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Abstract—In this paper we present a novel framework for
hypergraph similarity measures (HSMs) for hypergraph comparison.
Hypergraphs are generalizations of graphs in which edges may
connect any number of vertices, thereby representing multi-way
relationships which are ubiquitous in many real-world networks
including neuroscience, social networks, and bioinformatics. We
propose two approaches for developing HSMs. The first approach is
based on transforming the hypergraph into a graph representation,
e.g., clique and star expansion, and then invoking the standard graph
similarity measures. The second approach relies on a tensor-based
representation of hypergraphs which intrinsically captures multi-way
relations, and define similarity measures using tensor algebraic
notions. Within each approach we present a collection of measures
which either assess hypergraph similarity at a specific scale e.g.,
local, mesoscopic or global, or provide a more holistic multi-scale
comparison. We discuss the advantages and disadvantages of the two
proposed approaches, and demonstrate their performance on
synthetic hypergraphs and hypergraphs derived from experimental
biological datasets.

Index Terms—Hypergraphs, similarity measures, tensors, bio-
logical systems.

I. INTRODUCTION

COMPLEX systems in sociology, biology, cyber-secu-

rity, telecommunications, and physical infrastructure

are often represented as a set of entities, i.e., “vertices” with

binary relationships or “edges,” and hence are analyzed via

graph theoretic methods. Graph models, while simple and to

some degree universal, are limited to representing pairwise

relationships between entities. However, real-world phenom-

ena can be rich in multi-way relationships, dependencies

between more than two variables, or properties of collections

of more than two objects. Examples include computer net-

works where the dynamic relations are defined by packets

exchanged over time between computers, co-authorship net-

works where relations are articles written by two or more

authors, historical documents where multiple persons can be

mentioned together, brain activity where multiple regions

can be highly active at the same time, film actor networks,

and protein-protein interaction networks [1], [2], [3], [4].

Furthermore, hypergraph representation and learning has

recently attracted increasing attention due to its flexibility

and capability in modeling complex data correlation, and is

being utilized in a diverse set of applications, including com-

puter vision [5], medical imaging [6], recommendation sys-

tems [7], and mode seeking in graphs [8], [9], see [10] for a

recent review.

A hypergraph is a generalization of a graph in which its

hyperedges can join any number of vertices [11]. Thus,

hypergraphs can capture multi-way relationships unambig-

uously [12], and are a natural representation of a broad

range of systems mentioned above. Although an expanding

body of research attests to the increased utility of hyper-

graph-based analyses, many network science methods have

been historically developed explicitly (and often, exclu-

sively) for graph-based analyses and do not directly trans-

late to hypergraphs. Consequently, new frameworks are

being developed for representation, learning, and analysis

of hypergraphs, see [2], [3] for a recent survey. These

include techniques for converting hypergraphs into graphs

and defining hypergraph Laplacian [13], higher-order ran-

dom walks-based hypergraph analysis [14], and defining

dynamics on hypergraphs [15].

As tensors [16] provide a natural framework to represent

multi-dimensional patterns and capture higher-order interactions,

they are finding increasing role in context of hypergraphs. For

example, the spectral theory of graphs has been extended to

hypergraphs using tensor eigenvalues [17], and authors in [18]

define notion of tensor entropy for uniform hypergraphs general-

izing von Neumann entropy of a graph to hypergraphs. The prob-

lem of controllability of dynamics on hypergraphs is studied via

tensor-based representation and nonlinear control theory in [19].

Similar to above mentioned work, the goal of this paper is to

extend the graph comparison framework to hypergraphs.

Comparison of structures such asmodular communities, hubs,

and trees yield insight into the generative mechanisms and func-

tional properties of the graph. Graph comparison can be used for

comparing brain or metabolic networks for different subjects, or

the same subject before and after a treatment, and for character-

izing the temporal network evolution during treatment [20].

Classification of graphs, for example in context of protein-pro-

tein interaction networks and online social networks can be facil-

itated via use of graph comparison measures [21]. Combined

with a clustering algorithm, a graph comparison measure can be

used to aggregate networks in a meaningful way and reveal

redundancy in the data/networks [22]. Graph comparison can be
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used for evaluating the accuracy of statistical or generative net-

work models [23], and can be further utilized as an objective

function to drive the optimization procedure to fit graph models

to data.

In order to compare graphs, a variety of similarity meas-

ures (SM) or distances have been proposed in the literature

which either assess similarity at a specific scale e.g., local

or global, or provide a more holistic multi-scale compari-

son. See references [20], [24], [25] for a comprehensive

review. While there is a rich body of literature for graph

similarity measures (GSM), analogous notions for hyper-

graph are lacking in literature. To address this gap, we

propose two new approaches for comparison of undirected

and weighted hypergraphs. Just like for GSMs within each

of these hypergraph similarity measure (HSM) approaches

we present a collection of SMs which either assess hyper-

graph similarity at a specific scale or provide a multi-scale

comparison. Specifically, the key contributions of this

paper are as follows:

� We develop an indirect approach for comparing

hypergraphs by first transforming the hypergraph

into a graph and then invoking standard GSMs. In

particular we explore clique and star expansion for

this transformation. While information about hyper-

graph structure may be lost during such transforma-

tions/projections, the assumption is that relevant

salient features may still be preserved which are suf-

ficient to capture key differences between underlying

hypergraphs. We refer to these SMs as indirect

HSMs.

� We introduce another direct approach which relies

on tensor-based representation of hypergraphs which

intrinsically captures the multi-way relations encoded

by its hyperedges. In particular we use adjacency tensor

and Laplacian tensor associated with hypergraphs, and

tensor algebraic notions of tensor eigenvalues/eigenvec-

tors and higher-order singular values to develop new

notions of SMs for hypergraphs. We refer to these SMs

as direct HSMs.

� We test the proposed HSMs on synthetic hypergraphs to

assess their usability in discerning between common

hypergraph topologies. We also apply the methods to

experimental hypergraph datasets arising in biological

applications.

The paper is organized into seven sections. We intro-

duce basic notation and mathematical preliminaries related

to hypergraphs, and discuss some desirable characteristics

of HSMs in Section II. In Section III, we provide a short

survey of different GSMs. We then use these GSMs in

Section IV to define indirect HSMs based on conversion of

hypergraphs into graphs. In Section V, we develop notions

of direct HSMs using tensor-based representation of hyper-

graphs. Applications to synthetic and experimental hyper-

graph datasets are presented in Section VI. We discuss

pros/cons of indirect and direct HSMs and directions

for future research in Section VI-D, and conclude in

Section VII.

II. PRELIMINARIES

A. Hypergraph

Let V be a finite set. A undirected hypergraph G is a pair

ðV;EÞ where E � PðV Þnf;g, the power set of V . The ele-

ments of V are called the vertices, and the elements of E are

called the hyperedges. We note that in this definition of hyper-

graph we do not allow for repeated vertices within an hyper-

edge (often called hyperloops). For an undirected weighted

hypergraph ðV;E;wð�ÞÞ, there is positive weight function w :
E ! ð0;1Þ which defines a weight wðeÞ > 0 associated

with each hyperedge e 2 E. The degree dðvÞ of a vertex v 2
V is dðvÞ ¼

P
e2Ejv2e wðeÞ. The degree of an hyperedge e is

denoted by dðeÞ ¼ jej, where j � j denotes set cardinality. For
k-uniform hypergraphs, the degree of each hyperedge is the

same, i.e. dðeÞ ¼ k. The vertex-hyperedge incidence matrix H
is a jV j � jEj matrix where the entry hðv; eÞ is 1 if v 2 e and 0
otherwise. By these definitions, we have,

dðvÞ ¼
X
e2E

wðeÞhðv; eÞ; dðeÞ ¼
X
v2V

hðv; eÞ:

Let De and Dv be the diagonal matrices consisting of hyper-

edge and vertex degrees as diagonal entries, respectively. Sim-

ilarly we will denote by W the diagonal matrix formed by

hyperedge weights wð�Þ as its diagonal entries. If not stated

otherwise, we will assume that the hypergraph in consider-

ation is undirected and weighted throughout this paper.

Note that a standard graph is a 2-uniform hypergraph. We

will denote a standard graph by G, and by A as its adjacency

matrix which is jV j � jV j matrix with entry ðu; vÞ equal to the

edge weight wðeÞ (where e is such that ðu; vÞ 2 e) if they are

connected, and 0 otherwise. The incidence matrix H, and the

diagonal matricesDv andW are similar to as defined above.

