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Reachable Sets of Homogeneous Polynomial
Dynamical Systems Using Exact Solutions

Soham Sachin Purohit , Can Chen , and Ram Vasudevan

Abstract—Reachability analysis is a powerful tool to
analyze the behavior of dynamical systems. Typically, these
tools are used to evaluate whether the dynamics of a
system beginning from some initial set reaches some
unsafe region of state space in a finite amount of time.
To answer this question, these tools often construct over-
approximations to the reachable sets of the dynamical
systems, which can be overly conservative when applied
to arbitrary systems. To address this challenge, this let-
ter develops a novel technique for reachability analysis
of Homogeneous Polynomial Dynamical Systems (HPDSs)
by computing their exact solutions using tensor the-
ory. In addition, this letter illustrates how to build tight
over-approximations of the reachable set for HPDSs with
constant control inputs. Simulation results highlight a
significant improvement in the accuracy of reachable set
estimates compared to established methods for HPDSs.

Index Terms—Reachability analysis, outer
approximation, HPDSs, exact solutions, tensor algebra.

I. INTRODUCTION

HOMOGENEOUS polynomial dynamical systems
(HPDSs) represent a special class of mathematical

models that find widespread applications in scientific and
engineering domains [14]. These systems are characterized
by polynomial functions where all monomials have the
same degree. HPDSs describe complex phenomena in
systems biology, chemical reactions, and epidemiological
models [8], [9]. For instance, gene regulatory networks can be
modeled by a system of homogeneous polynomial equations,
capturing the interactions among genes [11].

This letter is interested in determining whether a dynamical
model reaches an unsafe state in a finite time when starting
from a user-specified set of initial states. To assess the safety
of such systems, one can apply reachability analysis, which
involves determining the reachable set of a system from its
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initial set. Safety is guaranteed for a given initial set if no
unsafe state belongs to the corresponding reachable set.

Although general methods exist for performing reachability
analysis of dynamical systems [3], [4], [10], [13], they can be
overly conservative. To address this issue, this letter proposes a
novel method for computing a tight over-approximative reach-
able set for a class of Homogeneous Polynomial Dynamical
Systems (HPDSs) that can be represented as orthogonally
decomposable tensors. We refer to this class of systems as
odeco HPDSs. We exploit properties of the exact solutions
of odeco HPDSs that enable us to determine the reachable
sets effectively. We demonstrate that the result can be gen-
eralized to general (non-odeco) HPDSs that can be linearly
transformed to odeco HPDSs under certain conditions. We
further illustrate the utility of our method by taking an example
of an autocatalytic reaction, in which products of a chemical
reaction catalyze the reaction. Through all our simulations, the
reachable sets constructed by our method are shown to be less
conservative than the results of existing tools for reachability
analysis when applied to odeco HPDSs. The key contributions
of this letter are listed as follows.

1) A pair of algorithms for determining the reachable
sets of odeco HPDSs and odeco HPDSs with constant
control, considering both axis-aligned and general initial
sets.

2) An algorithm for determining the reachable sets of
certain general (non-odeco) HPDSs, considering both
axis-aligned and general initial sets.

3) A comparison of our algorithms with Continuous
Reachability Analyzer (CORA) [3], an established tool
for reachability analysis of dynamical systems.

This letter is organized as follows: Section II introduces
necessary mathematical concepts and previous results. In
Section III, we present the algorithms for determining the
reachable sets of odeco HPDSs, odeco HPDSs with constant
control, and certain general (non-odeco) HPDSs. The results of
the proposed algorithms are shown in Section IV. We conclude
with future directions in Section V.

II. PRELIMINARIES

This section provides a concise overview of solutions for
odeco HPDSs (without/with constant control), outer approxi-
mation techniques, and zonotope representations. Throughout
this letter, scalars are represented by regular lowercase char-
acters, vectors by bold lowercase characters, matrices by
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bold uppercase characters, and tensors by script uppercase
characters.

