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Controllability and Observability of
Temporal Hypergraphs

Anqi Dong , Graduate Student Member, IEEE, Xin Mao ,
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Abstract—Numerous complex systems, such as those
arisen in ecological networks, genomic contact networks,
and social networks, exhibit higher-order and time-varying
characteristics, which can be effectively modeled using
temporal hypergraphs. However, analyzing and control-
ling temporal hypergraphs poses significant challenges
due to their inherent time-varying and nonlinear nature,
while most existing methods predominantly target static
hypergraphs. In this letter, we generalize the notions
of controllability and observability to temporal hyper-
graphs by leveraging tensor and nonlinear systems theory.
Specifically, we establish tensor-based rank conditions to
determine the weak controllability and observability of
directed, weighted temporal hypergraphs. The proposed
framework is further demonstrated with synthetic and real-
world examples.

Index Terms—Network analysis and control, net-
worked control systems, time-varying systems, biological
systems.

I. INTRODUCTION

HYPERGRAPHS generalize graphs by allowing hyper-
edges to connect arbitrary subsets of nodes, capturing

higher-order relationships unambiguously [1], [2]. Numerous
real-world complex systems can be naturally represented using
hypergraphs, including ecological networks, genomic contact
networks, chemical reaction networks, co-authorship networks,
and film actor/actress networks [3]. For instance, in ecological
networks, species interactions often occur in higher-order
combinations, where the relationship between two species can
be influenced by one or more additional species [4], [5], [6].
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Fig. 1. Directed temporal hypergraph whose structure evolves over
time. The connectivity is illustrated by hyperedges, represented as areas
with distinct colors, and arrows indicating their directions.

Increasing evidence has revealed that higher-order interac-
tions play a significant role in the dynamical processes of
ecological networks [4]. Therefore, understanding the system-
theoretic properties of hypergraphs such as controllability and
observability becomes imperative for effectively managing and
predicting the dynamics of complex systems.

A variety of results have been developed concerning the
dynamics of static hypergraphs. For instance, Chen et al. [7]
pioneered the development of a generalized Kalman’s rank
condition to determine the controllability of hypergraphs
by leveraging homogeneous polynomial systems theory and
tensor algebra, extending previous findings on graph controlla-
bility [8], [9]. Notably, the authors applied the rank condition
to compute the minimum number of driver nodes of real-world
hypergraphs. Subsequently, Pickard et al. [10], [11] employed
a similar approach to investigate the weak observability of
hypergraphs and the associated minimum number of sensor
nodes. Recently, Zhang et al. [12] extended Pickard et al.’s
work in a broader scope for hypergraph observability.

However, many real-world networks are time-varying and
can be more accurately modeled using directed temporal
hypergraphs, whose structure changes over time [13], [14],
[15], [16] (see Fig. 1). As an illustrative example, in food
webs, species interactions and predator-prey relationships are
directional and exhibit seasonal fluctuations, such as changes
in bird migration patterns affecting prey populations [17].
Moreover, these relationships can vary in response to envi-
ronmental factors like temperature fluctuations, alterations
in water flow patterns, and shifts in nutrient availability
(e.g., warmer temperatures might favor certain fish species
over others) [17]. Consequently, understanding these temporal
variations is essential for studying system properties and
designing optimal control strategies for food webs, which
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has implications for species coexistence, biodiversity, and
community persistence. Yet, most existing methods primarily
focus on static hypergraphs, highlighting the need for the
development of computational tools to analyze and control
temporal hypergraphs.

In this letter, we aim to extend previous efforts on network
controllability and observability to directed, weighted temporal
hypergraphs by exploiting tensor theory and nonlinear systems
theory. The key contributions are listed as follows:

• Building on [7], [18], we employ a tensor-based
time-varying polynomial system model to capture the
dynamics of directed, weighted temporal hypergraphs.

• We establish tensor-based rank conditions to determine
the weak controllability and observability of time-varying
polynomial systems and temporal hypergraphs.

