R

2×2×2×2 is given by

A::11 =
[
0.2285 0.0376
0.0376 0.2243

]
, A::12 =

[
0.0376 0.2243
0.2243 0.0124

]
,

A::21 =
[
0.0376 0.2243
0.2243 0.0124

]
, A::22 =

[
0.2243 0.0124
0.0124 0.2229

]
.

TheU-spectral radius of A can be computed from the spectral radius of the following unfolded
matrix

A =

⎡

⎢⎢⎣

0.2285 0.0376 0.0376 0.2243
0.0376 0.2243 0.2243 0.0124
0.0376 0.2243 0.2243 0.0124
0.2243 0.0124 0.0124 0.2229

⎤

⎥⎥⎦ .

The U-spectral radius of A is μ = 1
2 , and thus the conservative region of attraction of the

HPDS is an open disk with radius
√
2 centered at the origin (note that the second upper bound

(19) produces λ ≤ 1.0263, which will give an even more conservative region of attraction).
We tested the following four initial conditions to verify the region of attraction:

xa =
[−1.4

0

]
, xb =

[
0.9

−0.9

]
, xc =

[
1
1

]
, xd =

[
1.2
1.2

]
.

The results are shown in Fig. 2. It is clear to see that the trajectories of theHPDSwith the initial
conditions started within the open disk converge to the origin, see IC a and b. Additionally,
since the region of attraction is conservative, we observed that a trajectory started on the
circle also converge to the origin, see IC c.

5.3 Stability of ecological networks

In this example,we employed our framework to study the stability of a higher-order ecological
network with three species x , y, and z, where its evolution is described by the following
discrete-time odeco HPDS:
⎧
⎪⎨

⎪⎩

xt+1 = 0.083x3t + 0.167z3t + 0.25x2t zt + 0.25xt y2t + 0.25y2t zt + 0.5xt yt zt
yt+1 = 0.083y3t + 0.167z3t + 0.25x2t yt + 0.25x2t zt + 0.25y2t zt + 0.5xt yt zt
zt+1 = 0.083x3t + 0.083y3t − 0.167z3t + 0.25x2t yt + 0.25xt y2t + 0.5xt z2t + 0.5yt z2t

,

where xt , yt , and zt denote the species abundances. Based on the dynamics equations, it
is clear that species x is positively regulated by itself, species y and z individually, and a
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Fig. 2 A conservative region of
attraction (red dashed line) of the
HPDS, and four initial conditions
with their trajectories

Fig. 3 Trajectories of the HPDS with two distinct initial conditions, where IC a is situated within the region
of attraction, whereas IC b is not

combination effect of species y and z (which is a higher-order interaction). Similarly, species
y is positively regulated by itself, species x and z individually, and a combination effect of
species x and z. Finally, species z is negatively regulated by itself and is positively regulated by
species x and y individually and their combination. The Z-eigenvalues of the state transition
tensor can be computed as 1/6, 1/2, and 1/2. According to Proposition 2, we can determine
the stability of the higher-order ecological network. When the initial abundances of the three
species are situated within the region of attraction, the higher-order ecological network is
asymptotically stable. Otherwise, it is unstable, see Fig. 3.
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6 Conclusion

In this article, we investigated the stability properties of discrete-time HPDSs. In contrast to
linear dynamical systems, the stability of HPDSs depends on both the spectrum of the state
transition tensor A and initial conditions. In particular, when the state transition tensor A is
odeco, we can obtain necessary and sufficient conditions by exploiting tensor Z-eigenvalues.
We also provided an upper bound for the Z-spectral radii of even-order supersymmetric
tensors, which can be used to determine the asymptotic stability of odeco HPDSs efficiently.
In addition, we extended the stability results to general HPDSs, where the state transition
tensors are almost symmetric, using tensor singular values.

While we applied odeco HPDSs to model higher-order ecological networks, the thorough
interpretation of this class remains elusive due to the complex nature of odeco tensors.
Therefore, it is crucial to delve into the interpretation of odeco HPDSs. One promising
avenue is to investigate necessary and sufficient conditions on network structures for which
the corresponding state transition tensors are odeco. Additionally, it will be worthwhile to
explore stronger stability conditions regarding general HPDSs. We further intend to analyze
the stabilizability and reachability of discrete-timeHPDSsusing tensor algebra in futurework.
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