A. Solutions of Odeco HPDSs

Here, we first introduce the idea of an odeco HPDS and
its explicit solution. The properties of this solution will be
exploited later in this letter to obtain reachable sets.

Every n-dimensional HPDS of degree k − 1 can be writ-
ten as tensor-vector multiplications along the first k − 1
modes [6], [7], i.e.,

ẋ = A×1 x×2 · · · ×k−1 x = Axk−1, (1)

where A ∈ R
n×n×···×n is the dynamic tensor of order k,

symmetric along the first k−1 modes, and x ∈ R
n is the state.

Here, the tensor-vector multiplication along mode r is defined
as

(A×r x)i1i2,...ir−1ir+1,...ik =
n∑

ir=1

Ai1i2,...ik xir . (2)

The dynamic tensor A is said to be orthogonally decomposable
(odeco) if it is supersymmetric (invariant under any permuta-
tion of the indices) and can be written as a sum of the outer
products of orthonormal vectors, i.e.,

A =
n∑

r=1

λrvr ◦ vr ◦ · · · ◦ vr, (3)

where λr are the Z-eigenvalues of A in a descending order,
and vr are the corresponding Z-eigenvectors [12].

If A is odeco, we refer to (1) to as odeco HPDSs. In
[6, Proposition 1], it was shown that given the initial condition
x0 = ∑n

r=1 αrvr, the system has an explicit solution, which
can be computed as

x(t) =
n∑

r=1

(
1− (k − 2)λrα

k−2
r t

)− 1
k−2

αrvr. (4)

B. Solutions of Odeco HPDSs With Constant Control

We introduce the implicit solution of an odeco HPDS with
constant control. Later, we show that the properties of this
solution can be used to obtain reachable sets of these systems.
The odeco HPDS with constant control can be written in the
form of

ẋ = Axk−1 + b, (5)

where b ∈ R
n is a constant vector. In [6, Proposition 4], it

was shown that given the initial condition x0 = ∑n
r=1 αrvr,

the system has a solution x(t) = ∑n
r=1 cr(t)vr, which can be

obtained by solving the following implicit equations:

t = −
g
(

k−2
k−1 ,− b̃r

λrcr(t)k−1

)

(k − 2)λrcr(t)k−1
+

g
(

k−2
k−1 ,− b̃r

λrαr(t)k−1

)

(k − 2)λrαr(t)k−1
. (6)

Here, b̃r are the rth entries of V�b (V contains all the vectors
vr) and g(·, ·) is the specified Gauss hypergeometric function
defined as

g(a, z) = _2F1(1, a; a+ 1; z) = a
∞∑

m=0

zm

a+ m
. (7)

Fig. 1. Outer approximation of a polytope using axis-aligned sets. The
blue region is the projection of the polytope on the X-Y plane, and the
squares represent the projections of the axis-aligned boxes that over-
approximate the polytope.

C. Outer Box Approximation of Polytopes

We discuss the idea of overapproximating a polytope using
axis-aligned hyperboxes here. Later, we demonstrate the exis-
tence of an elegant method for determining reachable sets
of axis-aligned initial sets that can be extended to general
initial sets by conducting over-approximative axis-aligned
decompositions of general initial sets.

We utilize the recursive algorithm [5, Algorithm 6] for com-
puting the outer approximation of polytopes. This algorithm
decomposes a polytope into axis-aligned sets with volumes
below a specified threshold E . An illustrative example is
highlighted in Fig. 1.

D. Zonotope Representation of Sets

We represent all initial as well as reachable sets in this
letter as zonotopes. Zonotopes provide a convenient approach
for representing sets, which facilitates ease in performing
operations on them [2]. A zonotope is defined as

Z = {x ∈ R
n : x = c+

p∑

r=1

γrgr, − 1 ≤ γr ≤ 1}

with c, g1, g2, . . . , gp ∈ R
n, where c is known as the center of

the zonotope and gr are called the generators.

III. METHODS

In this section, we perform the reachability analysis of
HPDSs and HPDSs with constant control by leveraging their
exact solutions. The code repository for the implementation of
our methods can be found at [1].