• We demonstrate our framework with synthetic temporal
hypergraphs and real-world ecological networks.

The article is organized into six sections. In Section II,
we briefly review the notions of hypergraphs, tensor-based
polynomial systems, and nonlinear controllability and observ-
ability. We derive tensor-based rank criteria to assess the
weak controllability and observability of directed, weighted
temporal hypergraphs in Sections III and IV, respectively.
Two numerical examples are provided in Section V, and we
conclude with future directions in Section VI.

II. PRELIMINARIES

A. Hypergraphs

Hypergraphs generalize standard graphs by allowing hyper-
edges to connect more than two nodes. Mathematically, an
undirected, unweighted hypergraph G = {V, E} where V =
{v1, v2, . . . , vn} is the node set and E = {e1, e2, . . . , em} is
the hyperedge set such that ep ⊆ V for p = 1, 2, . . . , m [1].
Two nodes are called adjacent if they belong to the same
hyperedge. A hypergraph is called connected if, given two
nodes, there is a path connecting them through hyperedges.
The degree of a node is equal to the number of hyperedges
that contain that node. If all hyperedges contain exactly k
nodes, G is called a k-uniform hypergraph. Such hypergraphs
can be represented as a kth-order, n-dimensional symmetric
tensors [7]. Tensors are multidimensional arrays, generalized
from vectors and matrices. The order of a tensor is the number
of its dimensions, and each dimension is called a mode. An
n-dimensional tensor is called symmetric if it is invariant under
any permutation of its indices.

Definition 1 (Adjacency Tensors): Suppose that G is a k-
uniform hypergraph with n nodes. The symmetric adjacency

tensor A ∈ R
n×n× k···×n of G is defined as

Ai1i2...ik =
{

1/(k − 1)! if (i1, i2 . . . , ik) ∈ E
0 otherwise

. (1)

The definition can be generalized to weighted k-uniform
hypergraphs by replacing 1/(k − 1)! with a weight wi1i2...ik .
Moreover, directed hypergraphs can be addressed by treating
each hyperedge as consisting of a tail set and a head set. For
simplicity, we focus on directed hyperedges where the tail
set contains a single node and the head set contains multiple

nodes as in [18]. The corresponding adjacency tensor therefore
becomes symmetric with respect to the last k − 1 modes
(referred to as almost symmetric [19], [20]), i.e., i1 represents
the tail and the rest of the indices represent the head. For non-
uniform hypergraphs, we can represent them by combining
adjacency tensors of different orders. A temporal hypergraph
is a generalization of a (static) hypergraph that incorporates
a time dimension [13], [14], making the adjacency tensors
time-dependent, i.e., Aj(t) for j = 2, 3, . . . , k, where k is the
maximum cardinality of the hyperedges.

B. Tensor-Based Polynomial Systems

The dynamics of hypergraphs can be modeled using tensor-
based polynomial systems [7], [12]. First, we introduce the
operation of tensor matrix multiplications. Given a tensor A ∈
R

n×n× k···×n, the tensor matrix multiplication A ×p M along
mode p for a matrix M ∈ R

n×m is defined as

(
A ×p M

)
i1i2...ip−1jip+1...ik

=
n∑

ip=1

Ai1i2...ik Mipj.

When m = 1, the definition reduces to the tensor vector
multiplication. Analogous to graph dynamics with linear
systems [8], the dynamics of a hypergraph can be naturally
represented using tensors [7], [18].

Definition 2 (Hypergraph Dynamics): Suppose that G is a
hypergraph with n nodes and maximum hyperedge cardinality
k. The dynamics of G can be represented as

ẋ(t) =
k∑

j=2

Aj ×2 x(t) ×3 x(t) ×4 . . . ×j x(t), (2)

where Aj ∈ R
n×n× j···×n are the jth-order adjacency tensors of G

and x(t) ∈ R
n represents the state of each node. For simplicity,

we can rewrite (2) as ẋ(t) = ∑k
j=2 Ajx(t)j−1.