B. Hypergraph Similarity Measure (HSM)

Let G be the space of hypergraphs with finite number of

vertices. A hypergraph similarity measure (HSM) D is a sym-

metric non-negative function D : G�G ! ½0;1Þ, i.e.

DðG; ~GÞ ¼ Dð~G;GÞ for any G; ~G 2 G. D quantifies distance

between two hypergraphs with smaller values indicating

higher degree of similarity.

Note that in general D is not required to satisfy DðG; ~GÞ ¼ 0
even when G and ~G are isomorphic, or the triangular inequal-

ity, and thus may not be a valid metric. But depending on the

application, such requirements may be further imposed on D.

Approaches to graph comparison can be roughly divided into

two groups, those that consider or require two graphs to be

defined on the same set of vertices, and those that do not.

To distinguish SMs which have been defined specifically

for graphs in the literature, we will refer to them as graph sim-

ilarity measures (GSMs), and denote them byD.

C. Properties of Similarity Measures

In this section we summarize some desirable properties of

graph similarity measures which have been noted in the litera-

ture, and can also be applied in context of hypergraphs. These
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properties can serve as guidelines for selecting appropriate

SM, and can further be modified and enriched by the data ana-

lyst depending on the application at hand. Examples of some

desirable properties for the SMs include [26]:

� Edge-importance [EI]: modifications of the graph struc-

ture yielding disconnected components should be penal-

ized more.

� Edge-submodularity [ES]: a specific change is more

important in a graph with a few edges than in a denser

graph on the same vertices.

� Weight awareness [WA]: the impact on the similarity

measure increases with the weight of the modified edge.

� Focus awareness [FA]: random changes in graphs are

less important than targeted changes of the same extent.

Depending on the application, additional invariance prop-
erties may be imposed on the SMs, such as [27]:

� Permutation-invariance [PI]: implies that if we permute

the node indices the SM does not change. So if two

graphs are isomorphic, then for a permutation invariant

SM, the SM will be zero.

� Scale-adaptivity [SA]: implies that the SM accounts for

differences in both local (edge and node) and global

(community) features. Using local features only, a SM

would deem two graphs sharing local patterns to have

near-zero distance although their global properties

(such a page-rank features) may differ, and, conversely,

relying on global features only would miss the differen-

ces in local structure (such as connectivity of nodes

locally to each other).

� Size-invariance [SI]: is the capacity of SM to discern if

two graphs contain similar substructures irrespective of

number of nodes in the graphs. For example, two social

graphs with different number of nodes containing same

fixed-size communities (e.g., criminal circles) should

have a near-zero SM.

III. REVIEW OF GRAPH SIMILARITY MEASURES

We review some key GSMs, the material is taken from the

survey articles [24], [25], [28]. Approaches to graph compari-

son can be categorized from different perspectives.

One categorization is based on whether the graph compari-

son method requires the two graphs to be defined on the same

set of vertices or not. The former eliminates the need to dis-

cover a mapping between node sets, making comparison rela-

tively easier. A common approach for comparison without

assuming node correspondence is to build the SM using graph

invariants. Graph invariants are properties of a graph that hold

for all isomorphs of the graph. Using an invariant mitigates

any concerns with the encoding of the graphs, and the SM is

instead focused completely on the graph topology.

Another categorization of graph comparison methods is

based on scale at which they compare structures [28]. Local

SMs are only sensitive to differences in direct neighbourhood

of each node, while global SMs may ignore node identities

and perceive differences only in global structures in the graph

such as hubs, communities, number of spanning trees, etc. On

the other hand, mesoscopic SMs work at intermediate scale

such that they not only preserve vertex identities but also

incorporate information characterising vertices by their rela-

tionship to the whole graph, rather than uniquely with respect

to their neighbours. Finally, multi-scale SMs attempt to cap-

ture aspects from multiple scales i.e., local, global and/or

mesoscopic in quantifying differences between graphs.

Let G and ~G be two graphs under comparison with adja-

cency matrices A and ~A, respectively, and let their graph Lap-

lacians be L and ~L, respectively. The graph Laplacian L (and

similarly ~L) could be the standard combinatorial Laplacian

Lun ¼ Dv �A; (1)

or its normalized version,

L ¼ I�D�1=2
v AD�1=2

v : (2)

We shall denote Laplacian eigenvalues as 0 ¼ �1 � �2 �
� � � � �n. The literature remains divided on which version of

the Laplacian to pick for defining the SM. Since the eigenval-

ues of the normalized Laplacian are bounded between 0 and 2,

it makes it a more stable and preferable representation. There-

fore, if otherwise stated, we will always use the normalized

Laplacian L in definition of the GSMs.

� Structural SMs [28]: The simplest GSMs are obtained

by directly computing the difference of the adjacency

matrices of the two graphs and then using a suitable

norm e.g., Euclidean, Manhattan, Canberra, or Jaccard.

Examples of such GSMs include, the Hamming dis-

tance,

DHðG; ~GÞ ¼ 1

n2

Xn
i¼1

Xn
j¼1

jAij � ~Aijj;

and, the Jaccard distance,

DJðG; ~GÞ ¼ 1�
P

ij minðAij; ~AijÞP
ij maxðAij; ~AijÞ

:

Structural SMs focus on differences in the direct local

neighborhood of each node, and are agnostic to other

more global structures in the graph.

� Feature-based SMs [29], [30]: Another possible method

for comparing graphs is to look at specific “features” of

the graph, such as the degree distribution, betweenness

centrality distribution, diameter, number of triangles,

number of k-cliques, etc. For graph features that are

vector-valued (such as degree distribution) one might

also consider the vector as an empirical distribution and

take as graph features the sample moments (or quan-

tiles, or other statistical properties). A feature-based dis-

tance is a distance that uses comparison of such features

to compare graphs. If we are using node dependent fea-

tures, the method aggregates a feature-vertex matrix of

size k� n, where k is number of features selected. This

feature-vertex matrix for the two graphs can then be

directly compared, or can be further reduced to a
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“signature vector” that consists of the mean, median,

standard deviation, skewness, and kurtosis of each fea-

ture across vertices. These signature vectors are then

compared in order to obtain a SM between graphs.

NETSIMILE [29] is an example of feature based dis-

tance which uses local and egonet-based features (e.g.,

degree, volume of egonet as fraction of maximum pos-

sible volume, etc.). In the neuroscience literature, in

particular, feature-based methods are fairly popular.

In this paper, we will utilize node centrality vector c ¼
ðc1; . . . ; cnÞT as the feature for graph comparison,

where superscript T denotes the vector/matrix trans-

pose. Let ci; i ¼ 1; . . . ; n and ~ci; i ¼ 1; . . . ; n be nor-

malized (i.e. jjcjj1 ¼ jj~cjj1 ¼ 1, where jj � jjp is p-vector/
matrix norm.) node centralities for the graphs G and ~G,

respectively, then centrality-based SM is given by:

DCðG; ~GÞ ¼ 1

n

Xn
i¼1

jci � ~cij: (3)

Note that one could use any notion of centrality, e.g.,

betweeness centrality, closeness centrality, eigenvector

centrality, etc, as relevant for the application [30].

Since, centrality measures typically characterize verti-

ces as either belonging to the core or to the periphery

of the graph, and thus encode global topological infor-

mation on the status of vertices within the graph, SMs

based on centrality capture mesoscopic differences

between graphs.

� Spectral SMs [28], [31]: Spectral SMs on the other

hand are more suitable for analyses where the criti-

cal information in the graph structure is contained at

a global scale, rather than locally. Spectral SMs are

global measures defined using the eigenvalues of

either the adjacency matrix A or of some version of

the Laplacian L. Both the eigenvalues of the Lapla-

cian and those of the adjacency matrix can be related

to physical properties of a graph, and can thus be

considered as characteristics of its states. The adja-

cency matrix does not downweight any changes and

treats all vertices equivalently. On the other hand,

the eigenspectrum of the Laplacian accounts for the

degree of the vertices and is known to be robust to

most perturbations. Specific example of spectral

SMs include lp distance on space of Laplacian eigen-

values,

D�ðG; ~GÞ ¼ 1

n

Xn
i¼1

j�i � ~�ijp; (4)

and spanning tree SM,

DST ðG; ~GÞ ¼ jlog ðTGÞ � log ðT ~GÞj; (5)

where, TG is number of spanning trees in the graph,

given by

TG ¼ 1

n

Yn
i¼2

�i:

Other SMs include distances based on the eigenspec-

trum distributions,

DrðG; ~GÞ ¼
Z

jrGðxÞ � r ~GðxÞjdx; (6)

where,

rGðxÞ ¼
1

n

Xn
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2ps2

p e
�ðx��iÞ2

2s2 :

Another related SM is the Ipsen–Mikhailov distance

which characterizes the difference between two graphs

by comparing their spectral densities, rather than the

raw eigenvalues themselves.