A. Reachable Sets of Odeco HPDSs

We first consider an initial set that is axis-aligned with
the orthonormal Z-eigenvectors vr of A. If this set is rep-
resented as a zonotope, its generators would also align with
these Z-eigenvectors. Let gr denote a generator along the Z-
eigenvector vr. Suppose that all points in the zonotope can be
expressed as x0 = ∑n

r=1 αrvr. Since the set is axis-aligned,
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Algorithm 1 Reachable Sets of odeco HPDSs for Axis-
Aligned Initial Sets

for each generator gr do
α← V�(c+ gr)

β ← V�(c− gr)

rsbound1 ← (1− (k − 2)λrα[r]k−2t)−
1

k−2 α[r]
rsbound2 ← (1− (k − 2)λrβ[r]k−2t)−

1
k−2 β[r]

rs_center[r] ← 0.5×(rsbound1 + rsbound2)
rs_gen[r] ← 0.5×(rsbound1 − rsbound2)V�gr

end for
RS ← Zonotope{V×rs_center, V×rs_gen}

the maximum and minimum values of αr over all the points
in the zonotope can be computed as the rth components of
c + gr and c − gr, respectively, where c is the center of the
initial set.

Lemma 1: Assume that A is odeco. Let x1(t) =∑n
r=1 ar(t)vr be the solution of (1) for the initial condition

x0 = ∑n
r=1 αrvr and x2(t) = ∑n

r=1 br(t)vr be the solution
with the initial condition x0 =∑n

r=1 βrvr. If αr > βr for some
r ∈ [1, n], then br(t) > ar(t) for all t.

Proof: According to (4):

ar(t) =
(

1− (k − 2)λrα
k−2
r t

)− 1
k−2

αr, (8)

which can be simplified to

ar(t) = (αr − (k − 2)λrt)−
1

k−2 . (9)

One can apply a similar argument for br(t). If αr > βr, then

(αr − (k − 2)λrt)−
1

k−2 < (βr − (k − 2)λrt)−
1

k−2 . (10)

Therefore, br(t) > ar(t) for all t.
According to Proposition 1, the system’s state at time t is

ordered based on the values of the initial state. Therefore, to
compute the reachable set of an initial set with axes aligned
to the Z-eigenvectors, it suffices to determine the values of
the state for initial points x0 = c ± gr as these values bound
all other points. Given that the generators are finite, we can
determine the reachable set.

We demonstrate the computation of the reachable set for
an initial set represented as a zonotope and axis-aligned with
the Z-eigenvectors of A in Algorithm 1. We assume that our
reference frame is initially aligned with the axes defined by
the Z-eigenvectors of A and subsequently reorient this frame
back to the standard coordinate axes by multiplying V to the
center and generators of the calculated reachable set. In the
algorithm, c and gr represent the center and generators of
the initial zonotope, respectively. α[r] and β[r] denote the
rth component of vectors α and β, respectively. rs_center[r]
and rs_gen[r] represent the rth component of the center and
generator of the reachable set at time t, respectively. V is the
matrix containing the Z-eigenvectors of A.

By employing Algorithm 1, one can compute the reach-
able set for an axis-aligned initial set. One can extend this
algorithm to a general initial set by performing an axis-
aligned set decomposition of the initial set mentioned earlier
and treating each hyperbox obtained from this decomposition

Algorithm 2 Reachable Sets of odeco HPDSs for General
Initial Sets

boxes ← decomposition(initial set, E)

for each br in boxes do
box_RS[r] ← reachable_set_axis-aligned(br)

end for
RS ← ∪M

r=1 box_RS[r]

as an independent axis-aligned initial set, see Algorithm 2.
Here, E represents the volume threshold for the decomposition
and M represents the total number of boxes obtained in the
decomposition of the general initial set. When E → 0, the
union of the generated axis-aligned sets tends to the original
set. For our methods, choosing E four orders of magnitude
smaller than the initial set is sufficient, as will be demonstrated
in Section IV. box_RS[r] represents the reachable set of
the rth hyperbox in the decomposition of the initial set. By
calculating the outer-bound box approximations of sets, the
union operation provides the outer approximations of the
reachable sets, ensuring safety.