The tensor-based dynamical system (2) in fact belongs to the
family of polynomial systems of degree k−1, which have been
used to capture the dynamics of higher-order interactions in
various fields [4], [21]. Similarly, the dynamics of a temporal
hypergraph can be thus represented using a tensor-based time-
varying polynomial system, i.e.,

ẋ(t) =
k∑

j=2

Aj(t)x(t)j−1, (3)

where Aj(t) are the time-dependent jth-order adjacency tensors
of the hypergraph. In this letter, Aj(t) can be weighted and
almost symmetric, allowing for the modeling of directed,
weighted temporal hypergraphs.

C. Nonlinear Controllability & Observability

Controllability and observability are two of the most fun-
damental system-theoretic properties of a dynamical system.
Initially introduced for linear systems, both concepts can be
verified using the classical Kalman’s rank condition. However,
defining and verifying the two properties becomes significantly
more complex for nonlinear systems [22].
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Definition 3 (Local Weak Controllability): A nonlinear con-
trol system is called locally weakly controllable at state x0 and
time t0 if, for any state x1 within a small neighborhood of x0,
there exists a piecewise continuous control input that drives
the system from x0 to x1 within a finite time interval.

Definition 4 (Local Weak Observability): A nonlinear out-
put system is called locally weakly observable at state x0 and
time t0 if, there exists a neighborhood of x0 such that if two
initial states x0 and x1 (within the neighborhood) produce
indistinguishable outputs over a finite time interval, x0 = x1.

Weak controllability and observability refer to the cases
when both definitions hold for any x0 ∈ R

n and t0 ∈ R
+.

For nonlinear systems including homogeneous systems, many
conditions have been established to determine local weak
controllability and observability [23], [24].

III. CONTROLLABILITY

In this section, we propose a tensor-based rank condition for
assessing the weak controllability of tensor-based polynomial
time-varying systems of degree k − 1 with linear inputs. The
system is described by the following equation:

ẋ(t) =
k∑

j=2

Aj(t)x(t)j−1 + B(t)u(t), (4)

where Aj(t) ∈ R
n×n× j···×n are the jth-order time-dependent

dynamic tensors, B(t) ∈ R
n×m is the time-dependent control

matrix, and u(t) ∈ R
m is the control input. Additionally,

we introduce the operator of Lie brackets from differential
geometry, which plays a crucial role in proving controllability.
For more details of Lie brackets, we refer to [25].

Definition 5 (Lie Brackets): Given two vector fields f and
g, the Lie bracket of f and g at a point x is defined as

[
f, g

]
x = ∇g(x)f(x) − ∇f(x)g(x),

where ∇ denotes the gradient operation.

A. Tensor-Based Rank Condition

We assume Aj(t) to be almost symmetric and weighted
as they represent the adjacency tensors of directed, weighted
temporal hypergraphs of different orders. We formulate the
tensor-based controllability rank condition as follows, gener-
alizing the classical Kalman’s rank condition.

Proposition 1 (Controllability): The tensor-based polyno-
mial time-varying control system (4) is locally weakly
controllable at state x0 and time t0 if and only if the state- and
time-dependent controllability matrix defined as

C(x, t) = [
M0(x, t) M1(x, t) · · · Mn−1(x, t)

]
, (5)

where M0(x, t) = B(t) and Mi(x, t) = [�1 · · · �l �1 · · ·
�l] for i = 1, 2, . . . , n − 1, has full rank at x = x0 and t = t0.
Here, l is the total number of columns of Mi−1(x, t), �p =
− ∂m(p)

i−1(x,t)
∂x B(t), and

�p =
k∑

j=2

(j − 1)Aj(t)xj−2m(p)

i−1(x, t)

− ∂m(p)

i−1(x, t)

∂x

(
Aj(t)xj−1

)
− ∂m(p)

i−1(x, t)