� DELTACON [26]: This SM is based on the fast belief

propagation method of measuring node affinities. It

uses the fast belief propagation matrix

S ¼ ½Iþ �2D� �A��1;

where, 0 < � 	 1, and compares the two representa-

tions S and ~S via the Matusita difference, leading to

DDðG; ~GÞ ¼ 1

n2

Xn
i¼1

Xn
j¼1

ffiffiffiffiffiffi
Sij

p
�

ffiffiffiffiffiffi
~Sij

q� �2
 !1=2

:

(7)

Fast belief propagation is designed to model the diffu-

sion of information throughout a graph, and so in the-

ory should be able to capture differences in both global

and local structures in the graph.

� Heat Spectral Wavelets [32]: An alternative is to derive

characterizations of each node’s topological properties

through a signal processing approach. A specific exam-

ple for this type of SM include the heat spectral wave-

lets in which the eigenvalues are modulated and

combined with their respective eigenvectors to yield a

“filtered” representation of the graph’s signal. For a

given scale factor t > 0, structural signature ju for

each node u is defined to be a vector of coefficients,

jtu ¼ ðCt
1;u;C

t
2;u; . . . ;C

t
n;uÞ

T ;

where,

Ct
v;u ¼

Xn
i¼1

e�t�iVuiVvi;

with, L ¼ VLLLLLLLVT being the Laplacian’s eigenvector

decomposition. Let ju ¼ ððjt1u ÞT ; . . . ; ðjtmu ÞT ÞT be the

combined vector for a set of selected scales

t1; t2; . . . ; tm. By choosing these scales appropriately,

one can capture information on the connectedness and

centrality of each node within the network, thereby

providing a way to encompass in a single Euclidean
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vector all the necessary information to characterize

vertices’ topological status within the graph. Then the

heat kernel SM between the graphs amounts to the

average l2 distance between corresponding node’s

structural embedding ji, i.e.,

DHKðG; ~GÞ ¼ 1

n

Xn
i¼1

jjji � ~jijj2: (8)

� NetLSD [27]: Similar to heat spectral wavelet, in net-

work Laplacian spectral descriptor (NetLSD) a heat

kernel is defined as,

Ht ¼ e�tL ¼ Ve�LLLLLLLtVT ;

along with its heat trace,

ht ¼ TrðHtÞ ¼
Xn
j¼1

e��jt:

Then the NetLSD condenses the graph representation

in form of a heat trace signature hðGÞ ¼ fhtgt> 0,

which comprises of a collection of heat traces at differ-

ent time scales t. The continuous-time function ht is

finally transformed into a finite-dimensional vector by

sampling t over a suitable time interval. The SM

between G and ~G is then taken to be the l1 norm of

vector difference between hðGÞ and hð ~GÞ, i.e.,

DLSDðG; ~GÞ ¼ jjhðGÞ � hð ~GÞjj1: (9)

Note, that the heat kernel can be seen as continuous-

time random walk propagation (where, ðHtÞij is the

heat transferred from node i to node j at time t), and

its diagonal (sometimes referred to as the autodiffusiv-

ity function or the heat kernel signature) can be seen as

a continuous-time PageRank. As t approaches zero,

the Taylor expansion yields Ht ¼ 1� Lt meaning the

heat kernel depicts local connectivity. On the other

hand for large t, Ht ¼ 1� e�t�2v2v
T
2 where v2 is the

Fielder vector, and it encodes global connectivity.

Thus, the heat kernel localizes around its diagonal and

the degree of localization (as captured by the heat

trace) depends on the scale t. It can thereby be tuned

to capture both local and global graph structures.

� Graph Embedding-based SMs [33]: Given the diversity

of structural features in graphs, and the difficulty of

designing by hand the set of features that optimizes the

graph embedding, several researchers have proposed

recently to learn the embedding from massive datasets

of existing networks. Such algorithms learn an embed-

ding from a set of graphs into Euclidean space, and then

compute a notion of similarity between the embedded

representation of the graphs. All these approaches rely

on the extension of convolutional neural networks to

non Euclidean structures, such as manifolds and graphs.

For example, the SimGNN [34] approach uses graph

neural networks (GNNs) as a learnable embedding

function that maps a graph into an Euclidean vector.

� Graph Kernel-based SMs [35]: A popular approach to

learning with graph-structured data is to make use of

graph kernels – functions which measure the similarity

between graphs. These kernels can be used for compar-

ing graphs. Many different graph kernels have been

defined, which focus on different types of substructures

in graphs, such as random walks, shortest paths, sub-

trees, and cycles. One particular approach is based on

graphlets which are small, connected, non-isomorphic,

induced subgraph of a larger graph. There are 30 graph-

lets with 2- to 5-vertices. Each graphlet contains

“symmetrical vertices” which are said to belong to the

same automorphism orbit. The automorphism orbits

represent topologically different ways in which a graph-

let can touch a node. The Graphlet Degree Vector

(GDV) of a node generalises the notion of a node’s

degree into a 73-dimensional vector where each of the

73 components of that vector captures the number of

times node n is touched by a graphlet at orbit i. Using
GDV one can then define several different GSMs

including: relative graphlet frequency distance, graphlet

degree distribution agreement, and graphlet correlation

matrix/distance.

IV. APPROACH I: INDIRECT HSMS BASED ON GRAPH

REPRESENTATION

The first approach we a propose for defining HSMs is based

on transforming the hypergraph into a graph representation

and then invoking the standard GSMs.

A. Graph-based Hypergraph Representation

There are two main ways to transform a hypergraph in form

of a standard graph: clique expansion and star expansion [13],

see Fig. 1. Once hypergraph is represented in form of a stan-

dard graph, one can define appropriate adjacency matrix and

graph Laplacian. Rather than first transforming hypergraph

into a graph, some authors define hypergraph Laplacian

directly using analogies from the graph Laplacian. However,

it was shown in [13], that several of these direct definitions

are special cases of clique or star expansion which follows

from different ways of deriving edge weights for the trans-

formed graph from hyperedge weights of the hypergraph.

Thus, we focus on clique expansion and star expansion.

a) Clique expansion: The clique expansion algorithm con-

structs a graph Gc ¼ ðV;Ec 
 V 2; wcð�ÞÞ from the original

hypergraph G ¼ ðV;E;wð�ÞÞ by replacing each hyperedge e ¼
ðu1; . . . ; udðeÞÞ 2 E with an edge for each pair of vertices in

the hyperedge: Ec ¼ fðu; vÞ : u; v 2 e; e 2 Eg. Note that the

vertices in hyperedge e form a clique in the graph Gc. The

edge weight wcðu; vÞ can be defined in different ways leading

to different clique expansions. Thus, the normalized Laplacian

of the constructed graph Gc becomes
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Lc ¼ I� ðDc
vÞ

�1=2AcðDc
vÞ

�1=2;

where, Ac is the adjacency matrix

½Ac�uv ¼ wcðu; vÞ;

and, Dc
v is the vertex degree matrix with diagonal entries

dcðuÞ; u 2 V .