B. Reachable Sets of odeco HPDSs With Constant
Controls

We demonstrate that the ordering properties, similar to the
zero control case, persist for the solution of the constant
control case. This is utilized to determine the reachable sets
using a finite number of points.

Lemma 2: The following function

f (α) =
g
(

k−2
k−1 , −b̃

λαk−2

)

(k − 2)λαk−2
(11)

is monotonic for constant k ≥ 3, b̃, λ.
Proof: Consider zg(a, z) with 0 < a < 1

zg(a, z) = az
∞∑

m=0

zm

a+ m
, (12)

and

∂

∂z

(
zg(a, z)

)
= a

∞∑

m=0

(m+ 1)zm

a+ m
. (13)

When z ≥ 0, the partial derivative is greater than 0 since all
terms in the summation are positive. When z < 0, consider
two successive terms in the summation

2k + 1

a+ 2k
z2k + 2k + 2

a+ 2k + 1
z2k+1. (14)

We know that since 0 < a < 1,

2k + 1

a+ 2k
> 1 =⇒ 2k + 1

a+ 2k
>

2k + 2

a+ 2k + 1
. (15)

Further, g(a, z) is defined for |z| < 1, hence, |z2k| > |z2k+1|.
Hence,

∣∣∣∣
2k + 1

a+ 2k
z2k

∣∣∣∣ >

∣∣∣∣
2k + 2

a+ 2k + 1
z2k+1

∣∣∣∣. (16)

This implies that every pair of terms adds to a positive number
in the summation. Thus, zg(a, z) increases in z.
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Algorithm 3 Reachable Sets of odeco HPDSs With Constant
Input for Axis-Aligned Initial Sets

for each generator gr do
α← V�(c+ gr)

β ← V�(c− gr)

rsbound1 ← solve for x in t = fr(α[r])− fr(x)
rsbound2 ← solve for x in t = fr(β[r])− fr(x)
rs_center[r] ← 0.5×(rsbound1 + rsbound2)
rs_gen[r] ← 0.5×(rsbound1 - rsbound2)V�gr

end for
RS ← Zonotope{V×rs_center, V×rs_gen}

Notice that f (α) is cαz1g(a, z1) where c is a constant and
z1 = − b̃

λα
. Further, α and z1g(a, z1) are monotonic in α when

the other variables are constant. The product of two monotonic
functions is monotonic if and only if they have the same
sign. Because both α and z1g(az1) are positive and negative
in the left and right half-planes respectively, their product is
monotonic.

Lemma 3: Let x1(t) =∑n
r=1 ar(t)vr be the solution of (5)

for the initial condition x0 = ∑n
r=1 αrvr and x2(t) =∑n

r=1 br(t)vr be the solution with x0 = ∑n
r=1 βrvr as the

initial condition. If αr, βr 
= 0, αr > βr and f (αr)− t, f (βr)− t
have the same sign for t ∈ [0, T] some r ∈ [1, n], then ar(t) >

br(t) for all t ∈ [0, T].
Proof: In Lemma 2, we proved that the function f (α) is

monotonic. We can also see that f (α) is undefined at α = 0.
The solution to (5) can be found by solving for c for each
component of the vector, the implicit equation f (αi)−t = f (ci).
If the function is monotonically decreasing, then

αr > βr =⇒ f (αr)− t < f (βr)− t =⇒ f (ar) < f (br) (17)

Hence, ar(t) > br(t) since f is decreasing. If the function is
monotonically increasing, then

αr > βr =⇒ f (αr)− t > f (βr)− t =⇒ f (ar) > f (br) (18)

Hence, ar(t) > br(t) using the fact that f is monotonically
increasing. In both cases, ar(t) > br(t) for all t.