∂t
,

where m(p)

i−1(x, t) denotes the pth column of Mi−1(x, t).
Proof: Based on nonlinear systems theory [23], [25], the

controllability matrix (distribution) can be computed by recur-
sively evaluating the Lie brackets of {B(t),

∑k
j=2 Aj(t)xj−1},

treating t as another state. Since Aj(t) are almost symmetric,
for each iteration, it follows that

Mi =
[
〈m(1)

i−1,

k∑
j=2

Aj(t)xj−1〉x . . . 〈m(l)
i−1,

k∑
j=2

Aj(t)xj−1〉x

[
m(1)

i−1, B(t)
]

x
. . .

[
m(l)

i−1, B(t)
]

x

]
,

for some l, where 〈f, g〉x = [f, g]x − ∂f/∂t. Using the
properties of tensor vector multiplications and Lie brackets,
these brackets can be computed as

〈m(p)

i−1,

k∑
j=2

Aj(t)xj−1〉x = �p and
[
m(p)

i−1, B(t)
]

x
= �p.

The recursive process will converge at most n − 1 steps based
on the nonlinear controllability results in [26, Lemmas 1.8.1–
1.8.3].

The controllability matrix C(x, t) (5) is in general state-
and time-dependent. If the rank condition holds for all x =
x0 ∈ R

n and t = t0 ∈ R
+, the tensor-based time-varying poly-

nomial system with linear inputs (4) is weakly controllable.
Additionally, the condition present in Proposition 1 implies
local strong accessibility which requires that the system can
reach any state in a neighborhood of the initial state [25].
To compute the rank of the controllability matrix, we can
utilize either numerical or symbolic computations. Numerical
computations involve evaluating the controllability matrix at
a finite number of sample points (x, t) and computing the
rank using numerical rank operations. Symbolic computations
entail expressing the entries of the controllability matrix as
symbolic functions of x and t. By leveraging symbolic algebra
software (e.g., MATLAB Symbolic Toolbox), we can perform
exact calculations to determine the rank of the controllability
matrix. However, symbolic computations can be computa-
tionally intensive and may struggle with the complexity for
high-dimensional systems, potentially leading to errors.

Proposition 1 can be readily applied to the tensor-based
polynomial time-varying control system (4) with symmetric
Aj(t) for undirected temporal hypergraphs. Moreover, for k-
uniform temporal hypergraphs (either directed or undirected)
where the underlying dynamics is homogeneous of degree
k − 1, i.e., j = k only in (4), we can obtain a simpler rank
condition. In particular, when k = 2, it reduces to traditional
temporal graphs with linear time-varying dynamics.

Corollary 1 (Homogeneous Case): The tensor-based homo-
geneous polynomial time-varying control system (4) (i.e.,
j = k only) is locally weakly controllable at state x0 and
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time t0 if and only if the state-and time-dependent control-
lability matrix (5) with M0(x, t) = B(t) and Mi(x, t) =
[�1 · · · �l �1 · · · �l] where �p = − ∂m(p)

i−1(x,t)
∂x B(t) and

�p = (k − 1)Ak(t)xk−2m(p)

i−1(x, t) −
∂m(p)

i−1(x, t)

∂x

(
Ak(t)xk−1

)
− ∂m(p)

i−1(x, t)

∂t
,

for i = 1, 2, . . . , n − 1, has full rank at x = x0 and t = t0.
Proof: Due to the bilinearity of Lie brackets, the result

follows directly by eliminating the summation.
Corollary 2 (Linear Case): The linear time-varying control

system (4) with k = 2 is weakly controllable at time t0 if
and only if the time-dependent controllability matrix (5) with
M0(t) = B(t) and Mi(t) = A2(t)Mi−1(t) − ∂Mi−1(t)

∂t for i =
1, 2, . . . , n − 1, has full rank at t = t0.

Proof: The result follows by setting k = 2 in Mi(x, t) from
Corollary 1, where it becomes state-independent.