The standard clique approach minimizes the difference

between the edge weight of Gc and the weight of each hyper-

edge e that contains both u and v leading to,

wcsðu; vÞ ¼
X
e

hðu; eÞhðv; eÞwðeÞ; dcsðuÞ

¼
X
e2E

hðu; eÞðdðeÞ � 1ÞwðeÞ;

and thus,

Acs ¼ HWHT ; (10)

Lcs ¼ I� ðDcs
v Þ

�1=2AcsðDcs
v Þ

�1=2: (11)

Note that the above procedure can still be applied for

unweighted hypergraphs by using unit weights, i.e., wðeÞ ¼
1; 8e 2 E. For unweighted hypergraphs however, one could

use other constructions as well, see [13] for details. For exam-

ple, Bolla [36] proposed to use the weight/adjacency matrix,

Wco ¼ HD�1
e HT ;

leading to the combinatorial Laplacian for Gc being,

Lco ¼ Dv �HD�1
e HT : (12)

This definition arises in context of clustering of vertices in a

hypergraph, and the eigenvectors of Lco define the “best”

Euclidean embedding of the hypergraph in a sense of mini-

mum variance placement, i.e., vertices having many incident

edges in common are “closer” to each other in the Euclidean

embedding.

b) Star expansion: The star expansion algorithm con-

structs a graph G� ¼ ðV �; E�; w�ð�ÞÞ from the hypergraph G ¼

ðV;E; wð�ÞÞ by introducing a new vertex for every hyperedge

e 2 E, thus V � ¼ V [ E. It connects the new graph vertex e
to each vertex in e, i.e. E� ¼ fðu; eÞ : u 2 e; e 2 Eg. Note
that each hyperedge in E corresponds to a star in the graph

G�, and G� is a bi-partite graph. As in clique expansion, dif-

ferent choices can be made for edge weights w�ðu; eÞ of G�.
In general, the adjacency matrix A� of G� can be expressed as,

A� ¼
0jV j W�

ðW�ÞT 0jEj

� �
;

and the normalized Laplacian can be shown to be,

L� ¼ I �B�

�ðB�ÞT I

� �
;

where, B� is the jV j � jEj matrix

B� ¼ ðD�
vÞ

�1=2W�ðD�
eÞ

�1=2;

where, D�
v and D�

e are degree matrices with diagonal entries

d�ðuÞ, and d�ðeÞ, respectively, where,

d�ðuÞ ¼
X
e2E

w�ðu; eÞ; u 2 V;

d�ðeÞ ¼
X
u2V

w�ðu; eÞ; e 2 E:

Note that since number of hyperedges, i.e., jEj can be large,

the star expansion would result in a graph G� which can have

very large number of vertices making the application of GSM

challenging. Furthermore, even if two hypergraphs G and ~G
are defined on same node set V to begin with, the star expan-

sions, G� and ~G�, respectively will in general have a different

set of nodes.

To alleviate these issues, we propose to use the notion of

projected Laplacian as defined in [13]. Note that for any jV j þ
jEj eigenvector vT ¼ ½vTv ; vTe � of L� that satisfies L�v ¼ �v, it
follows that,

B�ðB�ÞTvv ¼ ð�� 1Þ2vv:

Thus, the jV j elements of the eigenvectors of L� correspond-

ing to vertices V 
 V � are eigenvector of the jV j � jV j

Fig. 1. Illustration of transformation of undirected weighted hypergraph into a graph by clique and star expansion. Also shown are the weights on the edges/
hyperedges.
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matrix,

B�ðB�ÞT ¼ ðD�
vÞ

�1=2W�ðD�
eÞ

�1ðW�ÞT ðD�
vÞ

�1=2:

Given this relationship between B�ðB�ÞT and L�,

L�
p ¼ I� B�ðB�ÞT ¼ I� ðD�

vÞ
�1=2A�

pðD�
vÞ

�1=2;

can be considered a projected normalized Laplacian on the

node set of the original hypergraph G, with A�
p,

A�
p ¼ W�ðD�

eÞ
�1ðW�ÞT ;

being the projected adjacency matrix. Note that the eigenval-

ues of L�
p lie in [0,1], i.e., 0 ¼ �1p � � � � <¼ �np � 1.

We next discuss different choices for weights w�ðu; eÞ. The
standard star expansion approach assigns the scaled hyper-

edge weight, i.e., w�sðu; eÞ ¼ wðeÞ
dðeÞ to each corresponding start

graph edge, so that the weight matrix becomes,

W�s ¼ HWD�1
e ;

leading to

d�ðuÞ ¼
X
e2E

hðu; eÞwðeÞ=dðeÞ; u 2 V;

d�ðeÞ ¼ wðeÞ; e 2 E;

expressed in terms of original hypergraph’s G properties.

Another choice is w�ðu; eÞ ¼ wðeÞ, i.e.,

W�z ¼ HW;

which leads to D�
v ¼ Dv and D�

e ¼ WDe, and thus result-

ing in,

A�z
p ¼ HWD�1

e WHT ; (13)

and

L�z
p ¼ I�D�1=2

v HWD�1
e HTD�1=2

v ; (14)

which is the same hypergraph Laplacian as the one proposed

by Zhuo et al. [37]. This definition of hypergraph Laplacian

originates from relaxation of normalized hypergraph cut prob-

lem analogous to the standard normalized graph cut problem.

Infact, the eigenvector of L�z
p corresponding to its second

smallest eigenvalue encodes the information about subsets of

vertices in the hypergraph which are weakly connected to

each other.

For transforming hypergraph into graph for similarity com-

parison using GSMs, we propose to explore both the standard

clique expansion ((10) and (11)), and projected star expansion

based on Zhuo et al. construction ( (13) and (14)).

B. Indirect HSMs

Let G be a weighted hypergraph, and let GH be the graph

obtained by one of the approaches discussed in the previous

section. We will denote this transformation as GH ¼ T ðGÞ.
Given a transformation T and a GSM D, an indirect HSMs D

induced by the pair ðT ; DÞ is given by,

DT ;DðG; ~GÞ � DðT ðGÞ; T ð~GÞÞ ¼ DðGH; ~GHÞ: (15)

Note that depending on whether G and ~G have known or

unknown node correspondence, appropriate D can be chosen

from the GSMs discussed in Section III or any other available

in the literature. Furthermore, depending on application one

can pickD to capture local, global, mesoscopic, or multi-scale

differences.

For numerical demonstration we will choose one representa-

tive example of a local, global, mesoscopic, and multiscale

HSMs, namely, Hamming HSM (local), spectral HSM (global),

eigenvector centrality-based HSM (mesoscopic), and deltaCon

HSM (multiscale), see Section VI for details. For these selected

HSMs, we summarize in the Table I which SM properties (as

listed in Section II-C) are satisfied. This is based on empirical

analysis presented in [26], [32], [38], [39]: consequently, the

deductions in the table (other than for PI) are limited by the graph

topologies considered in the study and may not generalize to all

settings. Furthermore note that since in this paper we only con-

sider hypergraphs defined on same node set (and so having same

number of nodes), we have not included the size-invariance prop-

erty in the table.

V. APPROACH II: DIRECT HSMS BASED ON TENSOR-BASED

HYPERGRAPH REPRESENTATION

In this section we propose a second approach for defining

HSMs which is based on hypergraph representations that intrinsi-

cally capture multi-way relations using tensors. Recently, there

has been an increasing application of tensors for hypergraph

analysis, see for example [17], [40], [41], [42], [43], [44].

A. Tensor Preliminaries

A tensor is a multidimensional array [16], [45], [46], [47].

The order of a tensor is the number of its dimensions, and

each dimension is called a mode. An m-th order real valued

tensor will be denoted by X 2 RJ1�J2�����Jm , where Jk is the

size of its k-th mode. We will denote by J ¼ ðJ1; J2; . . . ; JmÞ.
The inner product of two tensors X;Y 2 RJ1�J2�����Jm is

defined as,

hX;Yi ¼
XJ1
j1¼1

. . .
XJm
jm¼1

Xj1j2...jmYj1j2...jm;

leading to the tensor Frobenius norm kXk2 ¼ hX;Xi. We say

two tensors X and Y are orthogonal if the inner product

hX;Yi ¼ 0. The matrix tensor multiplication X�k A along

TABLE I
SOME SELECTED INDIRECT HSMS AND SM PROPERTIES THEY SATISFY
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mode k for a matrix A 2 RI�Jk is defined by, ðX�k

AÞj1j2...jk�1ijkþ1...jm
¼
PJk

jk¼1 Xj1j2...jk...jmAijk : This product

can be generalized to what is known as the Tucker product,

X�1 A1 �2 A2 �3 � � � �m Am 2 RI1�I2�����Im: (16)

Tensor unfolding is considered as a critical operation in ten-

sor computations [16], [45], [48]. In order to unfold a tensor

X 2 RJ1�J2�����Jm into a vector or a matrix, we use an index

mapping function ivecð�;J Þ : Zþ �Zþ� � � �m �Zþ ! Zþ as

defined in [48], which is given by

ivecðj;J Þ ¼ j1 þ
Xm
k¼2

ðjk � 1Þ
Yk�1

l¼1

Jl:

where, j ¼ ðj1; j2; . . . ; jmÞ. The k-mode unfolding of X
denoted by XðkÞ, is a Jk � J1 � � � Jk�1Jkþ1 � � � Jm matrix,

whose ði; pÞ-th entries are given by

XðkÞði; pÞ ¼ Xj1...jk�1ijkþ1;...jm;

where, ~j ¼ ðj1; . . . ; jk�1; jkþ1; . . . ; jmÞ is such that p ¼
ivecð~j; ~J Þ with ~J ¼ ðJ1; . . . ; Jk�1; Jkþ1 � � � JmÞ.