As outlined in Lemma 1, we establish an order among
the solution values based on the initial condition values.
Additionally, we introduce a criterion on f (αr)−t and f (βr)−t
having the same sign to ensure that no point in the reachable
set is undefined. We can once again leverage the concept of
using a rotated frame aligned with the Z-eigenvectors of A to
evaluate the reachable set of the system, followed by a rotation
of the reachable set to obtain results in our standard coordinate
frame. This leads us to the following algorithm (Algorithm 3).

As before, define c and gr as the center and generators of
the initial zonotope, respectively. α[r] and β[r] denotes the
rth component of vectors α and β respectively. rs_center[r]
and rs_gen[r] represent the rth component of the center and
generator of the reachable set at time t, respectively. V is the
matrix containing the Z-eigenvectors of A. Furthermore, we
define the following function:

fr(x) =
g
(

k−2
k−1 ,− br

λrxk−1

)

(k − 2)λrxk−1
. (19)

Algorithm 4 Reachable Sets of odeco HPDSs With Constant
Input for General Initial Sets

boxes ← decomposition(initial set, E)

for each bi in boxes do
box_RS[r] ← rs_axis-aligned_with_control(br)

end for
RS ← ∪M

r=1 box_RS[r]

Algorithm 5 Reachable Sets of General HPDSs

IS_y ← P−1(IS)
RS_y ← reachable_set_non_axis-aligned(IS_y)
RS ← PRS_y

Note that we use br instead of b̃r since b̃r becomes br in
the frame with the Z-eigenvectors as the axes. Similar to the
approach adopted for odeco HPDSs, we suggest employing
axis-aligned box decomposition to determine the reachable
sets of general initial sets and propose the following algorithm
(Algorithm 4).

C. Reachable Sets of Non-odeco HPDSs

As mentioned earlier, every HPDS can be represented by
a tensor A of order k that is symmetric along its first k − 1
modes. These tensors are called almost symmetric and can be
decomposed as

A =
n∑

r=1

vr ◦ vr ◦ · · · ◦ vr ◦ v(f )
r (20)

It was shown in [6, Proposition 6] that if there exists an
invertible linear transform P and diagonal matrix � such that
P�V is orthogonal and P�V = P−1V(f )�−1, where V and
V(f ) contain vr and v(f )

r respectively, then the non-odeco HPDS
ẋ = Axk−1 can be transformed to ẏ = Ãyk−1 where Ã is an
odeco-tensor and x(t) = Py(t).

This result is used to determine the reachable sets for
general HPDSs that satisfy the above conditions. We transform
the state tensor A to its transformed odeco HPDS Ã by finding
the matrices P, V, V(f ) and �. We use Algorithm 5 to find the
reachable sets of these systems. IS represents the initial set
defined for the original system.

The linear transformation P does not always exist.
Nevertheless, we can find an approximated tensor close to the
target tensor for which P exists [6, Algorithm 6]. Additionally,
P can be computed from the CANDECOMP/PARAFAC
decomposition factor matrix of the approximated tensor. The
CANDECOMP/PARAFAC decomposition can be achieved
using nonlinear least squares, which is often efficient for small-
and medium-sized tensors. However, for large-sized tensors,
the computational burden can be substantial.

These algorithms enable us to over-approximate the reach-
able sets of odeco HPDSs both with and without constant
control. The level of over-approximation can be adjusted by
tuning the value of E in the box decompositions of non-axis-
aligned initial sets, as this is the only approximation made in
our algorithm. This provides us with control over the trade-off
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Fig. 2. Projection of the reachable sets on the X-Z plane for odeco
HPDS generated by Algorithm 1 and CORA.

between the accuracy of the solution and the computational
time required.

IV. RESULTS

We simulated a variety of odeco-HPDS with and without
control over a range of state-space dimensions and evolution
times. For each simulation, we noted the volumes of the
reachable set generated by CORA and the reachable set gen-
erated by our method. We observed a significant improvement
that scaled up with both the system’s dimension and the
evolution time. As a proxy to the ground truth reachable
set, we randomly initialized and integrated points within the
initial set according to system dynamics. The accuracy of our
method was validated by ensuring that the terminal states of
these simulations lay within the reachable set generated by our
method for all initial points.