Notably, the condition in Corollary 2 aligns with the
controllability rank condition proposed in [27], which in fact
can be used to establish full controllability for linear time-
varying control systems.

B. Controllability of Temporal Hypergraphs

In network science, the notion of the minimum number of
driver nodes (MNDN), introduced by Liu et al. [8], represents
the smallest set of nodes necessary to fully control an entire
network. This idea has broad applications, from understanding
the behavior of biological systems to optimizing control strate-
gies in social networks for disease prevention. By leveraging
Proposition 1 and Corollary 1, we can discuss the weak
controllability of directed, weighted temporal hypergraphs.
Similar to the approach used in [7], we aim to identify the
MNDN of a directed, weighted temporal hypergraph such
that the corresponding controllability matrix of the underlying
dynamics has full rank. The MNDN is a powerful concept that
can be used to steer the dynamics of temporal hypergraphs
with minimal effort [8]. It can also serve as an indication
of the robustness of temporal hypergraphs [7]. Intuitively, if
the MNDN of a temporal hypergraph is high, it will require
more effort or energy to control the hypergraph or steer the
underlying system. Furthermore, the MNDN provides insights
into the underlying topology of the temporal hypergraph,
which helps identify key nodes that play a crucial role in the
system’s dynamics. For simplicity, we assume that the control
matrix is time-independent (i.e., B) and each input can only
be imposed on one node.

Identifying the MNDN through a brute-force search is NP-
hard and time-consuming [7]. We offer a heuristic method
for approximating the minimum subset of driver nodes in
a directed, weighted temporal hypergraph, where nodes are
selected based on the maximum change in the rank of the
controllability matrix (Algorithm 1). The rank computations
in Step 6 can be performed either numerically or symbolically.
In Step 7, if multiple v∗ are obtained, we can either pick
one randomly or break the tie based on their degrees. Note
that the final subset of driver nodes D is highly likely to be

Algorithm 1 Greedy Driver Nodes Selection
1: Given almost symmetric, weighted time-varying adjacency

tensors Aj(t) ∈ R
n×n× j···×n of a temporal hypergraph

2: Let V = {1, 2, . . . , n} and the index set D = ∅
3: Let CD(x, t) be the controllability matrix with the control

matrix formed from the index set D
4: while rank(CD(x, t)) < n do
5: for v ∈ V \ D do
6: Compute

�(v) = rank
(
CD∪{v}(x, t)

) − rank(CD(x, t))

7: end for
8: Set v∗ = argmaxv∈V\D�(v)
9: Set D = D ∪ {v∗}

10: end while
11: return subset of driver nodes D

minimal (i.e., MNDN), but it is not guaranteed. Algorithm 1
can be applied at a fixed state and time to determine local
weak controllability, and it can also be extended to varying
states and times through symbolic computation.

IV. OBSERVABILITY

In this section, we propose a tensor-based rank condition for
assessing the weak observability of tensor-based polynomial
time-varying systems of degree k − 1 with linear outputs, i.e.,{

ẋ(t) = ∑k
j=2 Aj(t)x(t)j−1

y(t) = L(t)x(t)
, (6)

where L(t) ∈ R
q×n is the time-dependent output matrix,

and y ∈ R
q is the output. Again, we assume that Aj(t)

are almost symmetric and weighted for modeling directed,
weighted temporal hypergraphs. Additionally, we provide a
brief review of the Lie derivative operator, which plays a
crucial role in proving observability.

Definition 6 (Lie Derivatives): Given a vector field f and a
scalar field h, the Lie derivative of h along f is defined as

Lfh = (∂h/∂x)f.

Moreover, it satisfies

LfDh = DLfh,

where D denotes the differential operator.
Detailed definitions and properties of Lie derivatives can

be found in [25]. We formulate the tensor-based observability
rank condition as follows.

Proposition 2 (Observability): The tensor-based polyno-
mial time-varying output system (6) is locally weakly
observable at state x0 and time t0 if and only if the state- and
time-dependent observability matrix defined as

O(x, t) =

⎛
⎜⎜⎜⎝

N0(x, t)
N1(x, t)

...