a) HOSVD: Higher-order Singular Value Decomposition

(HOSVD) is a multilinear generalization of matrix SVD to

tensors [49]. HOSVD of a tensor X 2 RJ1�J2�����Jm is given

by:

X ¼ S�1 U1 �2 � � � �m Um; (17)

where, Uk 2 RJk�Rk satisfies UT
kUk ¼ I, and S 2

RR1�R2�����Rm is called the core tensor. The quantity Rk � Jk is
referred to as the k-mode multilinear rank of X, and is equal to

rank of k-mode matrix unfolding of X, i.e., Rk ¼ rankðXðkÞÞ.
The subtensors Sjk¼a of S obtained by fixing the k-th mode to a,

have the properties:

1) all-orthogonality: two subtensors Sjk¼a and Sjk¼b are

orthogonal for all possible values of k, a and b subject

to a 6¼ b;

2) ordering: kSjk¼1k  . . .  kSjk¼Jkk  0 for all possi-

ble values of k.
The Frobenius norms kSjk¼jk, denoted by g

ðkÞ
j , are known

as the k-mode singular values of X. De Lathauwer
et al. [49] showed that the number of nonvanishing k-mode
singular values of a tensor is equal to Rk. The classic strat-
egy for computing HOSVD involves a sequence of matrix
SVDs:

� For k ¼ 1; 2; . . . ;m, do the following:

– Construct the k-mode matrix unfolding of XðkÞ,
– Compute the compact SVD of the matrix XðkÞ ¼

UkSSSSSSSkV
T
k and store the left singular vectors Uk 2

RJk�Rk ,

� Compute the core tensor S ¼ X�1 U
T
1 �2 � � � �m UT

m.

Other faster methods are available, see for example [50].

b) Tensor Eigenvalues/Eigenvectors: Consider a m-th

order n dimensional cubical (i.e. with equal size Ji ¼ n; i ¼
1; . . . ;m in all modes) tensor A 2 Rn�n�����n. A is called

super-symmetric if Ai1;...;im ¼ Asði1...imÞ for all s 2 Sm, the

symmetric group of m indices. To a n-vector x ¼
ðx1; . . . ; xnÞT , real or complex, define a n-vector via Tucker

product as:

Axm�1 ¼ A�2 x�3 � � � �m x:

There are many different notions of tensor eigenvalues/

eigenvectors [51], [52]. A pair ð�; xÞ 2 R� fRn n f0gg is

called

� H-eigenvalue/eigenvector (or H-eigenpair) of A if it

satisfies,

Axm�1 ¼ �x½m�1�; (18)

where, ðx½m�1�Þi ¼ xm�1
i . Eigenvalue � is called Hþ or

Hþþ eigenvalue, if the corresponding eigenvector sat-

isfy x  0, or x > 0, respectively.
� Z-eigenvalue/eigenvector (or Z-eigenpair) of A if it

satisfies,

Axm�1 ¼ �x;

x2
1 þ � � � þ x2

n ¼ 1: (19)

� lp-eigenvalue/eigenvector (or lp-eigenpair) of A for any

p > 0 if it satisfies,

Axm�1 ¼ �x½p�1�;

xp
1 þ � � � þ xp

n ¼ 1: (20)

Note that lp-eigenvalue/eigenvector reduce to H-eigen-
value/eigenvector and Z-eigenvalue/eigenvector for p ¼ m
and p ¼ 2, respectively, where note the constraint in (20) is
superfluous for p ¼ m.

It was proved in [51] that H-eigenvalues and Z-eigenvalues

exist for an even order real super-symmetric tensor. A numeri-

cal procedure for computing H-eigenvalues is provided in [53]

with an associated MATLAB toolbox [54]. The procedure

involves homotopy continuation type method which can be

computationally intensive, thus making it challenging to scale

to large order/size tensors.

B. Tensor-based Hypergraph Representation

We follow tensor-based formulation proposed in [17] to

define hypergraph adjacency tensor and Laplacian tensor. Let

G ¼ ðV;E;wð�ÞÞ be a weighted hypergraph with n vertices,

and k be the maximum cardinality of the hyperedges, i.e.

k ¼ maxfjej : e 2 Eg.
a) Adjacency Tensor: The adjacency tensor A 2

Rn�n�����n of G, which is a k-th order n-dimensional super-

symmetric tensor, is defined as,

Aj1j2...jk ¼

wðeÞs
a

if e ¼ ði1; i2; . . . ; isÞ 2 E

0; otherwise

;

8><
>: (21)

where, j1; j2; . . . ; jk are chosen in all possible ways from

fi1; i2; . . . ; isg with at least once for each element of the set,

and
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a ¼
X

k1;...;ks1;
Ps

i¼1
ki¼k

k!Qs
i¼1 ki!

:

Using the adjacency tensor, the degree dðviÞ, of a vertex vi 2
V , can be expressed as,

dðviÞ ¼
Xn

j1;j2;...;jk¼1

Aij1j2...jk�1
: (22)

The choice of the nonzero coefficients
wðeÞs
a

preserves the

degree of each node, i.e., the degree of node j computed using

(22) with weights as defined above is equal to number of

hyperedges containing the node in the original non-uniform

hypergraph. Note that for a k-uniform hypergraph, above defi-

nition simplifies to,

Aj1j2...jk ¼

wðeÞ
k�1! if e ¼ ði1; i2; . . . ; ikÞ 2 E

0; otherwise

:

8><
>: (23)

b) Laplacian Tensor: Let D be a k-th order n-dimension

super-diagonal tensor with nonzero elements dii���i ¼ dðviÞ.
The hypergraph Laplacian tensor is defined as,

L ¼ D� A; (24)

which is also a k-th order n-dimension super-symmetric ten-

sor. Similarly, normalized hypergraph Laplacian tensor can

also be defined. We recall a result from [17], which establishes

following properties (which are analogous to case of graph

Laplacian) of L,
� L has an H-eigenvalue 0 with eigenvector v ¼

ð1; 1; . . . ; 1ÞT 2 Rn. Moreover, 0 is the unique

Hþþ-eigenvalue of L,
� D is the largest Hþ-eigenvalue of L, where D is maxi-

mum node degree of G,
� ðdðviÞ; eiÞ is an H-eigenpair, where ei 2 Rn are the

standard basis vectors.

H-eigenvalues of L, thus encode global structural proper-
ties of a hypergraph, and we propose to use them in gener-
alizing spectral GSM for hypergraphs.

c) Example: To motivate the advantage of using tensor-

based representation of hypergraphs over graph based repre-

sentation, we consider an example. Let V ¼ f1; 2; . . . ; 6g, and
let G ¼ ðV;EÞ and ~G ¼ ðV; ~EÞ be two hypergraphs, with

hyperedges E ¼ ff1; 2; 3g; f1; 5; 6g; f3; 4; 5g; f2; 4; 6gg and
~E ¼ ff1; 2; 6g; f1; 3; 5g; f2; 3; 4g; f4; 5; 6gg, respectively. It
can be shown that G and ~G are non-isomorphic (i.e. no permu-

tation of nodes will makes two hypergraphs same), but lead to

same clique and star expansion. On the other hand the adja-

cency tensor A and ~A associated with G and ~G, respectively
are different, i.e., A 6¼ ~A. Hence, while indirect HSM based on

clique expansion will results in a zero value, direct HSM

based on tensor representation (see Section V) will result in a

non-zero value. However, computing direct HSMs can be

computationally challenging. A detailed discussion of pros/

cons of direct and indirect HSMs is given in the Section VI-D.

d) HOSVD and Centrality for Hypergraphs: We next dis-

cuss HOSVD of L and associated properties. Since L is super-

symmetric, any mode unfolding of L would yield the same

unfolding matrix with the same singular values which we

denote by gj; j ¼ 1; . . . ; n (note that we have removed depen-

dence of gk
j on mode k). It was shown in [18] that the singular

values of L encode structural properties of the hypergraph,

such as vertex degrees, path lengths, clustering coefficients

and nontrivial symmetricity for uniform hypergraphs, and thus

can be used to quantify differences in hypergraph structure.

Moreover, a fast and memory efficient tensor train decomposi-

tion (TTD)-based computational framework was developed

in [18] to compute the singular values for uniform hyper-

graphs. Given these two desirable features, we also propose to

use singular values of L as an alternative to H-eigenvalues in

defining spectral HSM.