A. Simulation Results

We demonstrate our method through the following exam-
ples. In the first example, we simulated an axis-aligned
3-dimensional odeco-HPDS with no control over 15 timesteps.
As this set is already aligned with the Z-eigenvectors of the
state tensor, there was no need to conduct box decomposition
of the initial set, and we could directly utilize Algorithm 1.
The projections of the simulation on the X-Z plane are shown
in Fig. 2.

In the second example, we considered an odeco-HPDS with
constant control. The initial set we considered is a 5× 5× 5
box centered at (10, 20, 30). This set is not aligned to the
Z-eigenvectors of the state tensor, so we used Algorithm 4 to
compute the reach set. We set a threshold of E = 0.1 for
the box decomposition of the initial set and simulated over
5 timesteps. CORA overapproximated the volume by a factor
of 1.94 even with such a low-resolution box decomposition,
validating our method. As mentioned in Section III-B, odeco-
HPDS with constant controls have a singularity. There was
a significant propagation of errors in CORA that led to a
reachable set explosion, preventing us from comparing our
method for longer evolution times. Results are displayed in
Fig. 3.

Fig. 3. Projection of the reachable sets on the X-Y plane for odeco
HPDS with constant control generated by Algorithm 4 and CORA.

B. Performance Comparison

We tested our methods against CORA for several high-
dimensional systems and for different evolution times
(represented as timesteps). CORA performs poorly on these
systems, as is seen from the results in Table I. There is a sig-
nificant difference in the volumes generated that increases with
the dimension of the system and the timesteps. Eventually,
CORA fails because the propagated errors cause the reachable
set to grow unbounded, which is represented using RSE
(reachable set explosion). CORA fails at smaller evolution
times for larger dimensional systems and does not work at all
for systems greater than 10 dimensions. Our methods continue
to give results that closely match the random simulations.

We parallelized and ran our experiments using 8 cores of
an AMD Ryzen 7 5800H processor. The simulation runtimes
are reported in Table II. Algorithms 1 and 3 require less com-
putational time than CORA. Algorithm 4 requires a nonlinear
solver to find a root of (6) for each box in the decomposition,
which leads to a larger computational time. In Algorithm 2, the
primary contribution to the computational time is the recursive
box-decomposition algorithm [5, Algorithm 6]. Based on
these results, our methods often represent the sole feasible
approach for determining reachable sets in systems exceeding
10 dimensions or longer evolution times.

C. Autocatalytic Reactions

Autocatalytic reactions are chemical reactions in which the
product acts as a catalyst in the reaction to produce more
of itself. These reactions find widespread use in the study of
evolution and biochemistry. In this example, we considered a
chained autocatalytic reaction in which S acts as a catalyst to
convert R into S through the following reversible reaction:

2R � R+ S � 2S.

The kinetics of this reaction can be represented as
{ ˙[R] = −0.0419[R]2 + 0.075[R][S]−0.0915[S]2

˙[S] = 0.0435[R]2−0.212[R][S]+ 0.1938[S]2 ,

where [R] and [S] represent the concentrations of the species
R and S, respectively.
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TABLE I
VOLUMES OF REACHABLE SETS FOR SYSTEMS WITH DIFFERENT DIMENSIONS.

RSE REPRESENTS FAILURE DUE TO A REACHABLE SET EXPLOSION

TABLE II
COMPUTATIONAL TIME VS CORA IN SECONDS

Fig. 4. Reachable sets representing chemical concentrations generated
by Algorithm 5 and CORA.

We converted the HPDS into the tensor form (1) with

A:1 =
[−0.042 0.038

0.038 −0.092

]
,A:2 =

[
0.044 −0.106
−0.106 0.194

]
.

It can be shown that A is not odeco, but it can be trans-
formed into an odeco tensor using the method shown in
Section III-C. We verified that this transformation can be done
using

P =
[

7 2
4 −1

]
,� =

[−0.5 0
0 −0.2

]
.