Nn−1(x, t)

⎞
⎟⎟⎟⎠, (7)
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where N0(x, t) = D(L(t)x), and

Ni(x, t) =
k∑

j=2

∂Ni−1(x, t)

∂x

(
Aj(t)xj−1

)
+ ∂Ni−1(x, t)

∂t

for i = 1, 2, . . . , n − 1, has full rank at x = x0 and t = t0.
Proof: Based on nonlinear systems theory [24], [25], the

observability matrix (codistribution) can be computed by eval-
uating the Lie derivatives of the output along the system state,
treating t as another state. Since Aj(t) are almost symmetric,
for each iteration, it follows that

Ni =
[
L̃∑k

j=2 Aj(t)xj−1n(1)
i−1 . . . L̃∑k

j=2 Aj(t)xj−1 n(l)
i−1

]�
,

where l is the total number of rows of Ni−1, n(p)

i−1 is the pth row
of Ni−1, and L̃fh = ∂h/∂t + (∂h/∂x)f. Using the properties of
tensor vector multiplications and Lie derivatives, each element
can be computed as

L̃∑k
j=2 Aj(t)xj−1n(p)

i−1 =
k∑

j=2

∂n(p)

i−1

∂x

(
Aj(t)xj−1

)
+ ∂n(p)

i−1

∂t
.

For example, N1(x, t) can be computed as

N1(x, t) = D

( k∑
j=2

L(t)
(
Aj(t)xj−1

)
+ ∂(L(t)x)

∂t

)
.

The recursive process will converge at most n − 1 steps due
to the nonlinear observability results in [26, Lemmas 1.9.1,
1.9.2, and 1.9.6].

Similar to the controllability matrix, the observability matrix
O(x, t) (7) is in general state- and time-dependent. If the rank
condition holds for all x = x0 ∈ R

n and t = t0 ∈ R
+,

the tensor-based time-varying polynomial system with linear
outputs (6) is weakly observable. For k-uniform temporal
hypergraphs (either directed or undirected), we can drop the
summation in Ni(x, t).

Corollary 3 (Homogeneous Case): The tensor-based homo-
geneous polynomial time-varying output system (6) (i.e., j = k
only) is locally weakly observable at state x0 and time t0 if and
only if the state- and time-dependent observability matrix (7)
with N0(x, t) = D(L(t)x), and

Ni(x, t) = ∂Ni−1(x, t)

∂x
Ak(t)xk−1 + ∂Ni−1(x, t)

∂t
,

for i = 1, 2, . . . , n − 1, has full rank at x = x0 and t = t0.
Corollary 4 (Linear Case): The linear time-varying output

system (6) with k = 2 is weakly observable at tiem t0 if
and only if the time-dependent observability matrix (7) with
N0(t) = L(t) and Ni(t) = Ni−1(t)A2(t) + dNi−1(t)

dt , for i =
1, 2, . . . , n − 1, has full rank at t = t0.

The criterion above coincides with the observability rank
condition proposed in [27], which in fact can be used to
establish full observability for linear time-varying output
systems. Based on Proposition 2 and Corollary 3, we can
discuss the weak observability of directed, weighted temporal
hypergraphs. Specifically, we are interested in identifying the
minimum number of sensor nodes (MNSN) required for a
directed, weighted temporal hypergraph to ensure that the

Fig. 2. 3-uniform temporal hypergraphs without (a) and with (b) directed
hyperedges.

associated observability matrix has full rank. The MNSN is
a critical notion that enables the reconstruction of the full
internal state of a temporal hypergraph [28]. Additionally, it is
essential for designing feedback control, relying on estimations
of the plant state based solely on the plant output or the
measurements collected from its sensors [10]. For simplicity,
we assume that the output matrix is time-independent (i.e., L)
and each output can only be imposed on one node. Therefore,
we can utilize an approach similar to Algorithm 1 to find
the “minimum” set of sensor nodes of a directed, weighted
temporal hypergraph.