The notion of centrality has been generalized for hyper-

graphs. H/Z-eigenvectors of the adjacency tensor A are used

to define hypergraph eigenvector-centrality [40]. In particular,

the H/Z-eigenvector centrality c 2 Rn is defined to be an H/Z-

eigenvector of the adjacency tensor A such that it is positive

i.e., c > 0 with a positive H/Z-eigenvalue, i.e., � > 0. By
Perron-Frobenius theorem for non-negative tensors [55], such

positive H/Z-eigenvectors exist under certain irreducibility

conditions on A. While such a positive Z-eigenpair may not

be unique, the H-eigenpair is always unique up to scaling.

Along similar lines, authors in [56] define node and hyperedge

centralities as vectors c 2 Rn and e 2 Rm, respectively, that

satisfy,

c� ¼ gðHWfðeÞÞ; (25)

em ¼ cðHTfðcÞÞ; (26)

s.t. c; e > 0; �;m > 0: (27)

In above system of equations, H is the incidence matrix and

W is the hyperedge weight matrix for G (and we have assumed

that all vertices have unit weight consistent with setting in this

paper), and g; f;f;c : Rþ ! Rþ are appropriately chosen

non-negative functions on non-negative real domain. Further-

more note that these scalar functions are extended on vectors

by defining them as mappings that act in a componentwise

fashion. By invoking Perron-Frobenius theorem for multi-

homogeneous mappings [57], it was proved that under certain

conditions on the scalar functions, the solution of above sys-

tem exists and is unique. A nonlinear power method with con-

vergence guarantees is proposed to solve the above system.

Furthermore, it is shown that with choices fðxÞ ¼ x; gðxÞ ¼
x1=ðpþ1Þ;cðxÞ ¼ ex and cðxÞ ¼ lnðxÞ, the node centrality vec-

tor c is also a lp-tensor eigenvector, and thus further generaliz-

ing the notion of H/Z-eigenvector centrality.

C. Direct HSMs

For tensor-based representation we define a set of SMs

along similar lines as discussed in Section III. Let G and ~G be

two weighted hypergraphs with same node set and same
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maximum hyperedge cardinality, and let ðA;LÞ and ð~A; ~LÞ be
corresponding adjacency and Laplacian tensor, respectively.

� Structural HSM: It is straightforward to generalize the

Hamming and Jaccard distance for graphs to tensor-

based representation as follows:

DHðG; ~GÞ ¼
jjA� ~Ajj1

N ;

where,

jjAjj1 ¼
Xn
i1¼1

Xn
i2¼1

� � �
Xn
ik¼1

jAi1;...;ik j;

is tensor 1-norm and N ¼ nk � n is a normalization

constant, and

DJðG; ~GÞ ¼ 1�
P

j1j2...jk
minðAj1j2...jk ;

~Aj1j2...jkÞP
j1j2...jk

maxðAj1j2...jk ;
~Aj1j2...jkÞ

;

respectively.

� Feature-based HSM: As in feature-based GSM, we can

use specific “features” of the hypergraph, such as the node

degree distribution, different notions of centrality, diame-

ter, etc for use in comparing hypergraphs. If we are using

node dependent features, the method aggregates a feature-

vertex matrix of size k� n, where k is number of features

selected. This feature-vertex matrix for the two hyper-

graphs can then be directly compared, or can be further

reduced to a “signature vector” as in the graph case, and

used to obtain a SM between hypergraphs. As in graph

case (see Section III) we propose to use tensor-based

hypergraph centrality as the feature for comparison. Let

ci; i ¼ 1; . . . ; n and ~ci; i ¼ 1; . . . ; n be normalized (i.e.,

jcj1 ¼ j~cj1 ¼ 1) node centralities for G and ~G, respec-

tively, then centrality-based HSM is given by,

DCðG; ~GÞ ¼
1

n

Xn
i¼1

jci � ~cij: (28)

While in above definition one could use any notion of

hypergraph centrality, we propose to use the node cen-

trality defined by (25)-(27) in our application.

� Spectral HSM: Let the ordered set of H-eigenvalues of

L be �1; . . . ; �p i.e., �1 � �2 � � � � �q, and similarly let
~�1; . . . ; ~�~q be the ordered set for ~L. Note that in general

q 6¼ ~q. Without loss of generality, assume ~q > q and

define an extended set of H-eigenvalues �1; . . . ; �~q for

G, where �i ¼ 0; i � ~q � q, and �i ¼ �i�ð~q�qÞ; i ¼
~q � q þ 1; . . . ; ~q. The lp distance on space of H-eigen-

values can then be defined as,

D�ðG; ~GÞ ¼
1

~q

X~q�1

i¼1

j�i � ~�ijp: (29)

As discussed above, we similarly propose to use

higher-order singular values, leading to,

DgðG; ~GÞ ¼
1

n

Xn�1

i¼1

jgi � ~gij
p; (30)

where, gi; i ¼ 1; . . . ; n and ~gi; i ¼ 1; . . . ; n are higher-

order singular values of L and ~L, respectively. We will

refer to D� and Dg as spectral-H and spectral-S HSMs,

respectively.

� Hypergraph Embedding-based HSMs: Recently, GNNs

have been extended to hypergraph neural networks

(HNN) [58], [59]. Thus, as for graphs (see Section III),

one can learn an embedding from a set of hypergraphs

into an Euclidean space, and then compute a distance

between the embeddings of two hypergraphs.

� Hypergraph Kernel-based HSMs: The notion of graph

kernels has been generalized to hypergraphs, see for

example [60], [61]. These kernels can be used for com-

paring hypergraphs as in the graph case.

Given the similarity in the construction to their graph coun-

terparts, the SM properties (as discussed in Section II-C) satis-

fied by Hamming, spectral, and centrality-based direct HSMs

mentioned above are expected to be similar to their graph

counterparts, see Table I for details. However, further empiri-

cal analysis may be necessary to confirm this assertion.

VI. NUMERICAL STUDIES

In this section we assess the performance of indirect and

direct HSMs on synthetic hypergraphs and real-world biolog-

ical datasets. For these studies we have chosen one represen-

tative example of a local, global, mesoscopic, and multiscale

HSMs, namely, Hamming HSM (local), spectral HSM

(global), centrality-based HSM (mesoscopic), and deltaCon

HSM (multiscale).

A. Synthetic Hypergraphs

To generate synthetic hypergraphs, we consider three fami-

lies of generative models: Erd€os-R�enyi (ER), Barab�asi-Albert
(BA) and Watts-Strogats (WS). These three models are widely

used as test-beds in a variety of network science problems and

have varying structural complexity. ER model [62] leads to

“structureless” graph in the sense that the statistical properties

of each edge and vertex in the graph is exactly same. In BA or

scale-free (SF) model [63], on the other hand, the node degree

distribution behaves as a power-law due to preferential attach-

ment, and that impacts both its global and local structure. On

the local scale, vertices in graph tend to connect exclusively to

highest-degree vertices in the graph, rather than to one

another, generating a tree-like topology. The high-degree

vertices acts like hub which are by definition are global struc-

tures as they touch a significant portion of rest of the graph,

thereby increasing the connectivity throughout the graph. WS

model [64] on a global scale looks like an uncorrelated ran-

dom graph in which it exhibits no communities or high-degree

vertices but has small average shortest path length between

vertices, while at local scale it shows high clustering com-

pared to the BA model.
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The three models, originally developed for graphs, have

been generalized to the hypergraph case. We will restrict to

procedure of construction of k-uniform hypergraphs in each

family. The user specifies the desired number of vertices n,
desired number of hyperedges m and some additional parame-

ters depending on the model as discussed below.

a) Erdos–Renyi (ERH): There are n
k

� �
possible hyperedges

in a k-uniform hypergraph. To construct a random k-uniform
hypergraph, we uniformly sample m hyperedges from this set

without repetition.

b) Scale Free Hypergraph (SFHðmÞ): To construct an

k-uniform SFH, we follow the generative model from [65]:

i. Assign each node a probability pi as:

pi ¼
i�mPn
j¼1 j

�m
; i ¼ 1; . . . ; n;

where, 0 < m < 1 is a user chosen parameter.

ii. Select k-distinct vertices with probabilities pi1 ; . . . ; pik . If
the hypergraph does not already contain a hyperedge of

those chosen k vertices, then add the hyperedge to the

hypergraph

iii. Repeat step ii) until m unique hyperedges have been

generated.