We simulated this system using Algorithm 5 based on an
initial set over 15 time steps. Here, CORA overapproximated
the reachable set by a factor of 2.7 at the final timestep. The
results of the simulation are displayed in Fig. 4.

V. CONCLUSION

This letter describes how to perform the reachability analy-
sis of odeco HPDSs and certain general HPDSs. The proposed
method improves accuracy over existing methods for the

reachability analysis of dynamical systems. Overly conser-
vative estimates may lead to unnecessary design constraints,
increased computational complexity, and missed opportunities
for system optimization. The proposed method represents a
significant step toward mitigating these challenges. To expand
the applicability of this method, one could explore the possibil-
ity of approximating general HPDSs and general polynomial
systems as odeco HPDSs while ensuring that the safety
guarantees are not violated. Investigating the performance of
this method using various set representations, such as star sets,
could be explored in future work. Finally, one could explore
the possibility of applying this method to other systems that
have exact solutions and similar ordering properties as shown
in Section III.

REFERENCES

[1] Reachable Sets of odeco-HPDS using Exact Solutions. Accessed:
Apr. 2024. [Online]. Available: https://github.com/ramvasudevan/
HPDSReachSets

[2] T. Alamo, J. M. Bravo, and E. F. Camacho, “Guaranteed state estimation
by zonotopes,” Automatica, vol. 41, no. 6, pp. 1035–1043, 2005.

[3] M. Althoff, “An introduction to CORA 2015,” in Proc. ARCH@
CPSWeek, 2015, pp. 120–151.

[4] M. Althoff, O. Stursberg, and M. Buss, “Reachability analysis of nonlin-
ear systems with uncertain parameters using conservative linearization,”
in Proc. 47th IEEE Conf. Decis. Control, 2008, pp. 4042–4048.

[5] A. Bemporad, C. Filippi, and F. D. Torrisi, “Inner and outer approxi-
mations of polytopes using boxes,” Comput. Geometry, vol. 27, no. 2,
pp. 151–178, 2004.

[6] C. Chen, “Explicit solutions and stability properties of homogeneous
polynomial dynamical systems,” IEEE Trans. Autom. Control, vol. 68,
no. 8, pp. 4962–4969, Aug. 2023.

[7] C. Chen, “On the stability of discrete-time homogeneous polynomial
dynamical systems,” Comput. Appl. Math., vol. 43, p. 75, Feb. 2024.

[8] C. Chen, A. Surana, A. M. Bloch, and I. Rajapakse, “Controllability of
hypergraphs,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1646–1657,
Jun. 2021.

[9] G. Craciun, “Polynomial dynamical systems, reaction networks, and
toric differential inclusions,” SIAM J. Appl. Algebra Geometry, vol. 3,
no. 1, pp. 87–106, 2019.

[10] S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R. Vasudevan,
“Bridging the gap between safety and real-time performance in receding-
horizon trajectory design for mobile robots,” Int. J. Robot. Res., vol. 39,
no. 12, pp. 1419–1469, 2020.

[11] R. Laubenbacher and B. Stigler, “A computational algebra approach to
the reverse engineering of gene regulatory networks,” J. Theor. Biol.,
vol. 229, no. 4, pp. 523–537, 2004.

[12] E. Robeva, “Orthogonal decomposition of symmetric tensors,” SIAM J.
Matrix Anal. Appl., vol. 37, no. 1, pp. 86–102, 2016.

[13] V. Shia, R. Vasudevan, R. Bajcsy, and R. Tedrake, “Convex
computation of the reachable set for controlled polynomial
hybrid systems,” in Proc. 53rd IEEE Conf. Decis. Control, 2014,
pp. 1499–1506.

[14] A. N. Starkov and A. N. Starkov, Dynamical Systems on Homogeneous
Spaces. Providence, RI, USA: Am. Math. Soc., 2000.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 05,2024 at 00:52:52 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