V. NUMERICAL EXAMPLES

We illustrate our framework with two numerical examples,
focusing on the controllability of temporal hypergraphs. All
computations were performed using MATLAB R2022b with
the Symbolic Toolbox. The associated code can be found at
https://github.com/dytroshut/temp.graph.

A. Uniform Temporal Hypergraphs

In this example, we constructed two synthetic 3-uniform
temporal hypergraph with 4 nodes. The first is undirected,
containing hyperedges e1 = {v1, v2, v4} and e2 = {v1, v3, v4}
with weights A124 = 2t and A134 = −t (the same weights
are assigned to their permutations), as shown in Fig. 2(a).
The control matrix for this hypergraph is defined as B1(t) =
[0, 1/t, t, 0]. The second hypergraph is directed, containing
hyperedges e1 = {v1, v2, v4}, e2 = {v4, v1, v3}, and e3 =
{v2, v3, v4}, with weights A124 = A142 = t2, A413 = A431 =
2t, and A324 = A342 = 1/t, as shown in Fig. 2(b). The control
matrix for this hypergraph is defined as B2(t) = [2t, 1/t, t, t2].
We computed the controllability matrices C1 and C2 for both
hypergraphs based on Corollary 1. The results show that
rank(C1) = 3 and rank(C2) = 4, using symbolic computation.
Consequently, the first hypergraph is not weakly controllable
with the control matrix B1(t), while the second hypergraph is
weakly controllable with B2(t).

B. Higher-Order Ecological Systems

In ecological networks, species interactions are often time-
varying and involve higher-order combinations. Understanding
these interactions is crucial for accurately modeling ecosystem
dynamics and predicting the impact of changes within the
network. In our second example, we considered two temporal
ecological networks with pairwise or third-order interactions
among seven species S = {s1, s2, . . . , s7} (see Fig. 3). The first
network (a) involves pairwise interactions {s2, s5} and {s3, s6}
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Fig. 3. Two higher-order temporal ecological networks with pairwise
and third-order interactions.

and third-order interactions {s1, s3, s5} and {s2, s4, s7}. The
second network (b) consists of pairwise interactions {s3, s7},
{s4, s7}, and {s5, s6} and third-order interactions {s1, s3, s5},
{s2, s5, s6}, and {s1, s2, s5}.

To determine the MNDN for both temporal hypergraphs, we
followed the updating scheme outlined in Algorithm 1, assum-
ing that the control matrices are time-independent indicating
the driver nodes. Therefore, the estimated MNDN of the two
ecological networks can be computed as D1 = {s1, s2, s4} and
D2 = {s3, s7}, implying that the former ecological network
structure is more robust to external inputs than the latter. Note
that the MNDN may not be unique. For instance, in the case
of the second ecological network, alternative possible choices
of MNDN include D2 = {s1, s3}.

VI. CONCLUSION

In this letter, we extended the framework of control-
lability and observability to directed, weighted temporal
hypergraphs. By leveraging tensor and nonlinear systems
theory, we developed novel tensor-based rank conditions to
assess the weak controllability and observability of temporal
hypergraphs. We further demonstrated the practical relevance
and effectiveness of our approach using a synthetic example
and real-world ecological networks. Incorporating temporal
dynamics in complex systems provides new insights and
computational tools for analyzing and controlling complex
dynamics in time-varying higher-order networks. In the future,
it would be valuable to explore stronger controllability and
observability conditions for temporal hypergraphs and to apply
this framework to large-scale, real-world hypergraph data (e.g.,
how to efficiently evaluate the symbolic rank for large-scale
temporal hypergraphs?). Additionally, investigating optimal
control design for temporal hypergraphs presents an important
direction for further research. This could have significant
implications for areas such as network stability, resource allo-
cation, and dynamic behavior prediction in complex systems.
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