Similar to BA/SF graph, this procedure produces a hyper-
graph with vertices with average degrees < d > having a
power-law distribution, Pkð< d > Þ �< d > �� with
� ¼ 1þ 1

m
.

c) Watts-Strogats Hypergraph (WSHðpÞ): Using a proce-

dure similar for WS graphs, WSH is constructed as

follows, [18]:

i. Construct a d-regular k-uniform hypergraph with n vertices,

and add extra hyperedges in every kþ 1 vertices. We

refer to hyperedges in this hypergraph as the initial

hyperedges.

ii. Select an initial hyperedge and generate a new hyperedge

with k vertices chosen uniformly at random. If the new

hyperedge does not exist, with probability p, replace the

selected hyperedge with the new hyperedge. Here 0 <
p < 1 is a rewiring probability as specified by the user.

iii. Repeat step ii), till all initial hyperedges have been iterated

on.

Fig. 2, show a realization of each of these three hypergraph

models with k ¼ 4, n ¼ 80 and m ¼ 100. To asses if these

hypergraph models posses similar structural properties as their

graph counterparts, we compare their node degree distribution,

average path length, and clustering coefficient. For computing

average path length, we use:

La ¼
1

nðn� 1Þ
X
j 6¼i

dðvj; viÞ; (31)

where, dðvj; viÞ denotes the shortest distance between vertices

vj and vi. Note in computing shortest distance, two vertices

are considered adjacent if they share a common hyperedge.

For clustering coefficient we use definition from [18],

Cj ¼
jfei1i2���ik : vi1 ; vi2 ; . . . ; vik 2 Vj; ei1i2���ik 2 Egj

jVjj
k

� � ;

) Ca ¼
1

n

Xn
j¼1

Cj; (32)

where, Vj is the set of vertices that are immediately connected

to vj i.e. share a hyperedge with node vj, and
jVjj
k

� �
¼ jVjj!

ðjVjj�kÞ!k!
returns the binomial coefficients. If jVjj < k, we set Cj ¼ 0.

As can be seen from Fig. 2, the ERH and WSH construction

results in a hypergraph with almost homogeneous degree dis-

tribution. The SFH, on the other hand, shows power-law

degree distribution for node degrees, as discussed above. The

WSH model shows high clustering coefficient compared to

ERH and SFH as expected.

B. Performance on Synthetic Hypergraphs

We next assess and compare the effectiveness of different

HSMs in differentiating hypergraphs with distinct structural fea-

tures, i.e., originating from the different models. In other words,

to yield a good performance, a HSM should be able to assign

small distance to hypergraph pairs coming from the same model

but large HSM values to pairs coming from different models.

A systematic approach for quantification of the performance

can be accomplished via the receiver operating characteristic

(ROC) curve [66]. The ROC curve is created by plotting the

true positive rate (TPR) against the false positive rate (FPR) at

various threshold settings. For a given HSM, one defines a

threshold � > 0 and classifies two hypergraphs as belonging

Fig. 2. Examples of 4-uniform ERH, WSH and SFH with n ¼ 80 and m ¼
100. Also shown are node degree distribution, average path length and cluster-
ing coefficients for each case. The red polygons represent a selected
hyperedge.
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to the same model class if their HSM value is less than �.
Given that the correct classes are known, TPR and FPR values

can be computed to quantify the accuracy of classifying all the

hypergraphs. The procedure is then repeated by varying �,
obtaining the ROC curve which, ideally, should have TPR

equal to 1 for any FPR value. Furthermore, one can compute

the area under curve (AUC) which is equal to the probability

that a classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative one. Thus, for a per-

fect classifier, AUC ¼ 1, while for a classifier that randomly

assigns observations to classes, AUC¼ 0:5.
For testing purposes, we consider hypergraph size n ¼ 40,

m ¼ 50 and generate 25 networks for each of the three types,

resulting in a total population of Ng ¼ 75 hypergraphs. We then

compute all the pairwise HSM using each method, ending up with

aNg �Ng distance matrix for each case. We then generate ROC

curves for each HSM considered using procedure discussed

above. In addition, to create a visual aid, we also generate a 2d

embedding for each hypergraph in the population by applying t-

distributed stochastic neighbor embedding (tSNE) [67] to the dis-

tance matrix corresponding to each HSM. Fig. 3 shows the ROC

curves, while the 2-dimensional embedding is shown in Fig. 4,

where we have labeled each point corresponding to different

instances of hypergraph using distinct colors based on its known

model class. Note that for an unweighted uniform hypergraph, the

adjacencymatrices for clique (10) and star expansion (13) become

same up to a scale factor. Hence, we find that the ROC curves for

Hamming and centrality-based indirect HSMs are similar.

C. Test on Real Datasets

In this section we assess the performance of HSMs in

grouping sets of networks derived from noisy experimental

data. In order to assess statistical significance while comparing

two hypergraphs, we propose to use the permutation test.

1) Permutation Test for HSM: Consider a hypothesis test-

ing problem:

� Null (H0): G1 and G2 are similar,

� Alternative (H1): G1 and G2 are dissimilar.

Since the null distribution forH0 is unknown, we use a per-
mutation test [68] to empirically estimate it. Let D be any
of the HSMs, and let ps be the desired significance level of
the test. The steps in the permutation test involve:

� Step 1: Randomly generate a family of hypergraphs

fGr
ig

N
i¼1 which are similar to G1, and compute di ¼

DðG1;Gr
i Þ; i ¼ 1; . . . ; N .

� Step 2: Compute d12 ¼ DðG1;G2Þ.
� Step 3: Compute p-value as p ¼ 1

N

PN
i¼1 Id12ðdiÞ, where

I z is indicator function, i.e. I zðxÞ ¼ 1 if x > z and

I zðxÞ ¼ 0 otherwise.
� Step 4: Reject H0 if p � ps.

In Step 1 one could use Erdos-Reyni (ER) or Chung-Lu
(CL) procedure [14] to randomly generate hypergraphs
with similar characteristics as G1. Let d1

v ¼ ðdðv1Þ; . . . ;
dðvnÞÞ and d1

e ¼ ðdðe1Þ; . . . ; dðemÞÞ be vertex degree and
hyperedge size distribution vectors of G1. Let c ¼Pn

i¼1 dðviÞ ¼
Pm

i¼1 dðeiÞ, and vertex-hyperedge member-
ship probability in G1 be p, where

p ¼ c

mn
:

ER procedure selects vertices uniformly at random for each

hyperedge with probability p. Thus, for each of the nm vertex-

hyperedge pairs, the probability of membership is the same, i.e.,

Pðu 2 eÞ ¼ p:

On the other hand, the CL procedure generates Gr with sim-

ilar vertex degree and hyperedge size distribution as of G1.

The probability a vertex belongs to a hyperedge in Gr is

Fig. 3. ROC curves and AUC for different HMDs: Hamming (blue), Spectral
(red) and Centrality (orange).

Fig. 4. Embedding for different hypergraphs in 2d using tSNE applied to
HSMs: ERH (red), WSH (green) and SFH (blue).

SURANA et al.: HYPERGRAPH SIMILARITY MEASURES 669

Authorized licensed use limited to: Harvard Library. Downloaded on March 15,2023 at 02:25:34 UTC from IEEE Xplore.  Restrictions apply. 



proportional to the product of the desired vertex degree and

hyperedge size, i.e.,

Pðu 2 eÞ ¼ dðuÞdðeÞ
c

:

To ensure this probability is always less than 1, one may fur-

ther require the input sequences satisfy maxi;jdðuiÞdðejÞ � c.
Note that this procedure will in general produce a non-uniform

hypergraph depending on distribution d1
e . For a k-uniform

hypergraph, dðeiÞ ¼ k; i ¼ 1; . . . ;m. To sample a k-uniform
hypergraph with given node degree distribution d1

v, we modify

the CL process as follows:

i. Assign each node a probability pi as:

pi ¼
dðviÞ
c

; i ¼ 1; . . . ; n:

ii. Select k-distinct vertices with probabilities pi1 ; . . . ; pik . If
the hypergraph does not already contain a hyperedge of

these chosen k vertices, then add the hyperedge to the

hypergraph.

iii. Repeat step ii) untilm unique edges have been generated.

2) Mouse Neuron Endomicroscopy: The mouse endomi-

croscopy dataset is an imaging video created under 10-

minute periods of feeding, fasting and re-feeding using

fluorescence across space and time in a mouse hypothala-

mus [4], [18], [19]. Twenty neurons are recorded with

individual levels of “firing”. Similar to [18], we want to

quantitatively differentiate the three phases. First, we com-

pute the multi-correlation among every three neurons,

which is defined by

r ¼ ð1� det ðRÞÞ
1
2; (33)

where, R 2 R3�3 is the correlation matrix of three neuron

activity levels [69]. When the multi-correlation r is greater

than a prescribed threshold, we build a hyperedge among the

three neurons and assign it an hyperedge weight equal to r.

For our application we use a threshold of 0.93 as prescribed

in [18]. Fig. 5 shows the resulting hypergraphs for the three

phases.

Fig. 6 shows the comparison of hypergraph corresponding

to different phases using various HSMs. We find similar trends

using both indirect and direct HSMs. The spectral and central-

ity HSMs between fed and re-fed phases have smaller values

revealing more similarity at global and mesoscopic scales

compared to corresponding HSM values between fed and fast,

and re-fed and fast phases. On the other hand, Hamming HSM

reveals that fed and fast phase are more similar at local scale

compared to fed and re-fed phases. The * on the bars implies

that there is statistically significant difference between the

hypergraphs in the corresponding two phases based on p-val-
ues from the permutation test.

3) Genomic Dataset: We next apply HSM framework to

compare genomic structure of two cell types. Genomic

DNA must be folded to fit inside a nucleus, but must

remain accessible for gene transcription, replication and

repair [70], [71]. Consequently, higher-order chromatin

structure arises from such combinatorial physical interac-

tions of many genomic loci. Recently, authors in [72] pro-

posed to represent such higher-order chromatin structure

by a hypergraph, where the different loci in the genome

are the vertices, and each multi-way contact between a set

of loci represent a hyperedge. Furthermore, they used

Pore-C [73], a recent method developed by Oxford Nano-

pore Technologies to measure these multi-way contacts

directly and construct the hypergraph experimentally. Note

that, while Pore-C gives contact information at the finest

level of base-pair position in the genome, it is often conve-

nient to aggregate this information at a coarser resolution

by aggregating linear continuous segments in the genome,

see [72] for details.

Fig. 7 shows the visualization of the incidence matrix of

the hypergraph derived for human fibroblasts (FB) and B

lymphocytes (GM) cell lines at 25Mb resolution after noise

reduction. The entire genome at this resolution consists of

Fig. 5. Mouse neuron endomicroscopy features. (A), (B) and (C) Neuronal
activity networks of the three phases - fed, fast and re-fed, which depicts the
spatial location and size of individual neurons. Each 2-simplex (i.e., a triangle)
represents a hyperedge. The cutoff threshold is 0.93 for the hypergraph model.

Fig. 6. Comparison of different phases of mouse feeding activity using dif-
ferent HSMs: blue (fed,fast), red (fed,re-fed), and orange (re-fed,fast). The *
on the bars implies that there is statistically significant difference between the
hypergraphs in the corresponding two phases based on p-values from the per-
mutation test.
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n ¼ 3; 102 vertices for both cells, with number of hyper-

edges m ¼ 836; 571 for FB and m ¼ 1; 028; 694 for GM.

The maximum hyperedge set cardinality is 40 for FB and

90 for GM. To compare chromosomes individually, we

also construct separate hypergraphs for each chromosome

comprising of intra-chromosomal contacts only. Chromo-

some 1 has maximum number of vertices n ¼ 249 and

chromosome 22 has smallest number of vertices n ¼ 51 at

the chosen 25Mb scale. The number of hyperedges differ

by chromosomes taking values in range ½1; 000 35; 000�
for FB, and in the range ½6; 000 75; 000� for GM, respec-

tively. Moreover maximum hyperedge set cardinality also

differs between corresponding chromosomes in the GM

and FB. As a result we cannot use the tensor-based direct

HSMs, and restrict to indirect HSM for comparison.

In Fig. 8 we show chromosome level comparison using

indirect HSM based on the clique and star expansion. We find

that the trends between two expansions are similar for Ham-

ming, deltaCon, and centrality HSMs, while they differ for

spectral HSM. Furthermore, we can see that at local scale

chromosome 16 differs most between FB and GM, while chro-

mosome 19 and 21 differ the most at the mesoscale. The cli-

que-spectral HSM reveals that chromosome 23 differs most at

global scale, while star-spectral HSM indicates chromosomes

19,20,21,22 are the most different.

Table II shows the values of different indirect HSMs

between FB and GM for the entire genome. The p-values indi-
cate that FB and GM are dissimilar at all scales based on both

clique and star expansion.

D. Discussion

We first discuss pros/cons of indirect and direct HSMs.

While indirect HSMs allow one to leverage large variety of

GSMs for hypergraph comparison, the hypergraph conversion

into clique/star representation is lossy (as shown in Example

in Section V-B) and thus may result in inability to discern cer-

tain aspects of structural differences or similarities between

two hypergraphs. Identifying under what conditions (e.g.,

class of hypergraphs) and how typically such scenarios may

arise is an interesting avenue for future research. Direct HSMs

being based on tensor representation do not suffer from such

loss of information. However, tensor computations (e.g., ten-

sor eigenvalue/singular values) can be challenging for hyper-

graphs with large number of vertices and/or with high

maximum hyperedge cardinality. Moreover, direct HSMs can

only be applied to cases where the underlying hypergraph has

same number of vertices and same maximum hyperedge cardi-

nality. Indirect HSMs however are computationally less

Fig. 7. (A) Incidence matrix visualization of the top 10 most common multi-way contacts per chromosome, for fibroblasts (FB). Matrices are constructed at
25 Mb resolution. Highlighted boxes indicate example intra-chromosomal contacts (red), inter-chromosomal contacts (magenta), and combinations of intra- and
inter-chromosomal contacts (blue). Examples for each type of contact are shown in the top right corner. (B) Similar plot for B lymphocytes (GM). Genomic loci
that do not participate in the top 10 most common multi-way contacts for fibroblasts or B lymphocytes were removed from these incidence plots.

Fig. 8. Comparison of different chromosomes in FB and GM using indirect
HSMs.

TABLE II
INDIRECT HSMS VALUES BETWEEN FULL GENOME OF THE FB AND GM
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demanding, and can be employed even if hypergraphs have

different maximum hyperedge cardinality. Moreover, by

restricting to GSMs which are applicable for comparing

graphs with different number of vertices or unknown node

correspondence, indirect HSMs can also be applied for com-

paring hypergraphs with different number of vertices and/or

unknown node correspondence. In terms of performance of

indirect and direct HSMs to assess structural differences or

similarities between two hypergraphs, the numerical studies

show that both approaches could be effective depending on

the application.

We are currently exploring the application of line expan-

sion [74] which has been recently proposed as an alternative

approach to transforming hypergraph into a graph. Com-

pared to clique or star expansion, line expansion does not

result in any information loss during the transformation,

thus, potentially providing more effective means for devel-

oping indirect HSMs. Addressing the computational chal-

lenges associated with tensor-based HSM will be important

to address to scale the approach to larger problems. In addi-

tion approaches alternative to using tensor-based representa-

tion, such as higher-order random walk-based hypergraph

analysis [14] provide another potential avenue for develop-

ing new HSMs.

GNNs have achieved state of art results in graph analytics

applications such as node classification and link predic-

tion [75]. As discussed in the Section III, GNNs have also

been applied for graph comparison [34] with promising

results. It would be worthwhile to further explore application

of GNNs as indirect HSMs for hypergraph comparison. Along

similar lines, while notions of graph kernels, graph embedding

and GNNs have been extended to hypergraphs [58], [59], [60],

[61], further investigation is warranted for their application in

hypergraph comparison.

In addition use of HSMs in other graph/data analytics

problems such as knowledge graph representation learn-

ing [76], multiview clustering [77] and node classification/

link prediction [78] would also be worth exploring. Appli-

cations of the proposed HSMs in other domains e.g.,

cybersecurity and social networks is another avenue for

future research.

VII. CONCLUSION

In this article we presented two approaches for hypergraph

comparison. The first approach transforms the hypergraph into

a graph representation, and then uses standard graph similarity

measures. The second approach uses tensors to represent

hypergraphs and then invokes various tensor algebraic notions

to develop hypergraph similarity measures. Within each

approach we presented a collection of measures which assess

hypergraph similarity at different scales. We evaluated these

measures on synthetic hypergraphs and real-world biological

datasets with promising results. Finally, we discussed various

pros/cons in using the two approaches, and outlined some ave-

nues of future research.
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